# Cubic–Quartic Optical Soliton Perturbation with Differential Group Delay for the Lakshmanan–Porsezian–Daniel Model by Lie Symmetry

^{1}

^{2}

^{3}

^{4}

^{5}

^{6}

^{7}

^{8}

^{9}

^{*}

## Abstract

**:**

## 1. Introduction

#### Governıng Model

## 2. Lie Symmetry Analysis

#### 2.1. Symmetry Reduction and Closed-Form Solutions

#### 2.1.1. The Generalized Kudryashov’s Method

**Set–I**:

**Set–II**:

#### 2.1.2. Improved F-Expansion Approach

**Family–1**: $\left({z}_{2}={z}_{3}=0\right)$

**Set–I**:

**Set–II**:

**Family–2**: $\left({z}_{3}=0\right)$

**Set–I**:

**Set–II**:

**Set–III**:

**Set–IV**:

**Family–3**:$\left({z}_{1}={z}_{2}={z}_{3}=0\right)$

**Set–I**:

**Family–4:**$\left({z}_{0}={z}_{3}=0\right)$

**Set–I**:

## 3. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Ekici, M. Optical solitons in birefringent fibers for Lakshmanan–Porsezian–Daniel model by extended Jacobi’s elliptic function expansion scheme. Optik
**2018**, 172, 651–656. [Google Scholar] [CrossRef] - Kudryashov, N.A. The Lakshmanan–Porsezian–Daniel model with arbitrary refractive index and its solution. Optik
**2021**, 241, 167043. [Google Scholar] [CrossRef] - Serkin, V.N.; Belyaeva, T.L. Optimal control for soliton breathers of the Lakshmanan–Porsezian–Daniel, Hirota, and cmKdV models. Optik
**2018**, 175, 17–27. [Google Scholar] [CrossRef] - Xin, H. Optical envelope patterns in nonlinear media modeled by the Lakshmanan–Porsezian–Daniel equation. Optik
**2021**, 227, 165839. [Google Scholar] [CrossRef] - Kumar, S.; Biswas, A.; Zhou, Q.; Yildirim, Y.; Alshehri, H.M.; Belic, M.R. Straddled optical solitons for cubic–quartic Lakshmanan–Porsezian–Daniel model by Lie symmetry. Phys. Lett. A
**2021**, 417, 127706. [Google Scholar] [CrossRef] - Vega–Guzman, J.; Biswas, A.; Kara, A.H.; Mahmood, M.F.; Ekici, M.; Alshehri, H.M.; Belic, M.R. Cubic–quartic optical soliton perturbation and conservation laws with Lakshmanan–Porsezian–Daniel model: Undetermined coefficients. J. Nonlinear Opt. Phys. Mater.
**2021**, 30, 2150007. [Google Scholar] [CrossRef] - Yildirim, Y.; Topkara, E.; Biswas, A.; Triki, H.; Ekici, M.; Guggilla, P.; Khan, S.; Belic, M.R. Cubic–quartic optical soliton perturbation with Lakshmanan–Porsezian–Daniel model by sine–Gordon equation approach. J. Opt.
**2021**, 50, 322–329. [Google Scholar] [CrossRef] - Bulut, H.; Pandir, Y.; Demiray, S.T. Exact solutions of nonlinear Schrödinger’s equation with dual power–law nonlinearity by extended trial equation method. Waves Random Complex Media
**2014**, 24, 439–451. [Google Scholar] [CrossRef] [Green Version] - Dan, J.; Sain, S.; Ghose-Choudhury, A.; Garai, S. Solitary wave solutions of nonlinear PDEs using Kudryashov’s R function method. J. Mod. Opt.
**2020**, 67, 1499–1507. [Google Scholar] [CrossRef] - Guo, Q.; Liu, J. New exact solutions to the nonlinear Schrödinger equation with variable coefficients. Results Phys.
**2020**, 16, 102857. [Google Scholar] [CrossRef] - Islam, M.S.; Khan, K.; Arnous, A.H. Generalized Kudryashov method for solving some (3+1)–dimensional nonlinear evolution equations. New Trend Math. Sci.
**2015**, 3, 46–57. [Google Scholar] - Kudryashov, N.A. First integrals and general solution of the traveling wave reduction for Schrödinger equation with anti–cubic nonlinearity. Optik
**2019**, 185, 665–671. [Google Scholar] [CrossRef] - Wazwaz, A.M.; El–Tantawy, S.A. Optical Gaussons for nonlinear logarithmic Schrödinger equations via the variational iteration method. Optik
**2019**, 180, 414–418. [Google Scholar] [CrossRef] - Bluman, G.; Stephen, A. Symmetry and Integration Methods for Differential Equations; Springer: New York, NY, USA, 2008. [Google Scholar]
- Olver, P.J. Applications of Lie Groups to Differential Equations; Springer: New York, NY, USA, 2000. [Google Scholar]
- Son, N.K.; Thieu, N.N.; Yen, N.D. On the solution existence for prox-regular perturbed sweeping processes. J. Nonlinear Var. Anal.
**2021**, 5, 851–863. [Google Scholar] - Halik, A. Dynamics in a two species Lotka-Volterra cooperative system with the Crowley-Martin functional response. J. Nonlinear Funct. Anal.
**2021**, 2021, 36. [Google Scholar]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Kumar, S.; Biswas, A.; Yıldırım, Y.; Moraru, L.; Moldovanu, S.; Alshehri, H.M.; Maturi, D.A.; Al-Bogami, D.H.
Cubic–Quartic Optical Soliton Perturbation with Differential Group Delay for the Lakshmanan–Porsezian–Daniel Model by Lie Symmetry. *Symmetry* **2022**, *14*, 224.
https://doi.org/10.3390/sym14020224

**AMA Style**

Kumar S, Biswas A, Yıldırım Y, Moraru L, Moldovanu S, Alshehri HM, Maturi DA, Al-Bogami DH.
Cubic–Quartic Optical Soliton Perturbation with Differential Group Delay for the Lakshmanan–Porsezian–Daniel Model by Lie Symmetry. *Symmetry*. 2022; 14(2):224.
https://doi.org/10.3390/sym14020224

**Chicago/Turabian Style**

Kumar, Sachin, Anjan Biswas, Yakup Yıldırım, Luminita Moraru, Simona Moldovanu, Hashim M. Alshehri, Dalal Adnan Maturi, and Dalal H. Al-Bogami.
2022. "Cubic–Quartic Optical Soliton Perturbation with Differential Group Delay for the Lakshmanan–Porsezian–Daniel Model by Lie Symmetry" *Symmetry* 14, no. 2: 224.
https://doi.org/10.3390/sym14020224