Intelligent Detection of Cognitive Stress in Subway Train Operators Using Multimodal Electrophysiological and Behavioral Signals
Abstract
1. Introduction
- (1)
- A novel multimodal framework integrating PPG, GSR, and head–facial behavioral features to overcome single-modality limitations;
- (2)
- The first application of symmetry principles (PPG waveform balance, bilateral head movement) to enhance stress-induced asymmetry detection;
- (3)
- Development of a hybrid PSO-CNN-GRU-Attention model with dynamic hyperparameter optimization and attention-based feature weighting, achieving a 22% higher R2 (0.890) than BiLSTM baselines;
- (4)
- Validation via a crossover experiment with 50 subway operators under simulated high/low-stress conditions;
- (5)
- Implementation of real-time safety interventions (e.g., PERCLOS-based auto-braking).
2. Materials and Methods
2.1. Data Collection and Crossover Experiment
- (a)
- Data Collection
- (b) Crossover Experiment
- Low Cognitive Load Condition: Participants were required to have sufficient sleep (≥8 h) prior to the experiment and abstain from caffeine/alcohol for 12 h. They performed a 30 min adaptive driving session to establish an operational baseline.
- High Cognitive Load Condition: Participants were subjected to a triple intervention protocol: (1) Sleep restriction: Only 4 h of sleep were permitted the night before the experiment. (2) Extended driving: A 4 h uninterrupted driving task incorporating features of real operational timetables (e.g., peak/off-peak period transitions). (3) Cognitive task load: The visual simulation system created a complex environment using dynamic brightness adjustments (50–200 lux), periodic tunnel light flickering (2–4 Hz), and randomly appearing virtual obstacles every 20 min. Furthermore, multi-tasking cognitive challenges were interspersed, such as requiring operators to perform simple arithmetic calculations or memory tasks concurrently during driving to increase cognitive load.
2.2. Characteristics Based on Biological Signals
2.2.1. Feature Extraction of PPG Signals
2.2.2. Feature Extraction of GSR Signals
2.3. Characteristics Based on Image Information
3. Model Construction
3.1. Feature-Level Fusion
3.2. Model Development Based on Neural Networks and Attention Mechanism
3.2.1. PSO-CNN-BiLSTM-Attention
- (1)
- Spatial-Spectral Feature Extraction: CNN layers capture local spatial patterns in temporal sequences.
- (2)
- Bidirectional Temporal Modeling: BiLSTM networks encode forward/backward contextual dependencies.
- (3)
- Attentional Feature Recalibration: A single-head self-attention mechanism applies scaled dot-product attention:
- (4)
- Hyperparameter Co-Optimization: A PSO optimizer dynamically tunes CNN filter counts, BiLSTM hidden units, and other critical parameters to enhance adaptive focus on salient temporal patterns.
3.2.2. PSO-CNN-GRU-Attention
4. Discussion
4.1. Evaluation Criteria
4.2. Robustness of the Model
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, K.; Xu, X.; Zhang, Y.; Xu, X. The influence of environmental factors on the job burnout of physical education teachers in tertiary education. Sci. Rep. 2024, 14, 9126. [Google Scholar] [CrossRef]
- Pan, Y.X.; Wang, L. The Development of a Job Stress Questionnaire for Chinese Employees. Psychol. Sci. 2006, 29, 312–314. [Google Scholar]
- Wu, F.Y.; Ren, Z.; Wang, Q.; He, M.F.; Xiong, W.J.; Ma, G.D.; Fan, X.; Guo, X.; Liu, H.; Zhang, X.M. The relationship between job stress and job burnout: The mediating effects of perceived social support and job satisfaction. Psychol. Health Med. 2021, 26, 204–211. [Google Scholar] [CrossRef]
