# A Three-Function Variational Principle for Stationary Nonbarotropic Magnetohydrodynamics

^{1}

^{2}

^{3}

## Abstract

**:**

## 1. Introduction

## 2. Standard Formulation of Nonbarotropic Magnetohydrodynamics

## 3. Variational Principle of Nonbarotropic MHD

## 4. Euler’s Equations

## 5. Simplified Action

## 6. Stationary Nonbarotropic MHD

## 7. Load and Metage

## 8. A Simpler Variational Principle of Stationary Nonbarotropic Magnetohydrodynamics

## 9. A Three-Function Variational Principle for Stationary MHD

## 10. An Application: Helical Stratified Magnetic Field

#### 10.1. The Magnetic Field and Related Labels

#### 10.2. The Velocity Field

## 11. The Three-Function Action Principle for a Static Configuration

## 12. Transport Phenomena

## 13. Conclusions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Sturrock, P.A. Plasma Physics; Cambridge University Press: Cambridge, MA, USA, 1994. [Google Scholar]
- Vladimirov, V.A.; Moffatt, H.K. On general transformations and variational principles for the magnetohydrodynamics of ideal fluids. Part 1. Fundamental principles. J. Fluid. Mech.
**1995**, 283, 125–139. [Google Scholar] [CrossRef] - Kats, A.V. Los Alamos Archives physics-0212023 (2002). JETP Lett.
**2003**, 77, 657. [Google Scholar] [CrossRef] - Kats, A.V.; Kontorovich, V.M. Hamiltonian description of the motion of discontinuity surfaces. Low Temp. Phys.
**1997**, 23, 89. [Google Scholar] [CrossRef] - Kats, A.V. Variational principle and canonical variables in hydrodynamics with discontinuities. Phys. D Nonlinear Phenom.
**2001**, 459, 152–153. [Google Scholar] [CrossRef] - Sakurai, T. A New Approach to the Force-Free Field and Its Application to the Magnetic Field of Solar Active Regions. Publ. Astron. Soc. Jpn.
**1979**, 31, 209–230. [Google Scholar] - Yang, W.H.; Sturrock, P.A.; Antiochos, S. Force-free magnetic fields—The magneto-frictional method. Astrophys. J.
**1986**, 309, 383–391. [Google Scholar] [CrossRef] - Yahalom, A.; Lynden-Bell, D. Simplified Variational Principles for Barotropic Magnetohydrodynamics. J. Fluid. Mech.
**2008**, 607, 235–265. [Google Scholar] [CrossRef] [Green Version] - Frenkel, A.; Levich, E.; Stilman, L. Hamiltonian description of ideal MHD revealing new invariants of motion. Phys. Lett. A
**1982**, 88, 461–465. [Google Scholar] [CrossRef] - Zakharov, V.E.; Kuznetsov, E.A. Hamiltonian formalism for nonlinear waves. Phys.-Uspekhi
**1997**, 40, 1087. [Google Scholar] [CrossRef] - Yahalom, A. A Four Function Variational Principle for Barotropic Magnetohydrodynamics. EPL Europhys. Lett.
**2010**, 89, 34005. [Google Scholar] [CrossRef] - Yahalom, A. Aharonov–Bohm Effects in Magnetohydrodynamics. Phys. Lett. A
**2013**, 377, 1898–1904. [Google Scholar] [CrossRef] - Bekenstein, J.D.; Oron, A. Conservation of circulation in magnetohydrodynamics. Phys. Rev. E
**2000**, 62, 5594–5602. [Google Scholar] [CrossRef] [Green Version] - Kats, A.V. Canonical description of ideal magnetohydrodynamic flows and integrals of motion. Phys. Rev E
**2004**, 69, 046303. [Google Scholar] [CrossRef] [Green Version] - Yahalom, A. Simplified variational principles for nonbarotropic magnetohydrodynamics. J. Plasma Phys.
