Dissipation Functions and Brownian Oscillators
Abstract
1. Introduction
2. Dissipation Functions in the Fokker–Planck Equation
3. From the Underdamped to the Overdamped Langevin Dynamics
4. Exact Response Theory for the Overdamped Langevin Dynamics
5. Exact Response Theory for the Underdamped Langevin Dynamics
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Derivation of the Dissipation Function for Fokker–Planck Dynamics
Appendix B. Conditional Averages for the Underdamped Dynamics
References
- Kubo, R. The Fluctuation-Dissipation Theorem. Rep. Prog. Phys. 1966, 29, 255–284. [Google Scholar] [CrossRef]
- Kubo, R.; Toda, M.; Hashitsume, N. Statistical Physics II. Nonequilibrium Statistical Mechanics; Springer: Berlin, Germany, 1985. [Google Scholar]
- Zwanzig, R. Nonequilibrium Statistical Mechanics; Oxford University Press: Oxford, UK, 2001. [Google Scholar]
- Bochkov, G.N.; Kuzovlev, Y.E. Nonlinear fluctuation-dissipation relations and stochastic models in nonequilibrium thermodynamics: I. Generalized fluctuation-dissipation theorem. Phys. A 1981, 106, 443–479. [Google Scholar] [CrossRef]
- Lucarini, V.; Colangeli, M. Beyond the linear fluctuation-dissipation theorem: The role of causality. J. Stat. Mech. Theory Exp. 2012, 2012, P05013. [Google Scholar] [CrossRef]
- Ruelle, D. General linear response formula in statistical mechanics, and the fluctuation-dissipation theorem far from equilibrium. Phys. Lett. A 1998, 245, 220–224. [Google Scholar] [CrossRef]
- Ruelle, D. Statistical mechanics: Rigorous results and applications to dynamical systems far from equilibrium. Phys. Rep. 1999, 303, 259–281. [Google Scholar] [CrossRef]
- Marconi, U.M.B.; Puglisi, A.; Rondoni, L.; Vulpiani, A. Fluctuation–dissipation: Response theory in statistical physics. Phys. Rep. 2008, 461, 111–195. [Google Scholar] [CrossRef]
- Prost, J.; Joanny, J.F.; Parrondo, J.M.R. Generalized fluctuation-dissipation theorem for steady-state systems. Phys. Rev. Lett. 2009, 103, 090601. [Google Scholar] [CrossRef] [PubMed]
- Baiesi, M.; Maes, C.; Wynants, B. Fluctuations and response of nonequilibrium states. Phys. Rev. Lett. 2009, 103, 010602. [Google Scholar] [CrossRef] [PubMed]
- Baiesi, M.; Maes, C.; Wynants, B. Nonequilibrium Linear Response for Markov Dynamics, I: Jump Processes and Overdamped Diffusions. J. Stat. Phys. 2009, 137, 1094–1116. [Google Scholar] [CrossRef]
- Baiesi, M.; Boksenbojm, E.; Maes, C.; Wynants, B. Nonequilibrium Linear Response for Markov Dynamics, II: Inertial Dynamics. J. Stat. Phys. 2010, 139, 492–505. [Google Scholar] [CrossRef]
- Seifert, U.; Speck, T. Fluctuation-dissipation theorem in nonequilibrium steady states. Europhys. Lett. 2010, 89, 10007. [Google Scholar] [CrossRef]
- Colangeli, M.; Maes, C.; Wynants, B. A meaningful expansion around detailed balance. J. Phys. A Math. Theor. 2011, 44, 095001. [Google Scholar] [CrossRef]
- Colangeli, M.; Rondoni, L.; Vulpiani, A. Fluctuation-dissipation relation for chaotic non-Hamiltonian systems. J. Stat. Mech. Theory Exp. 2012, 2012, L04002. [Google Scholar] [CrossRef]
- Maes, C. Response Theory: A Trajectory-Based Approach. Front. Phys. 2020, 8, 229. [Google Scholar] [CrossRef]
- Maes, C. Frenesy: Time-symmetric dynamical activity in nonequilibria. Phys. Rep. 2020, 850, 1–33. [Google Scholar] [CrossRef]
- Baldovin, M.; Caprini, L.; Puglisi, A.; Sarracino, A.; Vulpiani, A. The Many Faces of Fluctuation–Dissipation Relations Out of Equilibrium. In Nonequilibrium Thermodynamics and Fluctuation Kinetics; Springer: Berlin/Heidelberg, Germany, 2022; pp. 47–79. [Google Scholar] [CrossRef]