- Greenier, V.; Derakhshan, A.; Fathi, J. Emotion regulation and psychological well-being in teacher work engagement: A case of British and Iranian English language teachers. System 2021, 97, 102446. [Google Scholar] [CrossRef]
- Bement, M.H.; Weyer, A.; Keller, M.; Harkins, A.L.; Hunter, S.K. Anxiety and stress can predict pain perception following a cognitive stress. Physiol. Behav. 2010, 101, 87–92. [Google Scholar] [CrossRef]
- Sandi, C. Stress and cognition. WIREs Cogn. Sci. 2013, 4, 245–261. [Google Scholar] [CrossRef] [PubMed]
- Tian, M.; Li, X.; Ma, J.; Zhang, T.; Wang, P.; Yuan, X.; Wang, X. Who merits more concern: University teachers under task-related or those under interpersonal-related stress? Humanit. Soc. Sci. Commun. 2024, 11, 1564. [Google Scholar] [CrossRef]
- Balasundaram, A.; Ashokkumar, S.; Kothandaraman, D.; kora, S.; Sudarshan, E.; Harshaverdhan, A. Computer vision based fatigue detection using facial parameters. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2020; Volume 981, No. 2. [Google Scholar] [CrossRef]
- Lv, C.; Nian, J.; Xu, Y.; Song, B. Compact vehicle driver fatigue recognition technology based on EEG signal. IEEE Trans. Intell. Transp. Syst. 2021, 23, 19753–19759. [Google Scholar] [CrossRef]
- Almarshad, M.A.; Islam, M.S.; Al-Ahmadi, S.; BaHammam, A.S. Diagnostic Features and Potential Applications of PPG Signal in Healthcare: A Systematic Review. Healthcare 2022, 10, 547. [Google Scholar] [CrossRef]
- Hibrian, H.; Baihaqi, M.; Ihsan, H. Relationship between academic stress and cyberloafing behavior among Psychology Department Students at Universitas Pendidikan Indonesia. PSIKOPEDAGOGIA J. Bimbing. Konseling 2022, 10, 89–93. [Google Scholar] [CrossRef]
- Nweke, G.E.; Jarrar, Y.; Horoub, I. Academic stress and cyberloafing among university students: The mediating role of fatigue and self-control. Humanit. Soc. Sci. Commun. 2024, 11, 419. [Google Scholar] [CrossRef]
- Yang, X.; McCoy, E.; Anaya-Boig, E.; Avila-Palencia, I.; Brand, C.; Carrasco-Turigas, G.; Dons, E.; Gerike, R.; Goetschi, T.; Nieuwenhuijsen, M.; et al. The effects of traveling in different transport modes on galvanic skin response (GSR) as a measure of stress: An observational study. Environ. Int. 2021, 156, 106764. [Google Scholar] [CrossRef] [PubMed]
- Goshvarpour, A.; Abbasi, A.; Goshvarpour, A. An accurate emotion recognition system using ECG and GSR signals and matching pursuit method. Biomed. J. 2017, 40, 355–368. [Google Scholar] [CrossRef]
- Krumhuber, E.G.; Skora, L.I.; Hill, H.C.H.; Lander, K. The role of facial movements in emotion recognition. Nat. Rev. Psychol. 2023, 2, 283–296. [Google Scholar] [CrossRef]
- Kim, D.; Park, H.; Kim, T.; Kim, W.; Paik, J. Real-time driver monitoring system with facial landmark-based eye closure detection and head pose recognition. Sci. Rep. 2023, 13, 18264. [Google Scholar] [CrossRef]
- China Association of Metros. Urban Rail Transit Annual Statistical and Analysis Report 2024. 28 March 2025. PDF File. Available online: https://www.camet.org.cn/xytj/tjxx/660844283682885.shtml (accessed on 5 August 2025).
- International Electrotechnical Commission (IEC). IEC 62278-1:2025 Railway Applications—Specification and Demonstration of Reliability, Availability, Maintainability and Safety (RAMS)—Part 1: Generic RAMS Process (1.0 ed.). 2025. Available online: https://webstore.iec.ch/en/publication/6747 (accessed on 5 August 2025).
