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Abstract

Subway train operators face the risk of cumulative cognitive stress due to factors such as
visual fatigue from prolonged high-speed tunnel driving, irregular shift patterns, and the
monotony of automated operations. This can lead to cognitive decline and human error
accidents. Current monitoring of cognitive stress risk predominantly relies on single-modal
methods, which are susceptible to environmental interference and offer limited accuracy.
This study proposes an intelligent multimodal framework for cognitive stress monitoring
by leveraging the symmetry principles in physiological and behavioral manifestations. The
symmetry of photoplethysmography (PPG) waveforms and the bilateral symmetry of head
movements serve as critical indicators reflecting autonomic nervous system homeostasis
and cognitive load. By integrating these symmetry-based features, this study constructs
a spatiotemporal dynamic feature set through fusing physiological signals such as PPG
and galvanic skin response (GSR) with head and facial behavioral features. Furthermore,
leveraging deep learning techniques, a hybrid PSO-CNN-GRU-Attention model is devel-
oped. Within this model, the Particle Swarm Optimization (PSO) algorithm dynamically
adjusts hyperparameters, and an attention mechanism is introduced to weight multimodal
features, enabling precise assessment of cognitive stress states. Experiments were con-
ducted using a full-scale subway driving simulator, collecting data from 50 operators to
validate the model’s feasibility. Results demonstrate that the complementary nature of mul-
timodal physiological signals and behavioral features effectively overcomes the limitations
of single-modal data, yielding significantly superior model performance. The PSO-CNN-
GRU-Attention model achieved a predictive coefficient of determination (R2) of 0.89029
and a mean squared error (MSE) of 0.00461, outperforming the traditional BiLSTM model
by approximately 22%. This research provides a high-accuracy, non-invasive solution for
detecting cognitive stress in subway operators, offering a scientific basis for occupational
health management and the formulation of safe driving intervention strategies.

Keywords: cognitive stress; occupational health; subway train operators; PPG; GSR

1. Introduction
Cognitive stress refers to a psychological state of tension triggered by the brain’s

information processing and evaluation in response to external stimuli. It significantly
impacts emotion regulation, cognitive functions (including memory consolidation, atten-
tion allocation, and decision-making efficiency), and behavioral patterns [1–3]. Moderate
cognitive stress can enhance task performance through adaptive neurophysiological re-
sponses. However, prolonged exposure to excessive cognitive stress increases the risk of
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anxiety disorders [4] and depressive symptoms [5], and can lead to clinical issues such as
occupational performance decline.

Symmetry plays a critical role in understanding cognitive stress manifestations. In
physiological signals, the symmetry of PPG waveforms (e.g., the balance between systolic
and diastolic phases) reflects autonomic nervous system homeostasis, which is disrupted
under stress. Similarly, behavioral symmetry—such as bilateral symmetry in head move-
ments and facial expressions—serves as an indicator of cognitive load. Asymmetric patterns
in these features often signal stress-induced imbalances. This study leverages symmetry
concepts to enhance multimodal feature fusion, aligning with the journal’s focus on sym-
metric principles in scientific applications.

Within the transportation sector, research on fatigue and cognitive stress detection
among occupational groups has predominantly focused on automobile drivers. Signifi-
cantly less attention has been paid to core personnel in rail transit, such as subway train
operators [6]. Subway operators face unique challenges, including the visual load from
high-speed tunnel environments, the monotony of automated operations, and irregular
shift schedules, which collectively exacerbate mental fatigue and reduce vigilance [6]. The
current monitoring methods for cognitive stress primarily rely on lane departure detection
and image recognition techniques. Approaches indirectly predicting operator cognitive
states based on vehicle operational parameters lack standardized diagnostic criteria [7].
Furthermore, computer-vision-based facial assessment of driver status is susceptible to
interference from lighting variations and occlusion artifacts [8]. Traditional physiological
monitoring techniques like electroencephalography (EEG) and electrocardiography (ECG)
can directly quantify autonomic nervous system activity, but their invasiveness and op-
erational complexity hinder practical application within the confined space of a subway
operator’s cabin [9] (Table 1).

Table 1. Recent studies on cognitive stress detection in transportation.

Modality Features Limitations Study Context

EEG α/β power ratio Invasive, motion
artifacts Automotive drivers

ECG HRV (RMSSD, LF/HF) Electrode
displacement Pilots

Camera EAR, PERCLOS Lighting
sensitivity Truck drivers

PPG+ GSR+
Video (this study)

Symmetry-based HRV,
bilateral head yaw,

EAR/MAR

Non-invasive,
occlusion-robust Subway operators

Recent breakthroughs in wearable biosensing technology have opened new avenues
for non-invasive cognitive stress assessment. Photoplethysmography (PPG), which can
be assessed using wearable technology, demonstrates high concordance (r = 0.92–0.97)
with ECG measurements for Heart Rate Variability (HRV), establishing it as a reliable
proxy indicator for autonomic nervous system regulation [10–12]. Additionally, Galvanic
Skin Response (GSR) quantifies sympathetic activation via eccrine sweat gland activity. A
significant decrease in Skin Conductance Level (SCL) is associated with fatigue-induced
parasympathetic dominance (∆SCL = 2.1 ± 0.6 µS, p < 0.01), justifying the inclusion
of GSR monitoring [13,14]. Complementing these physiological measures, this study
integrates computer-vision-based head and facial pose estimation [15–17] to establish a
multimodal sensing framework. This framework enables a comprehensive assessment
of cognitive stress states through the synergistic complementarity of physiological and
behavioral channels. To address the disparity in information dimensionality between
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physiological signals and facial visual features, neural networks are employed for feature-
level information fusion. Figure 1 illustrates the proposed cognitive stress perception–
analysis–prediction framework.

 

Figure 1. Cognitive stress perception–analysis–prediction framework.

