Fault Identification Method for Photovoltaic Power Grids Based on an Improved GABP Neural Network and Fuzzy System
Abstract
1. Introduction
2. Related Technologies and Current Developments
3. Overall Design
4. Fuzzy Control Based Fault Detection in Photovoltaic Distribution Network
4.1. Fault Contributing Factors Analysis
4.2. Photovoltaic Power Grid Fault Detection
4.2.1. Enhanced Neural Network Solution
Algorithm 1: Improved Adam Optimizer | |
Input: Initial parameters θ0, learning rate η = 0.001, decay step T = 1000, decay rate γ = 0.76 | |
Output: Optimized parameters θ | |
1: | Initialize: m0 = 0, v0 = 0, β1 = 0.7, β2 = 0.999, ε = 1 × 10−8 |
2: | for t = 1 to max_iterations do |
3: | Compute current gradient gt = ∇θL(θt − 1) |
4: | Update first moment estimate: mt = β1·mt − 1 + (1 − β1)·gt |
5: | Update second moment estimate: vt = β2·vt − 1 + (1 − β2)·gt2 |
6: | Compute bias-corrected estimate: m^t = mt/(1 − β1^t) |
7: | Compute bias-corrected estimate: v^t = vt/(1 − β2^t) |
8: | Update parameters: θt = θt − 1 − η·m^t/(√v^t + ε) |
9: | if t%T = =0 then |
10: | η= η×γ # Learning rate decay |
11: | end if |
12: | end for |
4.2.2. Genetic Algorithm Optimization
5. Fault Classification of Photovoltaic Power Grids Based on Fuzzy Systems
5.1. Fuzzy Classifier
5.2. Design of Membership Functions
5.2.1. Types and Mathematical Expressions of Membership Functions
5.2.2. Defuzzification Method
5.2.3. Physical Model of Irradiance
- Plane of Array Irradiance
- 2.
- Horizontal Irradiance
5.2.4. Variable Domains and Fuzzy Sets Definition
- − GHI [0, 1100]{O (zero), S (small), M (medium), B (big), VB (very big)}.
- − POA [0, 1100]{O (zero), S (small), M (medium), B (big), VB (very big)}.
- − G(P) [0, 800]{O (zero), S (small), M (medium), B (large), VL (very large)}.
- − Photovoltaic Panel Fault [0, 100]{N (unlikely), P (possible), PP (very likely)}.
- − Generator Fault [0, 100]{N (unlikely), P (possible), PP (very likely)}.
- − Line Fault [0, 100]{N (unlikely), P (possible), PP (very likely)}.
6. Experiment and Analysis
6.1. Experimental Data
6.2. Experimental Analysis
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, B.; Huo, X. Prediction of Photovoltaic power generation and analysis of carbon emission reduction capacity in China. Renew. Energy 2024, 222, 119967. [Google Scholar] [CrossRef]
- Cao, Y.-N.; Wang, Y.; Ding, Y.; Guo, Z.; Wu, Q.; Liang, H. Blockchain-empowered security and privacy protection technologies for smart grid. Comput. Stand. Interfaces 2023, 85, 103708. [Google Scholar] [CrossRef]
- Li, Y.; Wei, X.; Lin, J.; Niu, G. A robust fault location method for active distribution network based on self-adaptive switching function. Int. J. Electr. Power Energy Syst. 2023, 148, 109007. [Google Scholar] [CrossRef]
- Yuan, J.; Wu, T.; Hu, Y.; Jiao, Z. Faulty feeder detection based on image recognition of voltage-current waveforms in non-effectively grounded distribution networks. Int. J. Electr. Power Energy Syst. 2022, 143, 108434. [Google Scholar] [CrossRef]