- Jafari, M.; Zaeri, F.; Jafari, A.H.; Najafabadi, A.T.P.; Al-Qaisi, S.; Hassanzadeh-Rangi, N. Assessment and monitoring of mental workload in subway train operations using physiological, subjective, and performance measures. Hum. Factors Ergon. Manuf. Serv. Ind. 2020, 30, 165–175. [Google Scholar] [CrossRef]
- Liu, P.; Song, Y.; Yang, X.; Li, D.; Khosravi, M. Medical intelligence using PPG signals and hybrid learning at the edge to detect fatigue in physical activities. Sci. Rep. 2024, 14, 16149. [Google Scholar] [CrossRef] [PubMed]
- Zeynali, M.; Alipour, K.; Tarvirdizadeh, B.; Ghamari, M. Non-invasive blood glucose monitoring using PPG signals with various deep learning models and implementation using TinyML. Sci. Rep. 2025, 15, 581. [Google Scholar] [CrossRef]
- Jeong, D.U.; Lim, K.M. Combined deep CNN–LSTM network-based multitasking learning architecture for noninvasive continuous blood pressure estimation using difference in ECG-PPG features. Sci. Rep. 2021, 11, 13539. [Google Scholar] [CrossRef]
- Liu, Y. Research on Cuff—Less Blood Pressure Detection Method Based on PPG Morphology and HRV. Master’s Thesis, Xi’an University of Technology, Xi’an, China, 2024. [Google Scholar] [CrossRef]
- Yu, L. Research on Human Factor Parameter Monitoring and Early Warning Equipment in Confined Spaces. Ph.D. Thesis, University of Science and Technology Beijing, Beijing, China, 2020. [Google Scholar] [CrossRef]
- Chang, C.-W.; Munch, S.B.; Hsieh, C.-H. Comments on identifying causal relationships in nonlinear dynamical systems via empirical mode decomposition. Nat. Commun. 2022, 13, 2860. [Google Scholar] [CrossRef]
- Hogan, P.S.; Chen, S.X.; Teh, W.W.; Chib, V.S. Neural mechanisms underlying the effects of physical fatigue on effort-based choice. Nat. Commun. 2020, 11, 4026. [Google Scholar] [CrossRef] [PubMed]
- Rohr, M.; Tarvainen, M.; Miri, S.; Güney, G.; Vehkaoja, A.; Antink, C.H. An extensive quantitative analysis of the effects of errors in beat-to-beat intervals on all commonly used HRV parameters. Sci. Rep. 2024, 14, 2498. [Google Scholar] [CrossRef]
- Montanari, A.; Ferlini, A.; Balaji, A.N.; Mascolo, C.; Kawsar, F. EarSet: A Multi-Modal Dataset for Studying the Impact of Head and Facial Movements on In-Ear PPG Signals. Sci. Data 2023, 10, 850. [Google Scholar] [CrossRef] [PubMed]
- Gamrah, M.A.; Xu, J.; El Sawy, A.; Aguib, H.; Yacoub, M.; Parker, K.H. Mechanics of the dicrotic notch: An acceleration hypothesis. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2020, 234, 1253–1259. [Google Scholar] [CrossRef]
- Nolte, I.M.; Munoz, M.L.; Tragante, V.; Amare, A.T.; Jansen, R.; Vaez, A.; von der Heyde, B.; Avery, C.L.; Bis, J.C.; Dierckx, B.; et al. Genetic loci associated with heart rate variability and their effects on cardiac disease risk. Nat. Commun. 2017, 8, 15805. [Google Scholar] [CrossRef] [PubMed]
- Jiryis, T.; Magal, N.; Fructher, E.; Hertz, U.; Admon, R. Resting-state heart rate variability (HRV) mediates the association between perceived chronic stress and ambiguity avoidance. Sci. Rep. 2022, 12, 17645. [Google Scholar] [CrossRef]