**2016**, 82, 905820204. [Google Scholar] [CrossRef] [Green Version] - Yahalom, A. Non-Barotropic Magnetohydrodynamics as a Five Function Field Theory. Int. J. Geom. Methods Mod. Phys.
**2016**, 13, 1650130. [Google Scholar] [CrossRef] - Morrison, P.J. Poisson Brackets for Fluids and Plasmas. AIP Conf. Proc.
**1982**, 88, 13–46. [Google Scholar] - Yahalom, A. Simplified Variational Principles for Stationary non-Barotropic Magnetohydrodynamics. Int. J. Mech.
**2016**, 10, 336–341. [Google Scholar] - Yahalom, A. A Simpler Variational Principle for Stationary non-Barotropic Ideal Magnetohydrodynamics. Chaotic Model. Simul.
**2018**, 1, 19–33. [Google Scholar] - Vladimirov, V.A.; Moffatt, H.K.; Ilin, K.I. On general transformations and variational principles for the magnetohydrodynamics of ideal fluids. Part 4. Generalized isovorticity principle for three-dimensional flows. J. Fluid Mech.
**1999**, 390, 127–150. [Google Scholar] [CrossRef] - Almaguer, J.A.; Hameiri, E.; Herrera, J.; Holm, D.D. Lyapunov stability analysis of magnetohydrodynamic plasma equilibria with axisymmetric toroidal flow. Phys. Fluids
**1988**, 31, 1930–1939. [Google Scholar] [CrossRef] - Yahalom, A. Method and System for Numerical Simulation of Fluid Flow. U.S. Patent 6,516,292, 4 February 2003. [Google Scholar]
- Yahalom, A.; Pinhasi, G. Simulating Fluid Dynamics Using a Variational Principle. In Proceedings of the 41st Aerospace Sciences Meeting and Exhibit (AIAA), Reno, NV, USA, 6–9 January 2003. [Google Scholar]
- Ophir, D.; Yahalom, A.; Pinhasi, G.; Kopylenko, M. A Combined Variational and Multi-Grid Approach for Fluid Dynamics Simulation. In Proceedings of the 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 9–12 January 2006. [Google Scholar]
- Yahalom, A. Using fluid variational variables to obtain new analytic solutions of self-gravitating flows with nonzero helicity. Procedia IUTAM
**2013**, 7, 223–232. [Google Scholar] [CrossRef] [Green Version] - Bateman, H. On Dissipative Systems and Related Variational Principles. Phys. Rev.
**1931**, 38, 815–819. [Google Scholar] [CrossRef] - Binney, J.; Tremaine, S. Galactic Dynamics; Princeton University Press: Princeton, NJ, USA, 1987. [Google Scholar]
- Yahalom, A.; Pinhasi, G.; Kopylenko, M. A Numerical Model Based on Variational Principle for Airfoil and Wing Aerodynamics. In Proceedings of the 43rd AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 10–13 January 2005. [Google Scholar]
- Clebsch, A. Uber eine allgemeine Transformation der hydrodynamischen Gleichungen. J. Reine Angew. Math.
**1857**, 54, 293–312. [Google Scholar] - Clebsch, A. Uber die Integration der hydrodynamischen Gleichungen. J. Reine Angew. Math.
**1859**, 56, 1–10. [Google Scholar] - Lynden-Bell, D.; Katz, J. Isocirculational flows and their Lagrangian and energy principles. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci.
**1981**, 378, 179–205. [Google Scholar] - Yahalom, A.; Qin, H. Noether Currents for Eulerian Variational Principles in Non-Barotropic Magnetohydrodynamics and Topological Conservations Laws. J. Fluid Mech.
**2021**, 908, A4. [Google Scholar] [CrossRef] - Mignone, A.; Rossi, P.; Bodo, G.; Ferrari, A.; Massaglia, S. High-resolution 3D relativistic MHD simulations of jets. Mon. Not. R. Astron. Soc.