- Nyquist, H. Thermal Agitation of Electric Charge in Conductors. Phys. Rev. 1928, 32, 110–113. [Google Scholar] [CrossRef]
- Johnson, J.B. Thermal Agitation of Electricity in Conductors. Phys. Rev. 1928, 32, 97–109. [Google Scholar] [CrossRef]
- Callen, H.B.; Welton, T.A. Irreversibility and Generalized Noise. Phys. Rev. 1951, 83, 34–40. [Google Scholar] [CrossRef]
- Bellon, L.; Ciliberto, S.; Laroche, C. Violation of the fluctuation-dissipation relation during the formation of a colloidal glass. Europhys. Lett. 2001, 53, 511–517. [Google Scholar] [CrossRef]
- Wang, G.M.; Sevick, E.M.; Mittag, E.; Searles, D.J.; Evans, D.J. Experimental demonstration of violations of the second law of thermodynamics for small systems and short time scales. Phys. Rev. Lett. 2002, 89, 050601. [Google Scholar] [CrossRef]
- Ojha, R.P.; Lemieux, P.A.; Dixon, P.K.; Liu, A.J.; Durian, D.J. Statistical mechanics of a gas-fluidized particle. Nature 2004, 427, 521–523. [Google Scholar] [CrossRef] [PubMed]
- Feitosa, K.; Menon, N. Fluidized granular medium as an instance of the fluctuation theorem. Phys. Rev. Lett. 2004, 92, 164301. [Google Scholar] [CrossRef] [PubMed]
- Carberry, D.M.; Reid, J.C.; Wang, G.M.; Sevick, E.M.; Searles, D.J.; Evans, D.J. Fluctuations and irreversibility: An experimental demonstration of a second-law-like theorem using a colloidal particle held in an optical trap. Phys. Rev. Lett. 2004, 92, 140601. [Google Scholar] [CrossRef] [PubMed]
- Greinert, N.; Wood, T.; Bartlett, P. Measurement of effective temperatures in an aging colloidal glass. Phys. Rev. Lett. 2006, 97, 265702. [Google Scholar] [CrossRef]
- Mizuno, D.; Tardin, C.; Schmidt, C.F.; MacKintosh, F.C. Nonequilibrium mechanics of active cytoskeletal networks. Science 2007, 315, 370–373. [Google Scholar] [CrossRef]
- Gomez-Solano, J.R.; Petrosyan, A.; Ciliberto, S.; Chetrite, R.; Gawędzki, K. Experimental verification of a modified fluctuation-dissipation relation for a micron-sized particle in a nonequilibrium steady state. Phys. Rev. Lett. 2009, 103, 040601. [Google Scholar] [CrossRef]
- Ciliberto, S. Experiments in stochastic thermodynamics: Short history and perspectives. Phys. Rev. X 2017, 7, 021051. [Google Scholar] [CrossRef]
- Evans, D.J.; Morriss, G.P. Statistical Mechanics of Nonequilibrium Liquids, 1st ed.; Academic Press: London, UK, 1990. [Google Scholar]
- Searles, D.J.; Evans, D.J. Ensemble dependence of the transient fluctuation theorem. J. Chem. Phys. 2000, 113, 3503–3509. [Google Scholar] [CrossRef]
- Evans, D.J.; Searles, D.J. The Fluctuation Theorem. Adv. Phys. 2002, 51, 1529–1585. [Google Scholar] [CrossRef]
- Evans, D.J.; Searles, D.J.; Williams, S.R. On the fluctuation theorem for the dissipation function and its connection with response theory. J. Chem. Phys. 2008, 128, 014504. [Google Scholar] [CrossRef]
- Petravić, J.; Evans, D.J. Nonlinear Response for Time-Dependent External Fields. Phys. Rev. Lett. 1997, 78, 1199–1202. [Google Scholar] [CrossRef]
- Petravić, J.; Evans, D.J. Nonlinear response for nonautonomous systems. Phys. Rev. E 1997, 56, 1207–1217. [Google Scholar] [CrossRef]
- Todd, B.D. Nonlinear response theory for time-periodic elongational flows. Phys. Rev. E 1998, 58, 4587–4594. [Google Scholar] [CrossRef]
- Jepps, O.G.; Rondoni, L. A dynamical-systems interpretation of the dissipation function, T-mixing and their relation to thermodynamic relaxation. J. Phys. A Math. Theor. 2016, 49, 154002. [Google Scholar] [CrossRef]