- Schmid, R.F.; Thomas, J.; Rentzsch, K. Individual differences in parasympathetic nervous system reactivity in response to everyday stress are associated with momentary emotional exhaustion. Sci. Rep. 2024, 14, 26662. [Google Scholar] [CrossRef]
- Corponi, F.; Li, B.M.; Anmella, G.; Valenzuela-Pascual, C.; Pacchiarotti, I.; Valentí, M.; Grande, I.; Benabarre, A.; Garriga, M.; Vieta, E.; et al. A Bayesian analysis of heart rate variability changes over acute episodes of bipolar disorder. npj Ment. Health Res. 2024, 3, 44. [Google Scholar] [CrossRef]
- Pham, T.; Lau, Z.J.; Chen, S.H.A.; Makowski, D. Heart Rate Variability in Psychology: A Review of HRV Indices and an Analysis Tutorial. Sensors 2021, 21, 3998. [Google Scholar] [CrossRef]
- Cohen, M.X. A better way to define and describe Morlet wavelets for time-frequency analysis. NeuroImage 2019, 199, 81–86. [Google Scholar] [CrossRef]
- Kong, S.; Qiu, L.; Su, Y.; Zhang, Y.; Sun, K. Mindfulness, cognitive load, and performance: Examining the interplay of stress and self-regulation in physical education. BMC Psychol. 2025, 13, 518. [Google Scholar] [CrossRef]
- Luo, S. Fatigue State Recognition Based on Multi-Facial Feature Fusion. Master’s Thesis, Beijing Jiaotong University, Beijing, China, 2023. [Google Scholar] [CrossRef]
- Hsu, H.-P.; Wang, C.-N.; Nguyen, T.T.T.; Dang, T.-T.; Pan, Y.-J. Hybridizing WOA with PSO for coordinating material handling equipment in an automated container terminal considering energy consumption. Adv. Eng. Informatics 2024, 60, 102410. [Google Scholar] [CrossRef]
- Zhang, Y.; Gong, D.-W.; Sun, X.-Y.; Guo, Y.-N. A PSO-based multi-objective multi-label feature selection method in classification. Sci. Rep. 2017, 7, 376. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhou, S.; Wang, F.; Fu, L. An improved sparrow search algorithm and CNN-BiLSTM neural network for predicting sea level height. Sci. Rep. 2024, 14, 4560. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Zhao, W.; Gao, Z.; Zhang, L.; Zhang, Q.; Li, X. Short-term load forecasting by GRU neural network and DDPG algorithm for adaptive optimization of hyperparameters. Electr. Power Syst. Res. 2025, 238, 111119. [Google Scholar] [CrossRef]
- Imani, M. Attention Based Network for Fusion of Polarimetric and Contextual Features for Polarimetric Synthetic Aperture Radar Image Classification. Eng. Appl. Artif. Intell. 2025, 139 Pt B, 109665. [Google Scholar] [CrossRef]
- Mishra, V.L.; Chauhan, Y.K.; Verma, K.S. A new hybrid swarm intelligence-based maximum power point tracking technique for solar photovoltaic systems under varying irradiations. Expert Syst. Appl. 2025, 264 Pt B, 125786. [Google Scholar] [CrossRef]
- Hyndman, R.J.; Koehler, A.B. Another look at measures of forecast accuracy. Int. J. Forecast. 2006, 22, 679–688. [Google Scholar] [CrossRef]
- Chai, T.; Draxler, R.R. Root mean square error (RMSE) vs mean absolute error (MAE). Geosci. Model Dev. 2014, 7, 1247–1250. [Google Scholar] [CrossRef]
- Lai, Z.; Mo, D.; Wong, W.K.; Xu, Y.; Miao, D.; Zhang, D. Robust Discriminant Regression for Feature Extraction. IEEE Trans. Cybern. 2018, 48, 2472–2484. [Google Scholar] [CrossRef]