**2010**, 402, 7–12. [Google Scholar] [CrossRef] - Miyoshi, T.; Kusano, K. A multi-state HLL approximate Riemann solver for ideal magnetohydrodynamics. J. Comput. Phys.
**2005**, 208, 315–344. [Google Scholar] [CrossRef] - Igumenshchev, I.V.; Narayan, R.; Abramowicz, M.A. Three-dimensional Magnetohydrodynamic Simulations of Radiatively Inefficient Accretion Flows. Astrophys. J.
**2003**, 592, 1042–1059. [Google Scholar] [CrossRef] - Faber, J.; Baumgarte, T.; Shapiro, S.L.; Taniguchi, K. General Relativistic Binary Merger Simulations and Short Gamma-Ray Bursts. Astrophys. J.
**2006**, 641, L93–L96. [Google Scholar] [CrossRef] [Green Version] - Hoyos, J.; Reisenegger, A.; Valdivia, J.A. Multi-Fluid Simulation of the Magnetic Field Evolution in Neutron Stars. AIP Conf. Proc.
**2008**, 983, 404–408. [Google Scholar] - Bernstein, I.B.; Frieman, E.A.; Kruskal, M.D.; Kulsrud, R.M. An energy principle for hydromagnetic stability problems. Proc. R. Soc. London. Ser. A Math. Phys. Sci.
**1958**, 244, 17–40. [Google Scholar] - Arnold, V.I. A variational principle for three-dimensional steady flows of an ideal fluid. Appl. Math. Mech.
**1965**, 29, 154–163. [Google Scholar] - Arnold, V.I. Conditions for nonlinear stability of stationary plane curvilinear flows of an ideal fluid. Dokl. Acad. Nauk SSSR
**1965**, 162, 975. [Google Scholar] - Katz, J.; Inagaki, S.; Yahalom, A. Energy Principles for Self-Gravitating Barotropic Flows: I. General Theory. Publ. Astron. Soc. Jpn.
**1993**, 45, 421–430. [Google Scholar] - Yahalom, A.; Katz, J.; Inagaki, K. Energy principles for self-gravitating barotropic flows—II. The stability of Maclaurin discs. Mon. Not. R. Astron. Soc.
**1994**, 268, 506–516. [Google Scholar] [CrossRef] [Green Version] - Yahalom, A. Stability in the weak variational principle of barotropic flows and implications for self-gravitating discs. Mon. Not. R. Astron. Soc.
**2011**, 418, 40–426. [Google Scholar] [CrossRef] [Green Version] - Yahalom, A. A New Diffeomorphism Symmetry Group of Magnetohydrodynamics. In Lie Theory and Its Applications in Physics; Dobrev, V., Ed.; Springer: Tokyo, Japan, 2013; Volume 36, pp. 461–468. [Google Scholar]
- Yahalom, A. Helicity conservation via the Noether theorem. J. Math. Phys.
**1995**, 36, 1324–1327. [Google Scholar] [CrossRef] [Green Version] - Yahalom, A. A Conserved Local Cross Helicity for Non-Barotropic MHD. J. Geophys. Astrophys. Fluid Dyn.
**2017**, 111, 131–137. [Google Scholar] [CrossRef] [Green Version] - Yahalom, A. Non-Barotropic Cross-helicity Conservation Applications in Magnetohydrodynamics and the Aharanov–Bohm effect. Fluid Dyn. Res.
**2017**, 50, 011406. [Google Scholar] [CrossRef] [Green Version]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Yahalom, A.
A Three-Function Variational Principle for Stationary Nonbarotropic Magnetohydrodynamics. *Symmetry* **2021**, *13*, 1632.
https://doi.org/10.3390/sym13091632

**AMA Style**

Yahalom A.
A Three-Function Variational Principle for Stationary Nonbarotropic Magnetohydrodynamics. *Symmetry*. 2021; 13(9):1632.
https://doi.org/10.3390/sym13091632

**Chicago/Turabian Style**

Yahalom, Asher.
2021. "A Three-Function Variational Principle for Stationary Nonbarotropic Magnetohydrodynamics" *Symmetry* 13, no. 9: 1632.
https://doi.org/10.3390/sym13091632