The key contributions of this work are

(1) A novel multimodal framework integrating PPG, GSR, and head–facial behavioral
features to overcome single-modality limitations;

(2) The first application of symmetry principles (PPG waveform balance, bilateral head
movement) to enhance stress-induced asymmetry detection;

(3) Development of a hybrid PSO-CNN-GRU-Attention model with dynamic hyperpa-
rameter optimization and attention-based feature weighting, achieving a 22% higher
R2 (0.890) than BiLSTM baselines;

(4) Validation via a crossover experiment with 50 subway operators under simulated
high/low-stress conditions;

(5) Implementation of real-time safety interventions (e.g., PERCLOS-based auto-braking).

The remainder of this paper is organized as follows. Section 2 details the experimental
design, data-acquisition platform, and preprocessing pipelines for physiological (PPG, GSR)
and video-based behavioral signals. Section 3 presents the feature-level fusion strategy and
the hybrid PSO-CNN-GRU-Attention architecture, including hyperparameter optimization
and the attention mechanism. Section 4 reports the statistical evaluation, ablation studies,
and comparative results against baseline models. Section 5 summarizes the principal
findings, discusses limitations, and outlines future research directions.

2. Materials and Methods
2.1. Data Collection and Crossover Experiment

(a) Data Collection

The cognitive stress monitoring experiment for subway train operators was conducted
using a full-scale subway simulator established at the Caidaling Training Base of Dalian
Traffic Group, which complies with the IEC 62278 standard [18]. The experimental setup is
depicted in Figure 2. The brightness range (50–200 lux) and noise spectrum (white noise,
55 dB) of the simulator are simplified compared to a real tunnel (brightness peaks >400 lux
when trains pass; low-frequency rumbling <40 Hz).
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Figure 2. Experimental setup.

The framework of the data monitoring system is illustrated in Figure 3. This frame-
work integrates a modular multi-channel physiological signal acquisition array. This
system enables synchronized acquisition of physiological parameters, including PPG
signals (sampling rate: 1000 Hz, dual wavelengths: 515 nm/940 nm) and GSR signals
(resolution: 0.01 µS), with the synchronization error controlled within ±0.5 ms. Addition-
ally, a camera (resolution: 1920 × 1080, 30 fps, dynamic range: 60 dB) was mounted to track
head and facial pose changes in real time.

 

Figure 3. Framework of the monitoring system.

The biosignal acquisition system utilized the Grove-GSR Sensor V1.2 (for skin conduc-
tance) and MAX30102 module (for PPG signals), positioned on the participants’ wrists. Raw
signal preprocessing was performed using the MATLAB 2023b platform. For head and facial
dynamic feature acquisition, an infrared camera recorded video streams. Facial feature param-
eters were extracted in real time using a 68-point facial landmark model, implemented within
a Python 3.6 environment integrating the OpenCV and Dlib 19.7 libraries.

The minimum sample size was determined using G*Power software (version 3.1.9.7;
α = 0.05, β = 0.2, effect size = 0.4), resulting in a requirement of 24 participants. Ultimately,
50 active male subway train operators were recruited. Seventy-five percent (75%) pos-
sessed over three years of driving experience, while twenty-five percent (25%) were newly
qualified train operators with no prior driving experience. The mean participant age was
30.5 ± 1.16 years. Due to the current gender distribution within the local subway-operator
workforce (male representation ≈ 95% [19,20]), only male participants were available during
the study period; no eligible female drivers could be scheduled. Future work will actively
recruit a gender-balanced cohort across multiple depots to enhance external validity.
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(b) Crossover Experiment

A crossover experimental design was employed, where each participant underwent
two experimental sessions (low cognitive stress/high cognitive stress), separated by an
interval of at least 48 h. Cognitive stress states were induced by contrasting physiological
and behavioral responses under different task demands.

• Low Cognitive Load Condition: Participants were required to have sufficient sleep
(≥8 h) prior to the experiment and abstain from caffeine/alcohol for 12 h. They
performed a 30 min adaptive driving session to establish an operational baseline.

• High Cognitive Load Condition: Participants were subjected to a triple intervention
protocol: (1) Sleep restriction: Only 4 h of sleep were permitted the night before
the experiment. (2) Extended driving: A 4 h uninterrupted driving task incorporat-
ing features of real operational timetables (e.g., peak/off-peak period transitions).
(3) Cognitive task load: The visual simulation system created a complex environment
using dynamic brightness adjustments (50–200 lux), periodic tunnel light flickering
(2–4 Hz), and randomly appearing virtual obstacles every 20 min. Furthermore,
multi-tasking cognitive challenges were interspersed, such as requiring operators to
perform simple arithmetic calculations or memory tasks concurrently during driving
to increase cognitive load.

An interval of ≥48 h was maintained between the two experimental sessions for
each participant to mitigate carryover effects. Cognitive load state was determined by
integrating subjective reports, behavioral performance, and physiological indicators. All
participants were healthy, with no history of cardiovascular or neurological disorders. The
data collection workflow is detailed in Table 2.

Table 2. Data collection workflow.

Time Period (Min) Operational Content Recorded Metrics

T0–T10 Baseline Measurement
(Resting) Physiological signal baseline values

T10–T30 Adaptive Driving
(No Disturbance) Operational behavior calibration data

T30–T270 Formal Experiment
Phase

Multimodal synchronization:
- PPG spectral power (0.04–4 Hz)

- GSR event-related potentials
- sPPG motion artifacts

(ICA decomposition)
- 3D head pose tracking (60 Hz IMU)

- PERCLOS (P80 standard)
- Articulatory micro-movements

(LSTM classifier)

Every 60 min Subjective Mental
State Assessment Karolinska Sleepiness Scale

A real-time physiological monitoring system was deployed to alert for abnormal heart
rates (>120 bpm or <50 bpm). Automatic emergency braking intervention was triggered if
the driver’s eye closure ratio exceeded a 30% threshold continuously for 5 s. A dedicated
clinical psychologist provided psychological monitoring throughout the experiments to
ensure participant well-being.

