Extracting Correlations in Arbitrary Diagonal Quantum States via Weak Couplings and Auxiliary Systems
Abstract
1. Introduction
2. Theoretical Model
2.1. Weak Measurement and Its Application
2.2. Correlation Abstraction of Quantum States with Unknown Density Matrices (Diagonal Only)
2.3. Some Details
3. Example Implementations
4. Conclusions and Discussions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Aharonov, Y.; Albert, D.Z.; Vaidman, L. How the Result of a Measurement of a Component of the Spin of a Spin-1/2 Particle Can Turn Out to be 100. Phys. Rev. Lett. 1988, 60, 1351–1354. [Google Scholar] [CrossRef] [PubMed]
- Dressel, J.; Jordan, A.N. Significance of the imaginary part of the weak value. Phys. Rev. A 2012, 85, 012107. [Google Scholar] [CrossRef]
- Hariri, A.; Curic, D.; Giner, L.; Lundeen, J.S. Experimental simultaneous readout of the real and imaginary parts of the weak value. Phys. Rev. A 2019, 100, 032119. [Google Scholar] [CrossRef]
- Luo, W.; Wang, Y.; Liu, J.; Chen, S.; Luo, H. Attosecond resolution in birefringence measurement using real weak value. Opt. Commun. 2025, 586, 131829. [Google Scholar] [CrossRef]
- Jozsa, R. Complex weak values in quantum measurement. Phys. Rev. A 2007, 76, 044103. [Google Scholar] [CrossRef]
- Zhang, J.; Guo, X.; Hou, J.; Jie, Z.; Guo, Y. Enhanced Phase Weak Measurement Based on Multiple Weak Interactions. Chin. J. Lasers-Zhongguo Jiguang 2025, 52, 0212003. [Google Scholar] [CrossRef]
- Araya-Sossa, K.; Orszag, M. Influence of squeezing on the weak-to-strong measurement transition. Phys. Rev. A 2021, 103, 052215. [Google Scholar] [CrossRef]
- Polonyi, J.; Rachid, I. Elementary Open Quantum States. Symmetry 2021, 13, 1624. [Google Scholar] [CrossRef]
- Ritchie, N.W.M.; Story, J.G.; Hulet, R.G. Realization of a Measurement of a “Weak Value”. Phys. Rev. Lett. 1991, 66, 1107–1110. [Google Scholar] [CrossRef]
- Sun, Z.Z.; Pan, D.; Ruan, D.; Long, G.L. One-Sided Measurement-Device-Independent Practical Quantum Secure Direct Communication. J. Light. Technol. 2023, 41, 4680–4690. [Google Scholar] [CrossRef]
- Dressel, J.; Malik, M.; Miatto, F.M.; Jordan, A.N.; Boyd, R.W. Understanding quantum weak values: Basics and applications. Rev. Mod. Phys. 2014, 86, 307–316. [Google Scholar] [CrossRef]
- Magaña-Loaiza, O.S.; Mirhosseini, M.; Rodenburg, B.; Boyd, R.W. Amplification of Angular Rotations Using Weak Measurements. Phys. Rev. Lett. 2014, 112, 200401. [Google Scholar] [CrossRef]
- Higgins, B.L.; Palsson, M.S.; Xiang, G.Y.; Wiseman, H.M.; Pryde, G.J. Using weak values to experimentally determine “negative probabilities” in a two-photon state with Bell correlations. Phys. Rev. A 2015, 91, 012113. [Google Scholar] [CrossRef]
- Hill, C.; Ralph, J. Weak measurement and control of entanglement generation. Phys. Rev. A 2008, 77, 014305. [Google Scholar] [CrossRef]
- Das, D.; Arvind. Estimation of quantum states by weak and projective measurements. Phys. Rev. A 2014, 89, 062121. [Google Scholar] [CrossRef]
- Bernardo, B.D.L.; Azevedo, S.; Rosas, A. Ultrasmall polarization rotation measurements via weak value amplification. Phys. Lett. A 2014, 378, 2029–2033. [Google Scholar] [CrossRef]
