Topological Objects in Ordered Electronic Systems
1. Topologically Nontrivial Configurations: From Condensed Matter via the Solid State to Electronic Realizations
2. Microscopic Solitons in (Quasi)-One-Dimensional Electronic Systems
3. Special Issue Summary
Author Contributions
Funding
Conflicts of Interest
References
- Bunkov, Y.M.; Godfrin, H. (Eds.) Topological Defects and the Non-Equilibrium Dynamics of Symmetry-Breaking Phase Transitions; NATO ASI Series; Kluwer Academic Publishers: Amsterdam, The Netherlands, 2000. [Google Scholar]
- Mermin, N.D. The topological theory of defects in ordered media. Rev. Mod. Phys. 1979, 51, 591–648. [Google Scholar] [CrossRef]
- Mineev, V.P. Topologically Stable Defects and Solitons in Ordered Media; Harwood Academic Publishers: New York, NY, USA, 1998. [Google Scholar]
- Manton, N.; Sutcliffe, P. Topological Solitons; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Skyrme, T.H.R. A non-linear field theory. Proc. R. Soc. Lond. Ser. A 1961, 260, 127–138. [Google Scholar]
- Hindmarsh, M.W.; Kibble, T.B.W. Cosmic strings. Rep. Prog. Phys. 1995, 58, 477–561. [Google Scholar] [CrossRef]
- Vilenkin, A.; Shellard, E.P.S. Cosmic Strings and Other Topological Defects; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Eltsov, V.B.; Krusius, M.; Volovik, G.E. Vortex formation and dynamics in superfluid 3He and analogies in quantum field theory. Prog. Low Temp. Phys. 2005, 15, 1–137. [Google Scholar]
- Volovik, G. Monopoles and fractional vortices in chiral superconductors. Proc. Natl. Acad. Sci. USA 2000, 97, 2431–2436. [Google Scholar] [CrossRef] [PubMed]
- Berloff, N.G.; Keeling, J. Universality in Modelling Non-equilibrium Pattern Formation in Polariton Condensates. Physics of Quantum Fluids: New Trends and Hot Topics in Atomic and Polariton Condensates; Springer Series 177; Bramati, A., Modugno, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 19–38. [Google Scholar]
- Neely, T.W.; Scherer, D.R.; Bradley, A.S.; Davis, M.J.; Anderson, B.P. Spontaneous vortices in the formation of Bose-Einstein condensates. Nature 2008, 455, 948–951. [Google Scholar]
- Chuang, I.; Durrer, R.; Turok, N.; Yurke, B. Cosmology in the laboratory: Defect dynamics in liquid crystals. Science 1991, 251, 1336–1342. [Google Scholar] [CrossRef] [PubMed]
- Yu, L. Solitons and Polarons in Conducting Polymers; World Scientific Publishing Co.: New York, NY, USA, 1988. [Google Scholar]
- Kranjec, A.; Karpov, P.; Vaskivskyi, Y.; Vodeb, J.; Gerasimenko, Y.; Mihailovic, D. Electronic Dislocation Dynamics in Metastable Wigner Crystal States. Symmetry 2022, 14, 926. [Google Scholar] [CrossRef]
- Ivlev, B.I.; Kopnin, N.B. Electric currents and resistive states in thin superconductors. Adv. Phys. 1984, 33, 47–114. [Google Scholar] [CrossRef]
- Landau, L.D.; Pitaevskii, L.P.; Kosevich, A.M.; Lifshitz, E.M. Theory of Elasticity; Pergamon: Oxford, UK, 1984. [Google Scholar]
- Ong, N.P.; Maki, K. Generation of charge-density-wave conduction noise by moving phase vortices. Phys. Rev. B 1985, 32, 6582–6590. [Google Scholar] [CrossRef] [PubMed]
- Feinberg, D.; Friedel, J. Elastic and plastic deformations of charge density waves. J. Phys. 1988, 49, 485–496. [Google Scholar] [CrossRef]
- Gor’kov, L.P. Phase slipping processes and generation of narrow-band oscillations by charge density waves. In Charge Density Waves in Solids; Gor’kov, L., Grüner, G., Eds.; Elsevier Science Publisher: Amsterdam, The Netherlands, 1990; pp. 403–424. [Google Scholar]