Modality | Features | Limitations | Study Context |
---|---|---|---|
EEG | α/β power ratio | Invasive, motion artifacts | Automotive drivers |
ECG | HRV (RMSSD, LF/HF) | Electrode displacement | Pilots |
Camera | EAR, PERCLOS | Lighting sensitivity | Truck drivers |
PPG+ GSR+ Video (this study) | Symmetry-based HRV, bilateral head yaw, EAR/MAR | Non-invasive, occlusion-robust | Subway operators |
Time Period (Min) | Operational Content | Recorded Metrics |
---|---|---|
T0–T10 | Baseline Measurement (Resting) | Physiological signal baseline values |
T10–T30 | Adaptive Driving (No Disturbance) | Operational behavior calibration data |
T30–T270 | Formal Experiment Phase | Multimodal synchronization: - PPG spectral power (0.04–4 Hz) - GSR event-related potentials - sPPG motion artifacts (ICA decomposition) - 3D head pose tracking (60 Hz IMU) - PERCLOS (P80 standard) - Articulatory micro-movements (LSTM classifier) |
Every 60 min | Subjective Mental State Assessment | Karolinska Sleepiness Scale |
Feature Symbol | Modality | Feature Category | Definition | Unit/Scale |
---|---|---|---|---|
Imf_1_MEAN | PPG | Intrinsic Mode Function | Mean amplitude of the 1st IMF after EMD | mV |
Imf_1_MIN | PPG | Intrinsic Mode Function | Minimum amplitude of the 1st IMF | mV |
Imf_1_MAX | PPG | Intrinsic Mode Function | Maximum amplitude of the 1st IMF | mV |
Imf_1_SKE | PPG | Intrinsic Mode Function | Skewness (third standardized moment) of the 1st IMF | — |
Imf_2_MEAN | PPG | Intrinsic Mode Function | Mean amplitude of the 2nd IMF | mV |
Imf_2_MIN | PPG | Intrinsic Mode Function | Minimum amplitude of the 2nd IMF | mV |
Imf_2_MAX | PPG | Intrinsic Mode Function | Maximum amplitude of the 2nd IMF | mV |
Imf_2_SKE | PPG | Intrinsic Mode Function | Skewness of the 2nd IMF | — |
Imf_3_MEAN | PPG | Intrinsic Mode Function | Mean amplitude of the 3rd IMF | mV |
Imf_3_MIN | PPG | Intrinsic Mode Function | Minimum amplitude of the 3rd IMF | mV |
Imf_3_MAX | PPG | Intrinsic Mode Function | Maximum amplitude of the 3rd IMF | mV |
Imf_3_SKE | PPG | Intrinsic Mode Function | Skewness of the 3rd IMF | — |
SDNN | PPG-HRV | Time Domain HRV | Standard deviation of all normal-to-normal R–R intervals | ms |
RMSSD | PPG-HRV | Time Domain HRV | Root-mean-square of successive R–R interval differences | ms |
MeanNN | PPG-HRV | Time Domain HRV | Mean duration of normal-to-normal R–R intervals | ms |
TP | PPG-HRV | Frequency Domain HRV | Total spectral power (0.04–0.4 Hz) | ms2 |
PHF | PPG-HRV | Frequency Domain HRV | Power in high-frequency band (0.15–0.4 Hz) | ms2 |
PLF | PPG-HRV | Frequency Domain HRV | Power in low-frequency band (0.04–0.15 Hz) | ms2 |
LF/HF | PPG-HRV | Frequency Domain HRV | Ratio of low- to high-frequency power | — |
x | PPG | Pulse Wave Morphology | Amplitude of systolic peak | mV |
Contraction Peak Time | PPG | Pulse Wave Morphology | Time from foot to systolic peak | ms |
y | PPG | Pulse Wave Morphology | Amplitude of diastolic peak | mV |
Relaxation Peak Time | PPG | Pulse Wave Morphology | Time from systolic to diastolic peak | ms |