Regarding ethical compliance, the study protocol was approved by the Ethics Com-
mittee of the School of Traffic and Transportation Engineering, Dalian Jiaotong Univer-
sity. All participants provided written informed consent, which included clauses for data
anonymization. Multimodal data was encrypted and stored throughout the experiment,
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adhering strictly to the General Data Protection Regulation (GDPR). A pre-trial phase
yielded a participant tolerance score of 8.4/10, validating the safety of the protocol from a
human factors perspective.

2.2. Characteristics Based on Biological Signals
2.2.1. Feature Extraction of PPG Signals

The dynamical components of the experimentally obtained PPG signal are complex,
and the waveform contains information related to blood pressure, heart rate, respira-
tion, neuromodulation information, and noise [21–23], while it is susceptible to signal
distortion loss caused by optical, electrical, or motion artifacts, baseline drift, and other
interferences [24–26]. Therefore, in this paper, the experimentally acquired PPG signals
were preprocessed: cubic spline interpolation was used to fill in the missing points; a
fourth-order Butterworth bandpass filter (0.5–8 Hz) was applied to suppress the myoelec-
tric disturbances and baseline drift; an adaptive noise cancellation algorithm (threshold
0.1 g) was applied to remove motion artifacts based on the synchronized accelerometer
data (100 Hz); the first three orders of eigenstates were extracted using empirical modal
decomposition modal function (IMF) reconstruction; and the baseline drift was subtracted.
The processing flow and effect are shown in Figure 4, and the baseline drift correction is
verified by IMF decomposition (Figure 5).

 

Figure 4. PPG signal processing.

Changes in cognitive stress disrupt autonomic nervous system (ANS) balance, leading
to enhanced sympathetic activity and attenuated parasympathetic activity under increased
stress. Heart Rate Variability (HRV), a crucial indicator of beat-to-beat variations (a time-
series feature), precisely captures heartbeat changes by analyzing differences in successive
R-R intervals [27,28]. HRV fluctuations contain cardiovascular regulatory information and
serve as a key metric for assessing autonomic balance [29]. Analysis of the pulse wave
within PPG signals allows for indirect blood pressure estimation [30]. The manifestation of
an ANS imbalance induced by cognitive stress within HRV metrics provides the theoretical
foundation for using HRV to monitor cognitive stress [31–34]. The HRV feature parameters
extracted in this study are depicted in Figure 6. Pulse wave cycles were determined by
detecting the systolic peaks (corresponding to the heart’s contraction phase) in the PPG
waveform, enabling the calculation of HRV time-domain features.
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Figure 5. IMF extraction.
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Figure 6. PPG signal and HRV feature parameter extraction diagram.

2.2.2. Feature Extraction of GSR Signals

Feature extraction of the GSR signal employed a multi-stage fusion strategy. First,
Z-score normalization was applied to standardize the raw signals during preprocessing,
effectively eliminating inter-individual baseline differences. Subsequently, a sliding win-
dow mechanism (window length: 3 s, overlap rate: 50%) segmented the signals at a 256 Hz
sampling rate into temporal segments of 768 samples per window. This preserved tem-
poral continuity while enhancing local data characteristics. Morlet wavelets outperform
the alternatives (e.g., Daubechies) in temporal resolution for transient GSR events [35],
which is critical for capturing the phasic stress response. The scale parameter a for the
complex Morlet wavelet was mapped to frequency f via f = fc

a·δt , where fc = 0.812 Hz
(center frequency) and δt = 1/256 s. Scaling a ∈ [1, 270] covered 0.5–30 Hz, encompassing
sympathetic arousal bands (0.05–0.15 Hz) and electrodermal response frequencies (1–3 Hz).
This generates a 270 × 768 time-frequency matrix. The matrix is quantized into an 8-bit
grayscale image (value range: 0–255), forming a structured input dataset that integrates
spatiotemporal features (the evolution of this time-frequency representation process is
illustrated in Figure 7a,b).
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Figure 7. GSR signal.

Through time-frequency-spatial-domain feature fusion, this study constructed a GSR
time-frequency feature dataset comprising 3600 samples (balanced high/low-load samples)
to provide input for subsequent convolutional neural network training.

2.3. Characteristics Based on Image Information

Excessive cognitive stress often manifests as psychological states like distractibility,
worry, agitation, and anger [36], which are reflected in facial expressions showing inner
tension and anxiety [37]. This study employed the Ensemble of Regression Trees (ERT)
algorithm from the Dlib library to preprocess video data captured by the infrared camera.
The ERT algorithm possesses the capability to handle missing or uncertain labels in training
data, maintains shape invariance during feature selection, and concurrently optimizes the
loss function to achieve minimization objectives.

Facial pose estimation was performed by projecting 3D world coordinate points,
constructing a 12-axis spatial cube, and indexing facial landmarks for the left and right
eyes. This process yielded facial features, calculated the Euclidean distance for eye and
mouth regions, and iteratively detected facial position information. Sixty-eight (68) key
facial landmarks were plotted and ordered to obtain facial landmark coordinates, head
angles (Euler angles), and facial activity states. Subsequently, Eye Aspect Ratio (EAR) and
Mouth Aspect Ratio (MAR) data were derived (Figure 8).

The head posture estimation technique is used to quantify the behavioral responses of
the head under different cognitive stress states, and head motion is accurately described
by Euler angles in three-dimensional space, including pitch (rotation around the X-axis),
yaw (rotation around the Y-axis), and roll (rotation around the Z-axis). By evaluating the
symmetry of bilateral head movements (e.g., the balance of left–right yaw), asymmetries
induced by cognitive stress can be detected.

Under cognitive stress, individuals often exhibit specific patterns of facial behavior
(e.g., eye blinking/gazing, lips tightly closed, corners of the mouth pulled down). To
quantify eye dynamics, the present study localized 6 key points for each of the left and
right eyes and calculated EAR values (Figure 6). An effective blink was determined if
the EAR value was below 0.25 for three consecutive frames [38]. To quantify the mouth
dynamics, 20 mouth feature points were selected to calculate MAR values. Yawn detection
was triggered when the MAR value exceeded 0.5 and lasted for 3 frames. EAR and MAR
were determined by geometric features with temporal continuity, effectively overcom-
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ing transient interference, and together constitute the core visual features for cognitive
stress determination.

