A Semantic Behavioral Sequence-Based Approach to Trajectory Privacy Protection
Abstract
1. Introduction
- We present a novel differential privacy approach for discovering similar trajectories. The method generates trajectory data with calibrated noise injection, ensuring maximal expected perturbation while maintaining consistency with published user trajectories. This framework enables accurate user recommendations while providing robust privacy assurance for trajectory information.
- The semantic behavior sequence-based region of interest (ROI) discovery method effectively identifies user-specific ROIs. During behavioral modeling, user behavioral interactions are chronologically sorted, with a differential threshold delineating short-term and long-term behavioral sequences. A Transformer encoder models short-term behavioral sequences to capture intra-sequence behavioral relationships, while integrated positional encoding represents spatial information.
- Following a comprehensive security analysis and feasibility assessment, it has been determined that the solution proposed in this chapter meets the requisite standards for differential privacy protection. Furthermore, the noise trajectory processed and released is highly usable, enabling the realization of similar user discovery based on the noise trajectory.
2. Related Work
2.1. Synthetic Trajectory
2.2. Behavioral Sequence Modeling
3. Preliminary
3.1. Related Definitions
3.2. Definition of Attack
4. A Semantic Behavior-Based Approach to Trajectory Protection
4.1. Interest Region Segmentation Based on Semantic Behavior Extraction
4.1.1. Embedded Layer
4.1.2. Long-Term Behavioral Sequence Modeling
4.1.3. Interest Extraction Layer
4.2. Region of Interest Privacy Proxy Location and Pseudo-Trajectory Generation Method
Algorithm 1: SBS-TPP |
5. Experimental Results and Analysis
5.1. Dataset
5.2. Impact Assessment
6. Summary of Future Work
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sun, W.; Zhao, K.; Liang, G.; Liang, Z.; Jiang, L. UdpTrace: Utility-enhanced differential privacy scheme for trajectory data publishing. Neurocomputing 2025, 649, 130785. [Google Scholar] [CrossRef]
- Cong, X.; Zhu, H.; Cui, W.; Zhao, G.; Yu, Z. Critical Observability of Stochastic Discrete Event Systems Under Intermittent Loss of Observations. Mathematics 2025, 13, 1426. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, G.; Bhuiyan, M.Z.A.; Liu, Q. A dual privacy preserving scheme in continuous location-based services. IEEE Internet Things J. 2018, 5, 4191–4200. [Google Scholar] [CrossRef]
- Peng, T.; Liu, Q.; Wang, G.; Xiang, Y.; Chen, S. Multidimensional privacy preservation in location-based services. Future Gener. Comput. Syst. 2019, 93, 312–326. [Google Scholar] [CrossRef]
- Zhu, L.; Lei, T.; Mu, J.; Mu, J.; Cai, Z.; Zhang, J. Differential Privacy-Based Spatial-Temporal Trajectory Clustering Scheme for LBSNs. Electronics 2023, 12, 3767. [Google Scholar] [CrossRef]
- Bhattacharya, M.; Roy, S.; Mistry, K.; Shum, H.P.; Chattopadhyay, S. A privacy-preserving efficient location-sharing scheme for mobile online social network applications. IEEE Access 2020, 8, 221330–221351. [Google Scholar] [CrossRef]
- Wang, J.; Lu, Z.; Fu, M.; Wang, J.; Lu, K.; Jukan, A. Decode-and-Compare: An Efficient Verification Scheme for Coded Distributed Edge Computing. IEEE Trans. Cloud Comput. 2023, 11, 2784–2802. [Google Scholar] [CrossRef]
