Abstract
Accurate sea clutter modeling is crucial for clutter suppression in edge radar processing. On resource-constrained edge radar platforms, spatiotemporal statistics, together with device-level computation and memory limits, hinder the learning of representative clutter features. This study presents a transformer-based generative adversarial model for sea clutter modeling. The core design of this work uses axial attention to factorize self-attention along pulse and range, preserving long-range dependencies under a reduced attention cost. It also introduces a two-dimensional variable-length spatiotemporal window that retains temporal and spatial coherence across observation lengths. Extensive experiments are conducted to verify the efficacy of the proposed method with quantitative criteria, including a cosine similarity score, spectral-parameter error, and amplitude–distribution distances. Compared with CNN-based GAN, the proposed model achieves a high consistency with real clutter in marginal amplitude distributions, spectral characteristics, and spatiotemporal correlation patterns, while incurring a lower cost than standard multi-head self-attention. The experimental results show that the proposed method achieves improvements of 9.22% and 7.8% over the traditional AR and WaveGAN methods in terms of the similarity metric, respectively.