Figure 8. Extraction effects of head pose and facial features.

The above methods constitute an objective basis and sensitive indicators for assessing
changes in head and face posture and physiological indicators under individual stress
states. The extracted PPG, GSR, and head and face behavioral features in this paper are
summarized in Table 3.

Table 3. Summary of extracted features.

Feature Symbol Modality Feature Category Definition Unit/Scale

Imf_1_MEAN PPG Intrinsic Mode Function Mean amplitude of the 1st IMF after EMD mV
Imf_1_MIN PPG Intrinsic Mode Function Minimum amplitude of the 1st IMF mV
Imf_1_MAX PPG Intrinsic Mode Function Maximum amplitude of the 1st IMF mV

Imf_1_SKE PPG Intrinsic Mode Function Skewness (third standardized moment) of the
1st IMF —

Imf_2_MEAN PPG Intrinsic Mode Function Mean amplitude of the 2nd IMF mV
Imf_2_MIN PPG Intrinsic Mode Function Minimum amplitude of the 2nd IMF mV
Imf_2_MAX PPG Intrinsic Mode Function Maximum amplitude of the 2nd IMF mV
Imf_2_SKE PPG Intrinsic Mode Function Skewness of the 2nd IMF —

Imf_3_MEAN PPG Intrinsic Mode Function Mean amplitude of the 3rd IMF mV
Imf_3_MIN PPG Intrinsic Mode Function Minimum amplitude of the 3rd IMF mV
Imf_3_MAX PPG Intrinsic Mode Function Maximum amplitude of the 3rd IMF mV
Imf_3_SKE PPG Intrinsic Mode Function Skewness of the 3rd IMF —

SDNN PPG-HRV Time Domain HRV Standard deviation of all normal-to-normal
R–R intervals ms

RMSSD PPG-HRV Time Domain HRV Root-mean-square of successive R–R
interval differences ms

MeanNN PPG-HRV Time Domain HRV Mean duration of normal-to-normal
R–R intervals ms

TP PPG-HRV Frequency Domain HRV Total spectral power (0.04–0.4 Hz) ms2

PHF PPG-HRV Frequency Domain HRV Power in high-frequency band (0.15–0.4 Hz) ms2

PLF PPG-HRV Frequency Domain HRV Power in low-frequency band (0.04–0.15 Hz) ms2

LF/HF PPG-HRV Frequency Domain HRV Ratio of low- to high-frequency power —
x PPG Pulse Wave Morphology Amplitude of systolic peak mV
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Table 3. Cont.

Feature Symbol Modality Feature Category Definition Unit/Scale

Contraction
Peak Time PPG Pulse Wave Morphology Time from foot to systolic peak ms

y PPG Pulse Wave Morphology Amplitude of diastolic peak mV
Relaxation Peak

Time PPG Pulse Wave Morphology Time from systolic to diastolic peak ms

Respiration
Rate PPG Derived Parameter Breaths per minute estimated from PPG

amplitude modulation breaths min−1

G_MEAN GSR Electrodermal Activity Mean skin conductance level µS
G_MIN GSR Electrodermal Activity Minimum skin conductance level µS
G_MAX GSR Electrodermal Activity Maximum skin conductance level µS
G_SKE GSR Electrodermal Activity Skewness of skin conductance distribution —

SCL GSR Electrodermal Activity Baseline-corrected skin conductance level µS

EAR Video Facial Behavior Eye Aspect Ratio = ∥p2–p6∥ +
∥p3–p5∥/(2∥p1–p4∥) —

MAR Video Facial Behavior Mouth Aspect Ratio = vertical lip
distance/horizontal lip distance —

Pitch Video Head Pose Rotation about the X-axis (Euler angle) —
Roll Video Head Pose Rotation about the Z-axis (Euler angle) —
Yaw Video Head Pose Rotation about the Y-axis (Euler angle) —

Note: All PPG and GSR features were z-score normalized per participant prior to modeling. EAR and MAR
values range from 0 to 1 after normalization.

3. Model Construction
The image information captured in the experiment is susceptible to the influence

of objective factors such as light and protective equipment occlusion, which can reduce
the accuracy of facial feature monitoring. Therefore, in order to improve the accuracy
and reliability of monitoring, it is necessary to fuse multimodal biosignals and behavioral
features, which show specific changes in the early stage of stress; the information fusion
architecture can realize accurate tracking of cognitive status and warn when abnormal status
occurs. Information fusion is a comprehensive process of preprocessing, data registration,
prediction estimation, and arbitration decision making using information from similar
or heterogeneous sources to obtain more accurate, stable, and reliable target information
than from a single source. Information fusion takes place at three levels: data layer fusion,
feature layer fusion, and decision layer fusion. In this paper, feature layer fusion is used.

3.1. Feature-Level Fusion

Feature-level fusion refers to the preprocessing and feature extraction of raw data
from each information source and then fusing the features of each source to further obtain
prediction and estimation of target information. Commonly used feature-level fusion
algorithms include neural networks, multiple kernel learning (MKL), and typical correlation
analysis (CA). Neural networks integrate multi-source features through nonlinear mapping.
Typical methods include (1) multimodal networks: dual-stream architecture sharing fully
connected layers to achieve cross-modal interactions; (2) DBN: multi-layer RBM with layer-
by-layer abstraction and top-layer fusion of spatiotemporal features; (3) VAE: encoder–
decoder architecture to learn the joint distributions; and (4) attention mechanism: self-
attention dynamic weighting, back-propagation to optimize weights and improve feature
recognition accuracy.

Studies have shown that multimodal data, such as facial features and physiological
electrical signals, can be used to achieve hierarchical characterization of cognitive stress
through differentiated perceptual dimensions and response thresholds. Among them, facial
features and physiological signals are complementary heterogeneous data sources, with
the former reflecting stressful behaviors and the latter revealing physiological mechanisms.
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Based on the information fusion theory, this paper realizes the effective fusion of the two
types of features through the cross-modal feature cascade (concatenation), which provides
support for the accurate recognition of cognitive stress state.