- Xiao, Z.; Yang, J.J.; Huang, M.; Ponnambalam, L.; Fu, X.; Goh, R.S.M. QLDS: A novel design scheme for trajectory privacy protection with utility guarantee in participatory sensing. IEEE Trans. Mob. Comput. 2017, 17, 1397–1410. [Google Scholar] [CrossRef]
- Tian, Y.; Wang, W.; Wu, J.; Kou, Q.; Song, Z.; Ngai, E.C.H. Privacy-preserving social tie discovery based on cloaked human trajectories. IEEE Trans. Veh. Technol. 2016, 66, 1619–1630. [Google Scholar] [CrossRef]
- Wang, G.; Wang, B.; Wang, T.; Nika, A.; Zheng, H.; Zhao, B.Y. Defending against sybil devices in crowdsourced mapping services. In Proceedings of the 14th Annual International Conference on Mobile Systems, Applications, and Services, Singapore, 26–30 June 2016; pp. 179–191. [Google Scholar]
- Li, S.; Tian, H.; Shen, H.; Sang, Y. Privacy-preserving trajectory data publishing by dynamic anonymization with bounded distortion. ISPRS Int. J. Geo-Inf. 2021, 10, 78. [Google Scholar] [CrossRef]
- Zhang, W.; Yin, G.; Xie, B. SUDM-SP: A method for discovering trajectory similar users based on semantic privacy. High-Confid. Comput. 2023, 3, 100146. [Google Scholar] [CrossRef]
- Terrovitis, M.; Poulis, G.; Mamoulis, N.; Skiadopoulos, S. Local suppression and splitting techniques for privacy preserving publication of trajectories. IEEE Trans. Knowl. Data Eng. 2017, 29, 1466–1479. [Google Scholar] [CrossRef]
- Zheng, Y.; Xie, X.; Ma, W.Y. GeoLife: A collaborative social networking service among user, location and trajectory. IEEE Data Eng. Bull. 2010, 33, 32–39. [Google Scholar]
- Chen, R.; Acs, G.; Castelluccia, C. Differentially private sequential data publication via variable-length n-grams. In Proceedings of the 2012 ACM Conference on Computer and Communications Security, Raleigh, NC, USA, 16–18 October 2012; pp. 638–649. [Google Scholar]
- He, X.; Cormode, G.; Machanavajjhala, A.; Procopiuc, C.; Srivastava, D. DPT: Differentially private trajectory synthesis using hierarchical reference systems. Proc. VLDB Endow. 2015, 8, 1154–1165. [Google Scholar] [CrossRef]
- Zhang, W.; Yin, G.; Dong, Y.; Chen, F.; Zia, Q. DPTP-LICD: A differential privacy trajectory protection method based on latent interest community detection. High-Confid. Comput. 2023, 3, 100134. [Google Scholar] [CrossRef]
- Lu, H.; Jensen, C.S.; Yiu, M.L. Pad: Privacy-area aware, dummy-based location privacy in mobile services. In Proceedings of the Seventh ACM International Workshop on Data Engineering for Wireless and Mobile Access, Vancouver, BC, Canada, 13 June 2008; pp. 16–23. [Google Scholar]
- Kato, R.; Iwata, M.; Hara, T.; Suzuki, A.; Xie, X.; Arase, Y.; Nishio, S. A dummy-based anonymization method based on user trajectory with pauses. In Proceedings of the 20th International Conference on Advances in Geographic Information Systems, Redondo Beach, CA, USA, 6–9 November 2012; pp. 249–258. [Google Scholar]
- Chow, R.; Golle, P. Faking contextual data for fun, profit, and privacy. In Proceedings of the 8th ACM Workshop on Privacy in the Electronic Society, Chicago, IL, USA, 9 November 2009; pp. 105–108. [Google Scholar]
- Suzuki, A.; Iwata, M.; Arase, Y.; Hara, T.; Xie, X.; Nishio, S. A user location anonymization method for location based services in a real environment. In Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems, San Jose, CA, USA, 2–5 November 2010; pp. 398–401. [Google Scholar]
- Gramaglia, M.; Fiore, M. Hiding mobile traffic fingerprints with glove. In Proceedings of the 11th ACM Conference on Emerging Networking Experiments and Technologies, Heidelberg, Germany, 1–4 December 2015; pp. 1–13. [Google Scholar]