- Pramanik, T.; Majumdar, A.S. Improving the fidelity of teleportation through noisy channels using weak measurement. Phys. Lett. A 2013, 377, 3209–3215. [Google Scholar] [CrossRef]
- Zhu, X.; Wei, Q.; Liu, Q.; Wu, S.J. Negative probabilities and information gain in weak measurements. Phys. Lett. A 2013, 377, 2505–2509. [Google Scholar] [CrossRef]
- Ciccarello, F.; Palma, G.M.; Giovannetti, V. Collision-model-based approach to non-Markovian quantum dynamics. Phys. Rev. A 2013, 87, 040103. [Google Scholar] [CrossRef]
- Allahverdyan, A.; Nieuwenhuizen, T. Extraction of work from a single thermal bath in the quantum regime. Phys. Rev. Lett. 2000, 85, 1799–1802. [Google Scholar] [CrossRef]
- Lorenzo, S.; Ciccarello, F.; Palma, G.M. Composite quantum collision models. Phys. Rev. A 2017, 96, 032107. [Google Scholar] [CrossRef]
- Harris, J.; Boyd, R.W.; Lundeen, J.S. Weak Value Amplification Can Outperform Conventional Measurement in the Presence of Detector Saturation. Phys. Rev. Lett. 2017, 118, 070802. [Google Scholar] [CrossRef]
- Xu, L.; Liu, Z.; Datta, A.; Knee, G.C.; Lundeen, J.S.; Lu, Y.q.; Zhang, L. Approaching Quantum-Limited Metrology with Imperfect Detectors by Using Weak-Value Amplification. Phys. Rev. Lett. 2020, 125, 080501. [Google Scholar] [CrossRef] [PubMed]
- Chaturvedi, S. Mutually unbiased bases. Pramana-J. Phys. 2002, 59, 345–350. [Google Scholar] [CrossRef]
- Wootters, W.; Fields, B. Optimal State Determination by Mutually Unbiased Measurements. Ann. Phys. 1989, 191, 363–381. [Google Scholar] [CrossRef]
- Nielsen, M.A.; Chuang, I.L. Quantum Computation and Quantum Information, 1st ed.; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Wang, H.; Wang, J. An Open Quantum System Interacting with an Interference Engineering Environment. Entropy 2025, 27, 228. [Google Scholar] [CrossRef]
- Abdelmagid, R.; Alshehhi, K.; Sadiek, G. Entanglement Degradation in Two Interacting Qubits Coupled to Dephasing Environments. Entropy 2023, 25, 1458. [Google Scholar] [CrossRef]
- Ferreri, A.; Domina, M.; Rizzuto, L.; Passante, R. Spontaneous Emission of an Atom Near an Oscillating Mirror. Symmetry 2019, 11, 1384. [Google Scholar] [CrossRef]
- Park, C.Y.; Cho, J. Correlations in local measurements and entanglement in many-body systems. Phys. Rev. A 2018, 98, 012107. [Google Scholar] [CrossRef]
- Smirne, A.; Breuer, H.P.; Piilo, J.; Vacchini, B. Initial correlations in open-systems dynamics The Jaynes-Cummings model. Phys. Rev. A 2010, 82, 062114. [Google Scholar] [CrossRef]
- Uchiyama, C. Exploring initial correlations in a Gibbs state by application of external field. Phys. Rev. A 2012, 85, 052104. [Google Scholar] [CrossRef]
- Aharonov, Y.; Rohrlich, D. Quantum Paradoxes: Quantum Theory for the Perplexed; WILEY-VCH Verlag GmbH: Weinheim, Germany, 2005. [Google Scholar]
- Brodutch, A.; Cohen, E. Nonlocal Measurements via Quantum Erasure. Phys. Rev. Lett. 2016, 116, 070404. [Google Scholar] [CrossRef] [PubMed]
- Rastegin, A.E. Partitioned trace distances. Quantum Inf. Process. 2010, 9, 61–73. [Google Scholar] [CrossRef]