Respiration Rate | PPG | Derived Parameter | Breaths per minute estimated from PPG amplitude modulation | breaths min−1 |
G_MEAN | GSR | Electrodermal Activity | Mean skin conductance level | µS |
G_MIN | GSR | Electrodermal Activity | Minimum skin conductance level | µS |
G_MAX | GSR | Electrodermal Activity | Maximum skin conductance level | µS |
G_SKE | GSR | Electrodermal Activity | Skewness of skin conductance distribution | — |
SCL | GSR | Electrodermal Activity | Baseline-corrected skin conductance level | µS |
EAR | Video | Facial Behavior | Eye Aspect Ratio = ‖p2–p6‖ + ‖p3–p5‖/(2‖p1–p4‖) | — |
MAR | Video | Facial Behavior | Mouth Aspect Ratio = vertical lip distance/horizontal lip distance | — |
Pitch | Video | Head Pose | Rotation about the X-axis (Euler angle) | — |
Roll | Video | Head Pose | Rotation about the Z-axis (Euler angle) | — |
Yaw | Video | Head Pose | Rotation about the Y-axis (Euler angle) | — |
Parameter | Search Range | Optimized Value | ΔMSE When Perturbed ±10% |
---|---|---|---|
CNN kernel-1 size | {1 × 2, 1 × 4, 1 × 6} | 1 × 4 | +9.2% |
CNN kernel-2 size | {1 × 4, 1 × 8, 1 × 12} | 1 × 8 | +11.4% |
CNN filters-1 | {16, 32, 64} | 32 | +8.7% |
CNN filters-2 | {32, 64, 128} | 64 | +9.5% |
GRU hidden units | {32, 50, 64} | 50 | +12.1% |
Criteria | Definition | Formula |
---|---|---|
MAE | Measure the average discrepancy between predicted values and actual values | |
MSE | Evaluate the degree of difference between predicted values and true values. | |
RMSE | Assess the accuracy of the model. | |
Assess the model’s fit to the data. | ||
RPD | Evaluate the precision of the predictive model. | |
MAPE | Measure the prediction accuracy. |
Model | MAE | MSE | RMSE | RPD | MAPE | |
---|---|---|---|---|---|---|
BiLSTM | 0.23896 | 0.11147 | 0.33387 | 0.72908 | 2.4299 | 0.14650 |
GRU | 0.26348 | 0.13493 | 0.36733 | 0.79415 | 2.2042 | 0.16771 |
LSTM | 0.28469 | 0.16206 | 0.40256 | 0.75951 | 2.0445 | 0.16688 |
MPA-SVM | 0.17701 | 0.03665 | 0.28438 | 0.78452 | 4.6408 | 0.07461 |
Bayes-CNN | 0.12099 | 0.03933 | 0.19833 | 0.87105 | 4.1238 | 0.07254 |
WOA-RF | 0.12403 | 0.00442 | 0.28745 | 0.85275 | 3.3955 | 0.04309 |
CNN-BiLSTM | 0.15774 | 0.06086 | 0.24670 | 0.80879 | 3.3228 | 0.10258 |
CNN-GRU | 0.14122 | 0.04757 | 0.21811 | 0.82729 | 3.7145 | 0.08905 |
CNN-LSTM | 0.15256 | 0.06561 | 0.25615 | 0.80023 | 3.1737 | 0.09204 |
CNN-BiLSTM-Attention | 0.13563 | 0.04692 | 0.21661 | 0.82916 | 3.7837 | 0.08587 |
CNN-GRU-Attention | 0.13365 | 0.04329 | 0.20808 | 0.83615 | 3.9728 | 0.08544 |
CNN-LSTM-Attention | 0.17928 | 0.06871 | 0.26212 | 0.80231 | 3.1994 | 0.11100 |
PSO-CNN-BiLSTM-Attention | 0.02993 | 0.00492 | 0.07012 | 0.88963 | 3.9691 | 0.01539 |
PSO-CNN-GRU-Attention | 0.03324 | 0.00461 | 0.06786 | 0.89029 | 4.3777 | 0.01625 |
Model | MAE | MSE | RMSE | RPD | MAPE | |
---|---|---|---|---|---|---|
BiLSTM | 0.32686 | 0.19750 | 0.44441 | 0.70108 | 1.8356 | 0.18735 |
GRU | 0.34617 | 0.20628 | 0.45418 | 0.69089 | 1.8016 | 0.22115 |
LSTM | 0.40488 | 0.28222 | 0.53124 | 0.58233 | 1.5473 | 0.25069 |
MPA-SVM | 0.16235 | 0.01863 | 0.28468 | 0.78993 | 4.5425 | 0.28515 |