- Wang, Z.; Razzaghi, R.; Paolone, M.; Rachidi, F. Time reversal applied to fault location in power networks: Pilot test results and analyses. Int. J. Electr. Power Energy Syst. 2020, 114, 105382. [Google Scholar] [CrossRef]
- Ahmadipour, M.; Hizam, H.; Othman, M.L.; Radzi, M.A.M.; Murthy, A.S. Islanding detection technique using Slantlet Transform and Ridgelet Probabilistic Neural Network in a grid-connected photovoltaic system. Appl. Energy 2018, 231, 645–659. [Google Scholar] [CrossRef]
- Hussain, A.; Mehdi, A.; Kim, C.-H. A communication-less islanding detection scheme for hybrid distributed generation systems using recurrent neural network. Int. J. Electr. Power Energy Syst. 2024, 155, 109659. [Google Scholar] [CrossRef]
- Cano, A.; Arévalo, P.; Benavides, D.; Jurado, F. Integrating discrete wavelet transform with neural networks and machine learning for fault detection in microgrids. Int. J. Electr. Power Energy Syst. 2024, 155, 109616. [Google Scholar] [CrossRef]
- Aazami, R.; Shoaei, M.; Moradkhani, A.; Shirkhani, M.; ELrashidi, A.; AboRas, K.M. Deep neural networks based method to islanding detection for multi-sources microgrid. Energy Rep. 2024, 11, 2971–2982. [Google Scholar] [CrossRef]
- Hajji, M.; Yahyaoui, Z.; Mansouri, M.; Nounou, H.; Nounou, M. Fault detection and diagnosis in grid-connected PV systems under irradiance variations. Energy Rep. 2023, 9, 4005–4017. [Google Scholar] [CrossRef]
- Mellit, A.; Kalogirou, S. Assessment of machine learning and ensemble methods for fault diagnosis of photovoltaic systems. Renew. Energy 2022, 184, 1074–1090. [Google Scholar] [CrossRef]
- Ostovar, A.; Davari, D.D.; Dziku, M. Determinants of Design with Multilayer Perceptron Neural Networks: A Comparison with Logistic Regression. Sustainability 2025, 17, 2611. [Google Scholar] [CrossRef]
- Kermani, A.; Jamshidi, A.M.; Mahdavi, Z.; Dashtaki, A.a.; Zand, M.; Nasab, M.A.; Samavat, T.; Sanjeevikumar, P.; Khan, B. Energy Management System for Smart Grid in the Presence of Energy Storage and Photovoltaic Systems. Int. J. Photoenergy 2023. [Google Scholar] [CrossRef]
- Bendary, A.F.; Abdelaziz, A.Y.; Ismail, M.M.; Mahmoud, K.; Lehtonen, M.; Darwish, M.M. Proposed and is based approach for fault tracking, detection, clearing and rearrangement for photovoltaic system. Sensors 2021, 21, 2269. [Google Scholar] [CrossRef] [PubMed]
- Abbas, M.; Zhang, D. A smart fault detection approach for PV modules using Adaptive Neuro-Fuzzy Inference framework. Energy Rep. 2021, 7, 2962–2975. [Google Scholar] [CrossRef]
- Sarikh, S.; Raoufi, M.; Bennouna, A.; Ikken, B. Characteristic curve diagnosis based on fuzzy classification for a reliable photovoltaic fault monitoring. Sustain. Energy Technol. Assess. 2021, 43, 100958. [Google Scholar]
- Liu, J.; Ke, J.; Liu, J.; Xie, X.; Tian, E. Secure event-triggered control for IT-2 fuzzy networked systems with stochastic communication protocol and FDI attacks. IEEE Trans. Fuzzy Syst. 2024, 32, 1167–1180. [Google Scholar] [CrossRef]
- Dhimish, M.; Holmes, V.; Mehrdadi, B.; Dales, M. Comparing Mamdani Sugeno fuzzy logic and RBF ANN network for PV fault detection. Renew. Energy 2018, 117, 257–274. [Google Scholar] [CrossRef]