- Kosevich, A.M.; Ivanov, B.A.; Kovalev, A.S. Magnetic Solitons. Phys. Rep. 1990, 194, 117–238. [Google Scholar] [CrossRef]
- Nagaosa, N.; Tokura, Y. Topological properties and dynamics of magnetic skyrmions. Nat. Nanotechnol. 2013, 8, 899–911. [Google Scholar] [CrossRef] [PubMed]
- Seidel, J. (Ed.) Topological Structures in Ferroic Materials: Domain Walls, Vortices and Skyrmions; Springer Series in Materials Science; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Monceau, P. Electronic crystals: An experimental overview. Adv. Phys. 2012, 61, 325–581. [Google Scholar] [CrossRef]
- Brazovskii, S.; Kirova, N. Proceedings of Iternational Conference ECRYS 2014. Phys. Condens. Matter. 2015, 460, 1–268. [Google Scholar] [CrossRef]
- Tranquada, J.M. Topological Doping and Superconductivity in Cuprates: An Experimental Perspective. Symmetry 2021, 13, 2365. [Google Scholar] [CrossRef]
- Horvatic, M.; Fagot-Revurat, Y.; Berthier, C.; Dhalenne, G.; Revcolevschi, A. NMR Imaging of the Soliton Lattice Profile in the Spin-Peierls Compound CuGeO3. Phys. Rev. Lett. 1999, 83, 420–423. [Google Scholar] [CrossRef]
- Machida, K.; Nakanishi, H. Superconductivity under a ferromagnetic molecular field. Phys. Rev. B 1984, 30, 122–133. [Google Scholar] [CrossRef]
- Buzdin, A.I.; Tugushev, V.V. Phase diagrams of electronic and superconductlng transitions to soliton lattice states. Sov. Phys. JETP 1983, 58, 428–433. [Google Scholar]
- Radzihovsky, L.L.; Vishwanath, A. Quantum Liquid Crystals in an Imbalanced Fermi Gas: Fluctuations and Fractional Vortices in Larkin-Ovchinnikov States. Phys. Rev. Lett. 2009, 103, 010404. [Google Scholar] [CrossRef] [PubMed]
- Grüner, G. Density Waves in Solids; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Gor’kov, L.; Grüner, G. (Eds.) Charge Density Waves in Solids; Elsevier Science Publisher: Amsterdam, The Netherlands, 1990. [Google Scholar]
- Grüner, G. The Dynamics of Spin Density Waves. Rev. Mod. Phys. 1994, 66, 1–24. [Google Scholar] [CrossRef]
- Bardeen, J. Superconductivity and Other Macroscopic Quantum Phenomena. Phys. Today 1990, 43, 25–33. [Google Scholar] [CrossRef]
- Brazovskii, S.; Matveenko, S. The charge density wave structure near a side metal contact. Sov. Phys. JETP 1992, 74, 864–869. [Google Scholar] [CrossRef]
- Requardt, H.; Nad, F.; Monceau, P.; Currat, R.; Lorenzo, J.E.; Brazovski, S.; Kirova, N.; Grubel, G.; Vettier, C. Direct observation of CDW current conversion by spatially-resolved synchrotron X-ray studies in NbSe3. Phys. Rev. Lett. 1998, 80, 5631–5634. [Google Scholar] [CrossRef]
- Lemay, S.G.; de Lind van Wijngaarden, M.C.; Adelman, T.L.; Thorne, R.E. Spatial distribution of charge-density-wave phase slip in NbSe3. Phys. Rev. B 1998, 57, 12781–12791. [Google Scholar] [CrossRef]
- Orlov, A.P.; Sinchenko, A.A.; Monceau, P.; Brazovskii, S.; Latyshev, Y.I. Hall voltage drives pulsing counter-currents of the sliding charge density wave and of quantized normal carriers at self-filled Landau levels. NPJ Quantum Mater. 2017, 2, 61. [Google Scholar] [CrossRef]
- Kirova, N.; Brazovskii, S. Scattering Profile from a Random Distribution of Dislocations in a Charge Density Wave. Ann. Phys. 2022, 447, 169130. [Google Scholar] [CrossRef]
- Cho, D.; Cheon, S.; Kim, K.-S.; Lee, S.-H.; Cho, Y.-H.; Cheong, S.-W.; Yeom, H.W. Nanoscale Manipulation of the Mott Insulating State Coupled to Charge Order in 1T-TaS2. Nat. Commun. 2016, 7, 10453. [Google Scholar] [CrossRef] [PubMed]
- Le Bolloc’h, D.; Bellec, E.; Kirova, N.; Jacques, V.L.R. Tracking Defects of Electronic Crystals by Coherent X-ray Diffraction. Symmetry 2023, 15, 1449. [Google Scholar] [CrossRef]