Driver head and facial information and physiological information are acquired using
a camera and PPG and GSR signal sensors, respectively. Both facial and physiological
information are available to quantitatively assess the cognitive stress state. However, they
have different data lengths and structures. Therefore, in this paper, the PPG and GSR signal
features are spliced and fused with the human head and face spatial information to form
a comprehensive feature vector, which is input into the subsequent deep learning model.
The fusion framework is shown in Figure 9.

 

Figure 9. Feature fusion.

3.2. Model Development Based on Neural Networks and Attention Mechanism

Considering the time-series nature of the dataset, this study leverages the advantages
of the Gated Recurrent Unit (GRU) and Bidirectional Long Short-Term Memory (BiLSTM)
models. Particle Swarm Optimization (PSO) is introduced to optimize training, while an at-
tention mechanism dynamically adjusts focus on different input segments. Combined with
Convolutional Neural Networks (CNNs), a hybrid model is constructed for data training.

3.2.1. PSO-CNN-BiLSTM-Attention

Hyperparameter optimization is critical for maximizing model performance but
remains challenging due to high-dimensional, non-convex search spaces. Traditional
grid/random search methods are computationally expensive and often suboptimal [39,40].
The PSO algorithm offers efficient global optimization by simulating social behavior, dy-
namically balancing exploration and exploitation through swarm intelligence. Its integra-
tion with deep learning architectures (e.g., CNN-GRU) mitigates local minima traps and
adaptively refines model capacity to complex spatiotemporal patterns in multimodal stress
data [41,42]. This approach is particularly advantageous for high-stakes applications like
operator safety, where model robustness is paramount. Its core iterative equations are
formulated as{

vid(t + 1) = ωvid(t) + c1r1[pid(t)− xid(t)] + c2r2

[
pgd(t)− xid(t)

]
xid(t + 1) = xid(t) + vid(t + 1)

(1)
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where vid and xid represent velocity and position of the i particle in the d dimension; pid

denotes individual historical optimal position; pgd represents global optimal position;
and ω denotes inertia weight following a linear decay strategy ω(t) = 0.9 − 0.5/Tmax to
balance exploration–exploitation trade-offs. PSO optimizes hyperparameters before model
training (Figure 10).

Figure 10. PSO-CNN-BiLSTM-Attention workflow: PSO (outer loop) selects hyperparameters
→ CNN-BiLSTM-Attention (inner loop) trains with fixed architecture → Validation loss feeds back
to PSO.

The proposed PSO-CNN-BiLSTM-Attention hybrid model integrates four hierarchical
modules for synergistic feature extraction, temporal modeling, and hyperparameter optimization:

(1) Spatial-Spectral Feature Extraction: CNN layers capture local spatial patterns in
temporal sequences.

(2) Bidirectional Temporal Modeling: BiLSTM networks encode forward/backward
contextual dependencies.

(3) Attentional Feature Recalibration: A single-head self-attention mechanism applies
scaled dot-product attention:

αi,j =

exp
(

Qi ·KT
j√

dk

)
∑T

j′−1 exp
(

Qi ·KT
j′√

dk

) (2)

where Q = XWQ, K = XWK, and V = XWV are query/key/value matrices (with
dk = 2 in this study). Output features are computed as weighted combinations:
Attention(Q, K, V) = αV. (The distribution of attention weights is shown in Figure 11).

(4) Hyperparameter Co-Optimization: A PSO optimizer dynamically tunes CNN filter
counts, BiLSTM hidden units, and other critical parameters to enhance adaptive focus
on salient temporal patterns.
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Figure 11. Attention weight distribution. The PPG-SDNN feature receives the highest weight (0.85),
indicating its importance in the model. This is followed by PPG-RMSSD (0.78) and PPG-MeanNN
(0.72). Features with lower weights include yaw (0.35) and roll (0.38), suggesting less of a contribution
to the model.

3.2.2. PSO-CNN-GRU-Attention

In this paper, by building a CNN-GRU-Attention neural network based on the PSO
algorithm to dynamically adjust the size of CNN convolutional kernel and the dimension
of GRU hidden layer (see Figure 12 for the construction process), the local spatial feature
extraction capability of the convolutional neural network and the global timing modeling
capability of the gated recurrent unit are fused through the feature splicing layer, and
the GRU unit achieves long-range timing dependency capture through the following
mechanism to realize long-range timing dependency capture:

zt = σ(Wz[ht−1, xt] + bz)

rt = σ(Wr[ht−1, xt] + br)
∼
ht = tanh(W·[rt

⊙
ht−1, xt] + b

ht = (1 − zt)
⊙

ht−1 + zt
⊙ ∼

ht

(3)

where zt ∈ (0, 1) is the update gate controlling the proportion of retained information and
rt ∈ (0, 1) is the reset gate regulating the integration of historical states. The PSO algorithm
dynamically searches for the optimal hidden layer dimension Dgru by minimizing the
validation set loss function. Its fitness function is defined as

F = MSEval + 0.01·
√

∑Dgru
i−1 θ2

i (4)

Through the synergistic effect of CNN multi-scale convolutional kernels (1 × 4, 1 × 8)
and GRU multi-level temporal memory, the CNN branch generates a feature map Fcnm ∈
R64×T and the GRU branch outputs hidden states Hgru ∈ R128×T. The concatenated features[
Fcnm;Hgru

]
∈ R64×T thus enable multi-scale joint learning from local spatial patterns to global

temporal dynamics [43].
The self-attention mechanism performs feature extraction using a single-head structure.