- Liu, H.; Li, X.; Li, H.; Ma, J.; Ma, X. Spatiotemporal correlation-aware dummy-based privacy protection scheme for location-based services. In Proceedings of the IEEE INFOCOM 2017-IEEE Conference on Computer Communications, Atlanta, GA, USA, 1–4 May 2017; pp. 1–9. [Google Scholar]
- Li, Y.; Li, S. A real-time location privacy protection method based on space transformation. In Proceedings of the 2018 14th International Conference on Computational Intelligence and Security (CIS), Hangzhou, China, 16–19 November 2018; pp. 291–295. [Google Scholar]
- Qin, J.; Zhang, W.; Wu, X.; Jin, J.; Fang, Y.; Yu, Y. User behavior retrieval for click-through rate prediction. In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, Virtual Event, China, 25–30 July 2020; pp. 2347–2356. [Google Scholar]
- Zhu, M.; Shu, Q.; Shen, S.; Feng, L.; Wu, J.; Huang, Z. Live streaming recommendation based on multiple types of repeated behaviors. Expert Syst. Appl. 2025, 288, 128217. [Google Scholar] [CrossRef]
- Zhou, G.; Zhu, X.; Song, C.; Fan, Y.; Zhu, H.; Ma, X.; Yan, Y.; Jin, J.; Li, H.; Gai, K. Deep interest network for click-through rate prediction. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, London, UK, 19–23 August 2018; pp. 1059–1068. [Google Scholar]
- An, Z.; Si, G.; Tian, P.; Li, J.; Liang, X.; Zhou, F.; Wang, X. Research on Earthquake Data Prediction Method Based on DIN-MLP Algorithm. Electronics 2023, 12, 3519. [Google Scholar] [CrossRef]
- Zhou, G.; Mou, N.; Fan, Y.; Pi, Q.; Bian, W.; Zhou, C.; Zhu, X.; Gai, K. Deep interest evolution network for click-through rate prediction. In Proceedings of the AAAI Conference on Artificial Intelligence, Honolulu, HI, USA, 27 January–1 February 2019; Volume 33, pp. 5941–5948. [Google Scholar]
- Yu, M.; Liu, T.; Yin, J. Deep Filter Context Network for Click-Through Rate Prediction. J. Theor. Appl. Electron. Commer. Res. 2023, 18, 1446–1462. [Google Scholar] [CrossRef]
- Pi, Q.; Bian, W.; Zhou, G.; Zhu, X.; Gai, K. Practice on long sequential user behavior modeling for click-through rate prediction. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Anchorage, AK, USA, 4–8 August 2019; pp. 2671–2679. [Google Scholar]
- Dong, G.; Yang, X.; Fang, Y.; Tentzeris, M.M. Filtering Push-Pull Power Amplifier Based on Multifunctional Impedance Matching Network. IEEE Microw. Wirel. Components Lett. 2022, 32, 422–425. [Google Scholar] [CrossRef]
- Xiao, Z.; Yang, L.; Jiang, W.; Wei, Y.; Hu, Y.; Wang, H. Deep multi-interest network for click-through rate prediction. In Proceedings of the 29th ACM International Conference on Information & Knowledge Management, Virtual Event, Ireland, 19–23 October 2020; pp. 2265–2268. [Google Scholar]
- Xu, E.; Yu, Z.; Guo, B.; Cui, H. Core interest network for click-through rate prediction. ACM Trans. Knowl. Discov. Data (TKDD) 2021, 15, 1–16. [Google Scholar] [CrossRef]
- Li, Z.; Zhao, H.; Liu, Q.; Huang, Z.; Mei, T.; Chen, E. Learning from history and present: Next-item recommendation via discriminatively exploiting user behaviors. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, London, UK, 19–23 August 2018; pp. 1734–1743. [Google Scholar]
- Alrawais, A.; Alhothaily, A.; Cheng, X.; Hu, C.; Yu, J. SecureGuard: A certificate validation system in public key infrastructure. IEEE Trans. Veh. Technol. 2018, 67, 5399–5408. [Google Scholar] [CrossRef]
- Xu, J.; Xue, K.; Yang, Q.; Hong, P. PSAP: Pseudonym-based secure authentication protocol for NFC applications. IEEE Trans. Consum. Electron. 2018, 64, 83–91. [Google Scholar] [CrossRef]