- Latyshev, Y.I.; Monceau, P.; Brazovskii, S.; Orlov, A.P.; Fournier, T. Subgap Collective Tunneling and its Staircase Structure in Charge Density Waves. Phys. Rev. Lett. 2006, 96, 116402. [Google Scholar] [CrossRef] [PubMed]
- Brazovskii, S.; Brun, C.; Wang, Z.-Z.; Monceau, P. Scanning Tunneling Microscope Imaging of Single-Electron Solitons in a Material with Incommensurate Charge Density Waves. Phys. Rev. Lett. 2012, 108, 096801. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.H.; Yeom, H.W. Topological Solitons versus Nonsolitonic Phase Defects in a Quasi-One-Dimensional Charge-Density Wave. Phys. Rev. Lett. 2012, 109, 246802. [Google Scholar] [CrossRef] [PubMed]
- Kirova, N.; Brazovskii, S. Simulations of Dynamical Electronic Vortices in Charge and Spin Density Waves. Symmetry 2023, 15, 915. [Google Scholar] [CrossRef]
- Brazovskii, S. New Routes to Solitons in Quasi One-Dimensional Conductors. Solid State Sci. 2008, 10, 1786–1789. [Google Scholar] [CrossRef]
- Brazovskii, S. Microscopic Solitons in Correlated Electronic Systems: Theory versus Experiment. In Advances in Theoretical Physics: Landau Memorial Conference; AIP Conference Proceedings; American Institute of Physics: College Park, MD, USA, 2009; Volume 1134, pp. 74–82. [Google Scholar]
- Sunami, K.; Takehara, R.; Miyagawa, K.; Okamoto, H.; Kanoda, K. Topological Excitations in Neutral–Ionic Transition Systems. Symmetry 2022, 14, 925. [Google Scholar] [CrossRef]
- Heeger, A.J.; Kivelson, S.; Schrieffer, R.; Su, W.-P. Solitons in Conducting Polymers. Rev. Mod. Phys. 1998, 60, 781–858. [Google Scholar] [CrossRef]
- Brazovskii, S. Ferroelectricity and Charge Ordering in Quasi One-Dimensional Organic Conductors. In Physics of Organic Superconductors and Conductors; Lebed, A.G., Ed.; Springer Series in Materials Sciences, 110; Springer: New York, NY, USA, 2008; pp. 313–356. [Google Scholar]
- Korovyanko, O.J.; Gontia, I.I.; Vardeny, Z.V.; Masuda, T.; Yoshino, K. Ultrafast Dynamics of Excitons and Solitons in Disubstituted Polyacetylene. Phys. Rev. B 2003, 67, 035114. [Google Scholar] [CrossRef]
- Kagawa, F.; Horiuchi, S.; Matsui, H.; Kumai, R.; Onose, Y.; Hasegawa, T.; Tokura, Y. Electric-Field Control of Solitons in a Ferroelectric Organic Charge-Transfer Salt. Phys. Rev. Lett. 2010, 104, 227602. [Google Scholar] [CrossRef] [PubMed]
- Seidel, J. Scanning Probe Microscopy Investigation of Topological Defects. Symmetry 2022, 14, 1098. [Google Scholar] [CrossRef]
- Karpov, P.; Brazovskii, S. Pattern Formation and Aggregation in Ensembles of Solitons in Quasi One-Dimensional Electronic Systems. Symmetry 2022, 14, 972. [Google Scholar] [CrossRef]
- Vigliotti, L.; Cavaliere, F.; Carrega, M.; Ziani, N.T. Assessing Bound States in a One-Dimensional Topological Superconductor: Majorana versus Tamm. Symmetry 2021, 13, 1100. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brazovskii, S.; Kirova, N. Topological Objects in Ordered Electronic Systems. Symmetry 2025, 17, 1174. https://doi.org/10.3390/sym17081174
Brazovskii S, Kirova N. Topological Objects in Ordered Electronic Systems. Symmetry. 2025; 17(8):1174. https://doi.org/10.3390/sym17081174
Chicago/Turabian StyleBrazovskii, Serguei, and Natasha Kirova. 2025. "Topological Objects in Ordered Electronic Systems" Symmetry 17, no. 8: 1174. https://doi.org/10.3390/sym17081174
APA StyleBrazovskii, S., & Kirova, N. (2025). Topological Objects in Ordered Electronic Systems. Symmetry, 17(8), 1174. https://doi.org/10.3390/sym17081174