Given the hidden state sequence H ∈ RT×dmodel output from the GRU layer (where T = 300
is the timestep length and dmodel = 50 is the hidden layer dimension), the query matrix
Q = HWQ, key matrix K = HWK, and value matrix V = HWV are first generated via linear
transformations. Here, WQ, WK ∈ Rdmodel×dk and WV ∈ Rdmodel×dV are learnable parameter
matrices. The scaled dot-product attention scores are subsequently computed as

Attention(Q, K, V) = so f tmax
(

QKT
√

dk

)
V (5)
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where dk = 2 is the key vector dimension (specified by the sel f AttentionLayer(1, 2) param-
eters) and the scaling factor

√
dk mitigates gradient vanishing issues. This mechanism

dynamically assigns weights α = so f tmax(·) to capture features at critical timesteps, ulti-
mately generating a weighted context vector C ∈ Rdv as the global feature representation. In
the experiments, a single-head attention structure (head_num = 1) was employed to reduce
computational complexity while preserving the model’s capacity to capture long-distance
dependencies within multivariate time series.

Figure 12. PSO-CNN-GRU-Attention model.

Table 4 summarizes the PSO-determined hyperparameters together with their initial
search ranges and the corresponding validation loss at convergence. The optimal 1 × 4
and 1 × 8 convolution kernels (32 and 64 filters, respectively) were selected because they
minimized spectral leakage in the 0.5–8 Hz PPG band while preserving high-frequency
GSR transients. The GRU hidden dimension of 50 balanced model capacity against over-
fitting (validation loss plateau at 0.00461) and satisfied the embedded-device memory limit
(<2 MB). A post hoc sensitivity analysis (±10% perturbation of each parameter) confirmed
that any deviation beyond these values increased MSE by >8%, corroborating the rationality
of the PSO solution.

Table 4. PSO-optimized hyperparameters and search bounds.

Parameter Search Range Optimized
Value

∆MSE When
Perturbed ±10%

CNN kernel-1 size {1 × 2, 1 × 4, 1 × 6} 1 × 4 +9.2%
CNN kernel-2 size {1 × 4, 1 × 8, 1 × 12} 1 × 8 +11.4%

CNN filters-1 {16, 32, 64} 32 +8.7%
CNN filters-2 {32, 64, 128} 64 +9.5%

GRU hidden units {32, 50, 64} 50 +12.1%
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4. Discussion
4.1. Evaluation Criteria

The evaluation criteria for the models in this study include the Mean Absolute Error
(MAE), Mean Squared Error (MSE), Root Mean Square Error (RMSE), Residual Prediction
Deviation (RPD), Mean Absolute Percentage Error (MAPE), and the coefficient of deter-
mination (R2). The specific mathematical formulations are presented in Table 5, where xi

represents the true value, x̂i denotes the model’s predicted value, x is the mean of the actual
observations, σŷ is the standard deviation of the predicted values, and σy is the standard
deviation of the actual values.

Table 5. Model evaluation criteria.

Criteria Definition Formula

MAE
Measure the average discrepancy

between predicted values and
actual values

MAE = 1
n

n
∑

i=1
|xi − x̂i|

MSE
Evaluate the degree of difference

between predicted values and
true values.

MSE = 1
n

n
∑

i=1

(
xi − x̂i)

2

RMSE Assess the accuracy of the model. RMSE =

√
1
n

n
∑

i=1
(xi − x̂i)2

R2 Assess the model’s fit to the data. R2 =
∑n

i−1(xi−x̂i)
2

∑n
i−1(xi−x)2

RPD Evaluate the precision of the
predictive model. RPD =

σŷ
σy

×
√

n

MAPE Measure the prediction accuracy. MAPE =
1
n

n
∑

i=1
(| xi − x̂i

xi
| × 100%)

Note: Definitions follow standard metrics in regression analysis [44–46].

4.2. Robustness of the Model

This study employed deep learning models, including BiLSTM, GRU, and CNN-
BiLSTM-Attention, alongside traditional models, such as MPA-SVM and WOA-RF, for
regression prediction on the feature dataset. The dataset was randomly partitioned into
training and test sets at a ratio of 7:3. Regression analysis was performed to investigate
the relationship between features and the target variable. Based on the model regression
distribution plots shown in Figure 13, all models exhibit closely clustered data distributions
on both the training and test sets. The regression lines closely approximate the identity line
(Y = T), indicating excellent model fit and an effective ability to capture the relationship
between features and the target.

To identify key features and validate model robustness, a feature ablation study was
designed, comparing model performance under three conditions: multimodal feature
fusion, facial features only, and physiological signal features only.

The performance evaluation results under multimodal feature fusion (Table 6)
demonstrate that the PSO-CNN-GRU-Attention model achieved the best performance
(R2 = 0.89029, MSE = 0.00461), followed by PSO-CNN-BiLSTM-Attention (R2 = 0.88963).
Models incorporating attention mechanisms (e.g., CNN-GRU-Attention, R2 = 0.83615)
generally outperformed their base counterparts. The Bayes-CNN model (R2 = 0.87105) ex-
hibited strong performance, surpassing most deep learning models. Among the base-gated
recurrent models, BiLSTM (R2 = 0.72908) showed reasonable performance. These results
indicate that the combination of PSO optimization and attention mechanisms significantly
enhances the predictive capability of the model.
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(a) CNN-BiLSTM-Attention 

(b) CNN-GRU-Attention 

Figure 13. Model regression distribution plots.

Table 6. Model index evaluation table for fused features.