Bayes-CNN | 0.11627 | 0.04866 | 0.22059 | 0.82702 | 3.7017 | 0.06851 |
WOA-RF | 0.32616 | 0.28669 | 0.43149 | 0.47057 | 1.8876 | 0.07558 |
CNN-BiLSTM | 0.19819 | 0.08221 | 0.28672 | 0.77898 | 2.9984 | 0.12770 |
CNN-GRU | 0.14730 | 0.05309 | 0.23039 | 0.81781 | 3.5049 | 0.08711 |
CNN-LSTM | 0.18147 | 0.09726 | 0.31186 | 0.74777 | 2.6454 | 0.11091 |
CNN-BiLSTM-Attention | 0.37500 | 0.24211 | 0.49205 | 0.78178 | 1.6298 | 0.25479 |
CNN-GRU-Attention | 0.13888 | 0.05508 | 0.23469 | 0.79420 | 2.4874 | 0.08509 |
CNN-LSTM-Attention | 0.19097 | 0.08403 | 0.28988 | 0.77280 | 2.9763 | 0.10785 |
PSO-CNN-BiLSTM-Attention | 0.02872 | 0.00851 | 0.06713 | 0.80127 | 3.1604 | 0.01017 |
PSO-CNN-GRU-Attention | 0.04135 | 0.01453 | 0.05019 | 0.81729 | 3.2104 | 0.01378 |
Model | MAE | MSE | RMSE | RPD | MAPE | |
---|---|---|---|---|---|---|
BiLSTM | 0.39451 | 0.26875 | 0.51841 | 0.59723 | 1.5759 | 0.25044 |
GRU | 0.41447 | 0.30756 | 0.55458 | 0.53670 | 1.4718 | 0.27697 |
LSTM | 0.43102 | 0.31500 | 0.56124 | 0.52219 | 1.4485 | 0.27288 |
MPA-SVM | 0.51061 | 0.07112 | 0.64384 | 0.60462 | 1.2646 | 0.35140 |
Bayes-CNN | 0.32006 | 0.22190 | 0.47106 | 0.65616 | 1.7156 | 0.20410 |
WOA-RF | 0.30053 | 0.29476 | 0.44451 | 0.57142 | 1.1666 | 0.33805 |
CNN-BiLSTM | 0.35548 | 0.27420 | 0.52364 | 0.59829 | 1.5962 | 0.25458 |
CNN-GRU | 0.37336 | 0.24766 | 0.49765 | 0.63522 | 1.6565 | 0.24763 |
CNN-LSTM | 0.42624 | 0.27527 | 0.52466 | 0.58101 | 1.5606 | 0.26463 |
CNN-BiLSTM-Attention | 0.40381 | 0.25823 | 0.50816 | 0.62429 | 1.6407 | 0.25665 |
CNN-GRU-Attention | 0.35015 | 0.22099 | 0.47009 | 0.66881 | 1.7378 | 0.22993 |
CNN-LSTM-Attention | 0.34635 | 0.25036 | 0.50036 | 0.61599 | 1.6285 | 0.24290 |
PSO-CNN-BiLSTM-Attention | 0.04518 | 0.03461 | 0.21496 | 0.64521 | 1.7314 | 0.03862 |
PSO-CNN-GRU-Attention | 0.04643 | 0.02321 | 0.15236 | 0.65791 | 1.7642 | 0.04421 |
Configuration | MAE | MSE | RMSE | vs. Previous | |
---|---|---|---|---|---|
PPG only | 0.0464 | 0.0223 | 0.1493 | 0.5388 | — |
GSR only | 0.0521 | 0.0279 | 0.1670 | 0.5124 | — |
PPG + GSR | 0.04643 | 0.02321 | 0.15236 | 0.6579 | +0.1191 |
Full multimodal | 0.0332 | 0.0046 | 0.0679 | 0.8903 | +0.2324 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, X.; Yu, L. Intelligent Detection of Cognitive Stress in Subway Train Operators Using Multimodal Electrophysiological and Behavioral Signals. Symmetry 2025, 17, 1298. https://doi.org/10.3390/sym17081298
Yang X, Yu L. Intelligent Detection of Cognitive Stress in Subway Train Operators Using Multimodal Electrophysiological and Behavioral Signals. Symmetry. 2025; 17(8):1298. https://doi.org/10.3390/sym17081298
Chicago/Turabian StyleYang, Xinyi, and Lu Yu. 2025. "Intelligent Detection of Cognitive Stress in Subway Train Operators Using Multimodal Electrophysiological and Behavioral Signals" Symmetry 17, no. 8: 1298. https://doi.org/10.3390/sym17081298
APA StyleYang, X., & Yu, L. (2025). Intelligent Detection of Cognitive Stress in Subway Train Operators Using Multimodal Electrophysiological and Behavioral Signals. Symmetry, 17(8), 1298. https://doi.org/10.3390/sym17081298