- Zheng, Y.; Zhang, L.; Xie, X.; Ma, W.Y. Mining interesting locations and travel sequences from GPS trajectories. In Proceedings of the 18th International Conference on World Wide Web, Madrid, Spain, 20–24 April 2009; pp. 791–800. [Google Scholar]
- Zheng, Y.; Li, Q.; Chen, Y.; Xie, X.; Ma, W.Y. Understanding mobility based on GPS data. In Proceedings of the 10th International Conference on Ubiquitous Computing, Seoul, Republic of Korea, 21–24 September 2008; pp. 312–321. [Google Scholar]
- Yuan, J.; Zheng, Y.; Xie, X. Discovering regions of different functions in a city using human mobility and POIs. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Beijing, China, 12–16 August 2012; pp. 186–194. [Google Scholar]
- Lv, F.; Jin, T.; Yu, C.; Sun, F.; Lin, Q.; Yang, K.; Ng, W. SDM: Sequential deep matching model for online large-scale recommender system. In Proceedings of the 28th ACM International Conference on Information and Knowledge Management, Beijing, China, 3–7 November 2019; pp. 2635–2643. [Google Scholar]
- Li, D.; Hu, B.; Chen, Q.; Wang, X.; Qi, Q.; Wang, L.; Liu, H. Attentive capsule network for click-through rate and conversion rate prediction in online advertising. Knowl.-Based Syst. 2021, 211, 106522. [Google Scholar] [CrossRef]
- Chen, R.; Fung, B.C.; Desai, B.C.; Sossou, N.M. Differentially private transit data publication: A case study on the montreal transportation system. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Beijing, China, 12–16 August 2012; pp. 213–221. [Google Scholar]
Model | Advantages | Disadvantages |
---|---|---|
DIN | Captures local user interests | Ignores sequential patterns; neglects interest evolution |
SDM | Models short-term preferences | Complex architecture; session segmentation dependency |
DMIN | Computationally efficient; multi-interest representation | Weak modeling of interest relationships |
ACN | Leverages collaborative relations; mitigates cold-start problem | High complexity; computationally intensive |
MA (SBS-TPP) | Integrates long/short-term memory; accurate interest capture | Moderately high model complexity |
Model | Geolife | T-Drive | ||
---|---|---|---|---|
AUC | Logloss | AUC | Logloss | |
DIN | 0.7323 | 0.4125 | 0.8633 | 0.31 |
SDM | 0.7588 | 0.4155 | 0.8591 | 0.3157 |
DMIN | 0.7671 | 0.3752 | 0.8679 | 0.3013 |
ACN | 0.7633 | 0.3633 | 0.8821 | 0.2956 |
MA | 0.7756 | 0.3621 | 0.8861 | 0.2766 |
Model | Geolife | T-Drive | ||
---|---|---|---|---|
AUC | Logloss | AUC | Logloss | |
Removing the sequence behaviors modeling | 0.7589 | 0.4098 | 0.8763 | 0.3255 |
Removing the long-term behavior modeling | 0.7597 | 0.3733 | 0.8647 | 0.3011 |
MA | 0.7746 | 0.3633 | 0.8927 | 0.2815 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xi, J.; Zhang, W.; Xia, Z.; Zhao, L.; Tao, H. A Semantic Behavioral Sequence-Based Approach to Trajectory Privacy Protection. Symmetry 2025, 17, 1266. https://doi.org/10.3390/sym17081266
Xi J, Zhang W, Xia Z, Zhao L, Tao H. A Semantic Behavioral Sequence-Based Approach to Trajectory Privacy Protection. Symmetry. 2025; 17(8):1266. https://doi.org/10.3390/sym17081266
Chicago/Turabian StyleXi, Ji, Weiqi Zhang, Zhengwang Xia, Li Zhao, and Huawei Tao. 2025. "A Semantic Behavioral Sequence-Based Approach to Trajectory Privacy Protection" Symmetry 17, no. 8: 1266. https://doi.org/10.3390/sym17081266
APA StyleXi, J., Zhang, W., Xia, Z., Zhao, L., & Tao, H. (2025). A Semantic Behavioral Sequence-Based Approach to Trajectory Privacy Protection. Symmetry, 17(8), 1266. https://doi.org/10.3390/sym17081266