Model MAE MSE RMSE R2 RPD MAPE

BiLSTM 0.23896 0.11147 0.33387 0.72908 2.4299 0.14650
GRU 0.26348 0.13493 0.36733 0.79415 2.2042 0.16771
LSTM 0.28469 0.16206 0.40256 0.75951 2.0445 0.16688

MPA-SVM 0.17701 0.03665 0.28438 0.78452 4.6408 0.07461
Bayes-CNN 0.12099 0.03933 0.19833 0.87105 4.1238 0.07254

WOA-RF 0.12403 0.00442 0.28745 0.85275 3.3955 0.04309
CNN-BiLSTM 0.15774 0.06086 0.24670 0.80879 3.3228 0.10258

CNN-GRU 0.14122 0.04757 0.21811 0.82729 3.7145 0.08905
CNN-LSTM 0.15256 0.06561 0.25615 0.80023 3.1737 0.09204

CNN-BiLSTM-Attention 0.13563 0.04692 0.21661 0.82916 3.7837 0.08587
CNN-GRU-Attention 0.13365 0.04329 0.20808 0.83615 3.9728 0.08544
CNN-LSTM-Attention 0.17928 0.06871 0.26212 0.80231 3.1994 0.11100

PSO-CNN-BiLSTM-Attention 0.02993 0.00492 0.07012 0.88963 3.9691 0.01539
PSO-CNN-GRU-Attention 0.03324 0.00461 0.06786 0.89029 4.3777 0.01625

When utilizing facial features only (Table 7), the performance of most models signifi-
cantly declined, except for the Bayes-CNN model (R2 = 0.92702). The superior performance
of Bayes-CNN under this condition may reflect its ability to fit specific facial feature
patterns, although its generalization capability requires further validation. Overall, the
experimental results support the assertion that multimodal fusion captures cognitive stress
information more comprehensively.
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Table 7. Model metric evaluation table with facial features only.

Model MAE MSE RMSE R2 RPD MAPE

BiLSTM 0.32686 0.19750 0.44441 0.70108 1.8356 0.18735
GRU 0.34617 0.20628 0.45418 0.69089 1.8016 0.22115
LSTM 0.40488 0.28222 0.53124 0.58233 1.5473 0.25069

MPA-SVM 0.16235 0.01863 0.28468 0.78993 4.5425 0.28515
Bayes-CNN 0.11627 0.04866 0.22059 0.82702 3.7017 0.06851

WOA-RF 0.32616 0.28669 0.43149 0.47057 1.8876 0.07558
CNN-BiLSTM 0.19819 0.08221 0.28672 0.77898 2.9984 0.12770

CNN-GRU 0.14730 0.05309 0.23039 0.81781 3.5049 0.08711
CNN-LSTM 0.18147 0.09726 0.31186 0.74777 2.6454 0.11091

CNN-BiLSTM-Attention 0.37500 0.24211 0.49205 0.78178 1.6298 0.25479
CNN-GRU-Attention 0.13888 0.05508 0.23469 0.79420 2.4874 0.08509
CNN-LSTM-Attention 0.19097 0.08403 0.28988 0.77280 2.9763 0.10785

PSO-CNN-BiLSTM-Attention 0.02872 0.00851 0.06713 0.80127 3.1604 0.01017
PSO-CNN-GRU-Attention 0.04135 0.01453 0.05019 0.81729 3.2104 0.01378

When utilizing physiological signal features only (Table 8), the predictive performance
of all models substantially decreased (the highest R2 was only 0.66881, achieved by CNN-
GRU-Attention). This further highlights the limitations of relying solely on physiological
signal features and underscores the necessity of multimodal data fusion for accurately
assessing cognitive stress.

Table 8. Evaluation table of model metrics based on physiological signal characteristics.

Model MAE MSE RMSE R2 RPD MAPE

BiLSTM 0.39451 0.26875 0.51841 0.59723 1.5759 0.25044
GRU 0.41447 0.30756 0.55458 0.53670 1.4718 0.27697
LSTM 0.43102 0.31500 0.56124 0.52219 1.4485 0.27288

MPA-SVM 0.51061 0.07112 0.64384 0.60462 1.2646 0.35140
Bayes-CNN 0.32006 0.22190 0.47106 0.65616 1.7156 0.20410

WOA-RF 0.30053 0.29476 0.44451 0.57142 1.1666 0.33805
CNN-BiLSTM 0.35548 0.27420 0.52364 0.59829 1.5962 0.25458

CNN-GRU 0.37336 0.24766 0.49765 0.63522 1.6565 0.24763
CNN-LSTM 0.42624 0.27527 0.52466 0.58101 1.5606 0.26463

CNN-BiLSTM-Attention 0.40381 0.25823 0.50816 0.62429 1.6407 0.25665
CNN-GRU-Attention 0.35015 0.22099 0.47009 0.66881 1.7378 0.22993
CNN-LSTM-Attention 0.34635 0.25036 0.50036 0.61599 1.6285 0.24290

PSO-CNN-BiLSTM-Attention 0.04518 0.03461 0.21496 0.64521 1.7314 0.03862
PSO-CNN-GRU-Attention 0.04643 0.02321 0.15236 0.65791 1.7642 0.04421

To assess the independent and incremental predictive ability of each physiological signal, we
performed intra-modal ablation analysis using the PSO-CNN-GRU-Attention model (Table 9).
When using only PPG, R2 was 0.5388 (MSE = 0.0223), confirming its feasibility as an independent
predictor of cognitive stress. When using only GSR, R2 was 0.5124 (MSE = 0.0279), indicating
a slightly lower but still substantial predictive capability. When GSR and PPG are combined,
predictive performance improves from R2 = 0.5388 to R2 = 0.6579 (∆R2 = +0.0881, p < 0.01, paired
t-test), indicating that GSR provides supplementary autonomic nervous system information that
HRV metrics cannot fully capture. Finally, incorporating facial features further increased R2 to
0.8903, confirming the necessity of multimodal fusion.
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Table 9. Intra-modality ablation results.

Configuration MAE MSE RMSE R2 ∆R2 vs. Previous

PPG only 0.0464 0.0223 0.1493 0.5388 —
GSR only 0.0521 0.0279 0.1670 0.5124 —

PPG + GSR 0.04643 0.02321 0.15236 0.6579 +0.1191
Full multimodal 0.0332 0.0046 0.0679 0.8903 +0.2324

As illustrated in Figure 14, at the physiological signal feature level, the density distri-
butions of MeanNN and SDNN reveal significant variations in Heart Rate Variability (HRV)
indicators across different cognitive stress states, effectively mapping autonomic nervous
system regulation. The density distribution of RMSSD further confirms its ability to capture
dynamic characteristics of cognitive stress over short time scales. The distribution of the
LF/HF ratio clearly depicts the balance between sympathetic and parasympathetic nervous
activity, providing crucial physiological information for cognitive stress assessment. At the
behavioral feature level, the density distributions of Eye Aspect Ratio (EAR) and Mouth
Aspect Ratio (MAR) reveal significant changes in the eye and mouth movements of subway
drivers under cognitive stress, constituting key indicators for cognitive load assessment.
The density distributions of head pose features (pitch, roll, and yaw) indicate discernible
differences in head movement patterns across varying stress states, with symmetry loss un-
der high cognitive load providing behavioral evidence for stress monitoring. In summary,
the density distribution characteristics of the aforementioned physiological and behavioral
features establish a multidimensional objective basis for the precise quantitative assessment
of cognitive stress, simultaneously highlighting the necessity and advantage of multimodal
feature fusion in cognitive stress monitoring.