- Greppi, E.; Rondoni, L. Quantum Exact Response Theory Based on the Dissipation Function. Entropy 2025, 27, 527. [Google Scholar] [CrossRef]
- Amadori, D.; Colangeli, M.; Correa, A.; Rondoni, L. Exact response theory and Kuramoto dynamics. Phys. D Nonlinear Phenom. 2022, 429, 133076. [Google Scholar] [CrossRef]
- van Kampen, N. Stochastic Processes in Physics and Chemistry, 3rd ed.; North-Holland Personal Library, North-Holland: Amsterdam, The Netherlands, 2007. [Google Scholar] [CrossRef]
- Gardiner, C.W. Stochastic Methods: A Handbook for the Natural and Social Sciences, 4th ed.; Springer Series in Synergetics; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar] [CrossRef]
- Gallavotti, G. Nonequilibrium and Irreversibility, 2nd ed.; Lecture Notes in Physics; Springer: Cham, Switzerland, 2025; Volume 1040. [Google Scholar] [CrossRef]
- Kreuzer, H.J. Nonequilibrium Thermodynamics and Its Statistical Foundations, 1st ed.; Monographs on the Physics and Chemistry of Materials; Clarendon Press/Oxford University Press: Oxford, UK; New York, NY, USA, 1981. [Google Scholar]
- Spohn, H. Large Scale Dynamics of Interacting Particles; Theoretical and Mathematical Physics; Springer: Berlin/Heidelberg, Germany, 1991. [Google Scholar] [CrossRef]
- Colangeli, M.; Rondoni, L. Equilibrium, fluctuation relations and transport for irreversible deterministic dynamics. Phys. D Nonlinear Phenom. 2012, 241, 681–691. [Google Scholar] [CrossRef]
- Risken, H. The Fokker-Planck Equation; Springer: Berlin, Germany, 1996. [Google Scholar] [CrossRef]
- Pavliotis, G.A. Stochastic Processes and Applications. Diffusion Processes, the Fokker-Planck and Langevin Equations; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar] [CrossRef]
- Balakrishnan, V. Elements of Nonequilibrium Statistical Mechanics, 1st ed.; Springer Nature: Cham, Switzerland, 2020; p. 314. [Google Scholar] [CrossRef]
- Colangeli, M.; Duong, M.H.; Muntean, A. A hybrid approach to model reduction of Generalized Langevin Dynamics. J. Stat. Phys. 2025, 192, 1–20. [Google Scholar] [CrossRef]
- Jones, C.K.R.T. Geometric singular perturbation theory. In Dynamical Systems: Lectures Given at the 2nd Session of the Centro Internazionale Matematico Estivo (C.I.M.E.) Held in Montecatini Terme, Italy, June 13–22, 1994; Johnson, R., Ed.; Springer: Berlin/Heidelberg, Germany, 1995; pp. 44–118. [Google Scholar] [CrossRef]
- Sekimoto, K. Stochastic Energetics; Lecture Notes in Physics; Springer: Berlin/Heidelberg, Germany, 2010; Volume 799. [Google Scholar] [CrossRef]
- Lepri, S.; Livi, R.; Politi, A. Thermal conduction in classical low-dimensional lattices. Phys. Rep. 2003, 377, 1–80. [Google Scholar] [CrossRef]
- Chandrasekhar, S. Stochastic Problems in Physics and Astronomy. Rev. Mod. Phys. 1943, 15, 1. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Colangeli, M.; Rondoni, L.; Vozza, P. Dissipation Functions and Brownian Oscillators. Symmetry 2025, 17, 1297. https://doi.org/10.3390/sym17081297
Colangeli M, Rondoni L, Vozza P. Dissipation Functions and Brownian Oscillators. Symmetry. 2025; 17(8):1297. https://doi.org/10.3390/sym17081297
Chicago/Turabian StyleColangeli, Matteo, Lamberto Rondoni, and Pasquale Vozza. 2025. "Dissipation Functions and Brownian Oscillators" Symmetry 17, no. 8: 1297. https://doi.org/10.3390/sym17081297
APA StyleColangeli, M., Rondoni, L., & Vozza, P. (2025). Dissipation Functions and Brownian Oscillators. Symmetry, 17(8), 1297. https://doi.org/10.3390/sym17081297