- Rana, S.; Parashar, P.; Lewenstein, M. Trace-distance measure of coherence. Phys. Rev. A 2016, 93, 012110. [Google Scholar] [CrossRef]
- Wang, Q. Optimal Trace Distance and Fidelity Estimations for Pure Quantum States. IEEE Trans. Inf. Theory 2024, 70, 8791–8805. [Google Scholar] [CrossRef]
- Khasseh, R.; Zhang, J.; Heyl, M.; Rajabpour, M.A. Identifying Quantum Many-Body Integrability and Chaos Using Eigenstate Trace Distances. Phys. Rev. Lett. 2023, 131, 216701. [Google Scholar] [CrossRef]
- Puchala, Z.; Miszczak, J.A. Bound on trace distance based on superfidelity. Phys. Rev. A 2009, 79, 024302. [Google Scholar] [CrossRef]
- Nakajima, S.; Utsumi, Y. Speed limits of the trace distance for open quantum system. New J. Phys. 2022, 24, 095004. [Google Scholar] [CrossRef]
- Wu, S. State tomography via weak measurements. Sci. Rep. 2013, 3, 1193. [Google Scholar] [CrossRef]
- Duck, I.; Stevenson, P.; Sudarshan, E. The Sense in Which a Weak Measurement of a Spin-1/2 Particles Spin Component Yields a Value 100. Phys. Rev. D 1989, 40, 2112–2117. [Google Scholar] [CrossRef]
- Lundeen, J.S.; Bamber, C. Procedure for Direct Measurement of General Quantum States Using Weak Measurement. Phys. Rev. Lett. 2012, 108, 070402. [Google Scholar] [CrossRef]
- Wiseman, H.M. Weak values, quantum trajectories, and the cavity-QED experiment on wave-particle correlation. Phys. Rev. A 2002, 65, 032111. [Google Scholar] [CrossRef]
- Arvidsson-Shukur, D.R.M.; Braasch Jr, W.F.; De Bievre, S.; Dressel, J.; Jordan, A.N.; Langrenez, C.; Lostaglio, M.; Lundeen, J.S.; Halpern, N.Y. Properties and applications of the Kirkwood-Dirac distribution. New J. Phys. 2024, 26, 121201. [Google Scholar] [CrossRef]
- Durt, T.; Englert, B.G.; Bengtsson, I.; Życzkowski, K. On mutually unbiased bases. Int. J. Quantum Inf. 2010, 8, 535–640. [Google Scholar] [CrossRef]
- Spengler, C.; Huber, M.; Brierley, S.; Adaktylos, T.; Hiesmayr, B.C. Entanglement detection via mutually unbiased bases. Phys. Rev. A 2012, 86, 022311. [Google Scholar] [CrossRef]
i | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
---|---|---|---|---|---|---|---|---|
k | |
---|---|
1 | |
2 | |
3 | |
4 | |
5 | |
6 | |
7 | |
8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Zheng, C.; Li, Y.; Lu, X. Extracting Correlations in Arbitrary Diagonal Quantum States via Weak Couplings and Auxiliary Systems. Symmetry 2025, 17, 1233. https://doi.org/10.3390/sym17081233
Li H, Zheng C, Li Y, Lu X. Extracting Correlations in Arbitrary Diagonal Quantum States via Weak Couplings and Auxiliary Systems. Symmetry. 2025; 17(8):1233. https://doi.org/10.3390/sym17081233
Chicago/Turabian StyleLi, Hui, Chao Zheng, Yansong Li, and Xian Lu. 2025. "Extracting Correlations in Arbitrary Diagonal Quantum States via Weak Couplings and Auxiliary Systems" Symmetry 17, no. 8: 1233. https://doi.org/10.3390/sym17081233
APA StyleLi, H., Zheng, C., Li, Y., & Lu, X. (2025). Extracting Correlations in Arbitrary Diagonal Quantum States via Weak Couplings and Auxiliary Systems. Symmetry, 17(8), 1233. https://doi.org/10.3390/sym17081233