- Chandel, S.S.; Gupta, A.; Chandel, R.; Tajjour, S. Review of deep learning techniques for power generation prediction of industrial solar photovoltaic plants. Sol. Compass 2023, 8, 100061. [Google Scholar] [CrossRef]
- Liu, J.; Wang, W.; Hu, B.; Liu, J.; Xie, X.; Tian, E. Fuzzy-boosted event-triggered tracking control of unknown nonlinear networked systems: A PSO-driven RL approach. IEEE Trans. Autom. Sci. Eng. 2025, 22, 7736–7747. [Google Scholar] [CrossRef]
Photovoltaic Panel Fault/Generator Fault/Line Fault | GHI/GHI/POA | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
POA/ G(P)/ G(P) | 0 | S | M1 | M2 | M3 | B1 | B2 | B3 | VB | |
0 | N | PP | PP | PP | PP | PP | PP | PP | PP | |
S | PP | N | N | P | PP | PP | PP | PP | PP | |
M1 | PP | N | N | N | P | PP | PP | PP | PP | |
M2 | PP | P | N | N | N | P | PP | PP | PP | |
M3 | PP | PP | P | N | N | N | P | PP | PP | |
B1 | PP | PP | PP | P | N | N | N | P | PP | |
B2 | PP | PP | PP | PP | P | N | N | N | P | |
B3 | PP | PP | PP | PP | PP | P | N | N | N | |
VB | PP | PP | PP | PP | PP | PP | P | N | N |
Date | Time | DNI | DHI | WS | Temperature | GHI | POA | G(P) |
---|---|---|---|---|---|---|---|---|
2016/1/1 | 0.0 | 0.0 | 0.0 | 3.5 | 9.0 | 0.0 | 0.0 | 0.0 |
2016/1/1 | 0.15 | 0.0 | 0.0 | 3.45 | 8.5 | 0.0 | 0.0 | 0.0 |
2016/1/1 | 0.30 | 0.0 | 0.0 | 3.4 | 8.0 | 0.0 | 0.0 | 0.0 |
… | … | |||||||
… | ||||||||
… | ||||||||
2016/12/30 | 23.45 | 0.0 | 0.0 | 5.9 | 11.0 | 0.0 | 0.0 | 0.0 |
Epochs | Adaptive Learning Rate | L2 Regularization and Dropout | Individual Encoding | Initial Population Size | Maximum Generations | Generation Gap | Crossover Probability | Mutation Probability |
---|---|---|---|---|---|---|---|---|
300 | 0.01 | √ | 8 | 100 | 80 | 0.9 | 0.8 | 0.01 |
Method | Accuracy | Precision | Recall | F1-Score |
---|---|---|---|---|
Based on SVM | 0.81 | 0.82 | 0.82 | 0.83 |
Based on ordinary BP neural network | 0.85 | 0.86 | 0.85 | 0.84 |
Based on Improved GABP Neural Network and Fuzzy System | 0.93 | 0.93 | 0.92 | 0.92 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, X.; Sun, H.; Han, Z.; Xia, Y.; Wang, H.; Mou, Q. Fault Identification Method for Photovoltaic Power Grids Based on an Improved GABP Neural Network and Fuzzy System. Symmetry 2025, 17, 1476. https://doi.org/10.3390/sym17091476
Dong X, Sun H, Han Z, Xia Y, Wang H, Mou Q. Fault Identification Method for Photovoltaic Power Grids Based on an Improved GABP Neural Network and Fuzzy System. Symmetry. 2025; 17(9):1476. https://doi.org/10.3390/sym17091476
Chicago/Turabian StyleDong, Xiaofeng, Houtao Sun, Zhongxiu Han, Yuanchen Xia, Hongjun Wang, and Qingwen Mou. 2025. "Fault Identification Method for Photovoltaic Power Grids Based on an Improved GABP Neural Network and Fuzzy System" Symmetry 17, no. 9: 1476. https://doi.org/10.3390/sym17091476
APA StyleDong, X., Sun, H., Han, Z., Xia, Y., Wang, H., & Mou, Q. (2025). Fault Identification Method for Photovoltaic Power Grids Based on an Improved GABP Neural Network and Fuzzy System. Symmetry, 17(9), 1476. https://doi.org/10.3390/sym17091476