Figure 15 demonstrates that distributional differences in head and facial features (EAR,
MAR, pitch, roll, yaw) under varying cognitive stress states provide behavioral evidence
for model robustness analysis. Under high stress, EAR values decreased significantly with
a more concentrated distribution, indicating increased eyelid closure and reduced blink
frequency, reflecting attentional distraction and fatigue. MAR concentration increased with
a slight upward trend, suggesting greater lip aperture, potentially signifying accumulated
tension. Pitch movement amplitude and frequency substantially increased, alongside an
expanded distribution range and reduced concentration, indicating more frequent and
vigorous head movements, likely stemming from attentional distraction and emotional fluc-
tuations. Roll dispersion increased with an upward trend, denoting greater head tilt angles,
indicative of fatigue and reduced attentional focus. The yaw distribution range broadened
with heightened concentration, reflecting increased amplitude and frequency of lateral
head rotation, possibly due to environmental hyper-reactivity or frequent attentional shifts.

Based on the feature distribution characteristics shown in Figures 14 and 15, the
multimodal feature fusion model effectively leverages the behavioral feature distributions,
thereby enhancing the recognition and prediction capabilities for cognitive stress states.
Combined with the analysis presented in Tables 6–8, this further validates the necessity
and superiority of multimodal feature fusion in cognitive stress monitoring.
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Figure 14. Numerical distribution density plot.
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Figure 15. Distribution of head and facial features.

Figure 16 compares the prediction error distributions across different models via error
histograms. The error distributions of the base models (BiLSTM, GRU, LSTM—Figure 16a–c)
were relatively dispersed. Following the introduction of the attention mechanism (Figure 16d–f),
the error distributions became notably more concentrated, with higher peaks near zero error.
Models optimized with PSO (PSO-CNN-GRU-Attention and PSO-CNN-BiLSTM-Attention are
not individually plotted in the histograms but Table 7 indicates their minimal errors) are expected
to exhibit the most optimal error concentration. Combining with the superior performance of
PSO-CNN-GRU-Attention (R2 = 0.89029, Table 7) and the robust performance of Bayes-CNN
(Tables 7–9), Figure 15 visually validates the effectiveness of model optimization in enhancing
prediction accuracy and stability.

   
(a) BiLSTM (b) GRU (c) LSTM 

(d) CNN-BiLSTM-Attention (e) CNN-GRU-Attention (f) CNN-LSTM-Attention 

Figure 16. Error histogram.
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5. Conclusions
This study established an intelligent non-invasive monitoring framework for cogni-

tive stress in subway train operators, integrating multimodal electrophysiological signals
(PPG/GSR) and head–facial behavioral features. Leveraging a full-scale subway simulator
(IEC 62278-compliant) and a crossover experiment design with 50 operators, we developed
a hybrid PSO-CNN-GRU-Attention model.

The integration of multimodal electrophysiological signals (PPG-HRV, GSR-SCL) and
behavioral features (3D head movement trajectory, EAR, MAR) effectively addressed
the limitations of single-modality data through their complementary nature, resulting
in a 22% improvement in model performance (coefficient of determination, R2 increase).
Symmetry-based features, such as PPG waveform balance and bilateral head movement
coordination, further enhanced the model’s sensitivity to stress-induced physiological
and behavioral asymmetries. By employing PSO to adaptively adjust CNN kernel sizes
and GRU hidden layer dimensions, combined with an attention mechanism for feature
weighting, the proposed PSO-CNN-GRU-Attention model achieved state-of-the-art perfor-
mance (R2 = 0.89029, MSE = 0.00461), demonstrating a 22% improvement over traditional
BiLSTM models. Additionally, the framework incorporated warning capabilities (heart
rate thresholds of >120 bpm or <50 bpm or PERCLOS >30% for 5 s triggering automatic
braking), providing a high-precision solution for occupational health management in
subway operations.

This study has the following limitations. Owing to the gender distribution within the
industry (over 95% male), female participants were not included. With respect to environmen-
tal fidelity, although the simulator adheres to the IEC 62278 standard, its luminance range
and noise spectrum are simplified in comparison to real tunnels. Regarding wearable sensor
artifacts, motion noise in PPG/GSR during high-vibration scenarios is alleviated but not
entirely eradicated. In terms of physiological confounding factors, individual differences in
stress responses (e.g., caffeine sensitivity, circadian rhythms) are controlled yet not fully char-
acterized. Furthermore, computational latency remains a challenge, as real-time deployment
necessitates optimization for embedded systems. Moreover, the PSO-CNN-GRU-Attention
model currently requires 18 ms per 1 s window on an NVIDIA RTX-4090 GPU, exceeding the
real-time budget (<10 ms) mandated by on-board embedded computers; therefore, model
quantization and pruning are necessary before in-cab installation.

Future research will pursue four directions: (i) recruiting a balanced-gender sample
across multiple cultural contexts to extend external validity; (ii) validating the system
in revenue-service trains equipped with high-fidelity environmental replication; (iii) im-
plementing TinyML optimization (INT8 quantization, knowledge distillation) to deploy
the model on edge devices with ARM Cortex-M7 or RISC-V cores; and (iv) integrating
additional modalities such as eye-tracking glasses and unobtrusive ear-PPG to further
enhance robustness against occlusions and lighting variations.
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