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Abstract: The current paper is devoted to the introduction of simpler Eulerian variational principles
from which all the relevant equations of nonbarotropic stationary magnetohydrodynamics can be
derived for magnetic fields that lie on surfaces. A variational principle is given in terms of three
independent variables for stationary nonbarotropic magnetohydrodynamic flows. This is a smaller
number of variables than the eight variables that appear in the standard equations of nonbarotropic
magnetohydrodynamics, which are the magnetic field, the velocity field, the specific entropy, and the
density. We further investigate the case in which the flow along magnetic lines is not ideal.
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1. Introduction

Variational principles for magnetohydrodynamics (MHD) were introduced previously
in both Lagrangian and Eulerian approaches. Sturrock [1] studied in his book a Lagrangian
variational formalism for MHD. Vladimirov and Moffatt [2] in a list of works studied
a Eulerian variational approach for incompressible MHD. However, their variational
approach contained three more variables in addition to the seven functions that appear in
the standard equations of incompressible MHD, which are the magnetic field ~B, velocity
field ~v, and pressure P. Kats [3] extended Moffatt’s work to compressible nonbarotropic
flows, but without minimizing the number of variables and thus the computational load.
Moreover, Kats demonstrated that the functions he suggested can be used to describe
the motion of discontinuity surfaces [4,5]. Sakurai [6] suggested a two-function Eulerian
variational principle for force-free magnetohydrodynamics and used it as a basis of a
numerical scheme; his method was discussed in [1]. A method of analyzing the equations
for those two variables was suggested in [7]. Yahalom and Lynden-Bell [8] combined the
work of Sturrock [1] with the work of Sakurai [6] to obtain a Eulerian variational principle
for barotropic MHD, which depends on only six variables. The variational derivative of the
suggested action produced all the equations needed to describe barotropic MHD without
additional constraints. The equations obtained were similar to the ones of Frenkel, Levich,
and Stilman [9] (and also those of [10]).Yahalom [11] showed that for barotropic MHD, four
functions suffice. Moreover, it was demonstrated that the discontinuities of some of those
variables [12] are topological local conserved quantities.

Previous work has been concerned with barotropic MHD in which the pressure and
internal energy depend only on the density and not on the specific entropy and temperature.
Variational principles of nonbarotropic MHD in which the internal energy and pressure are
entropy dependent and thus temperature dependent effects can be described can be found
in the work of Bekenstein and Oron [13] in terms of 15 functions and A. V. Kats [3] in terms
of 20 functions. We mention also the cases of incompressible flows in which density does
not change in time or space and isochoric flows in which the volume of a system remains
constant, which are incompressible if the specific volume in the flow is also constant;
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however, those cases are beyond the scope of the current work. A. V. Kats in an outstanding
paper [14] (Section IV, E) demonstrated that there is a large symmetry group (which may be
considered a type of gauge freedom) associated with the choice of variables, and it follows
that the number of functions can be reduced.Yahalom [15,16] showed that five variables
suffice to describe nonbarotropic MHD for the case in which we require a Sakurai [6]
form for the magnetic field. Morrison [17] introduced a Hamiltonian formalism, but this
also depends on eight canonical variables (see Table 2 in [17]).The paper of Yahalom [15]
was concerned with general MHD nonstationary flows. A subsequent paper [18] was
concerned with stationary flows and introduced and eight-variable stationary variational
principle; here, we shall attempt to improve on this and obtain a three-variable stationary
variational principle for nonbarotropic MHD. This will be done for a general case in which
the magnetic field lines need not lie on entropy surfaces; for the restricted case in which
the magnetic field lines lie on entropy surfaces, see [19].

Applications of this paper may arise for both linear and nonlinear stability analysis
of stationary nonbarotropic MHD flows [20,21] and for designing numerical algorithms
for integrating the equations of MHD [22–24]. Another possible application is connected
to obtaining new analytic solutions in terms of the variational functions [25], as will be
described below.

The plan of this work is as follows: We introduce the standard notations and equations
of nonbarotropic magnetohydrodynamics for the stationary and nonstationary cases. Then,
we introduce the notions of load and metage. The variational principles follow.

2. Standard Formulation of Nonbarotropic Magnetohydrodynamics

The standard set of equations solved for nonbarotropic magnetohydrodynamics are
given below:

∂~B
∂t

= ~∇× (~v× ~B), (1)

~∇ · ~B = 0, (2)

∂ρ

∂t
+ ~∇ · (ρ~v) = 0, (3)

ρ
d~v
dt

= ρ(
∂~v
∂t

+ (~v · ~∇)~v) = −~∇p(ρ, s) +
(~∇× ~B)× ~B

4π
. (4)

ds
dt

= 0. (5)

Here ∂
∂t is the partial temporal derivative, d

dt is the material derivative, and ~∇ is the
standard nabla operator of vector calculus. ~B is the magnetic field. ~v is the velocity field. ρ
is the fluid mass density. s is the specific entropy (entropy per unit mass). Finally, p(ρ, s) is
the pressure, which depends on both the density and entropy (and not just the density)
through the thermodynamic equation of state (the nonbarotropic case).

The justification for these equations can be found in standard books on MHD [1]. The
above is valid for a collision-dominated plasma in local thermodynamic equilibrium. Such
conditions are not always fulfilled by real physical plasmas, certainly not in astrophysics
or in fusion-relevant magnetic confinement studies. Yet, it is thought that the fastest
macroscopic instabilities obey the above equations [12], while instabilities associated with
viscous or finite conductivity terms take longer. According to a theorem by Bateman [26],
every system can be described by a variational principle (including viscous plasma); the
challenge is to discover a compact action functional that depends on a small amount of
variational functions. This paper discusses only ideal MHD, while viscous MHD will be
left for future endeavors.

Equation (1) describes magnetic field lines that are moving with the fluid (“frozen”
lines). Equation (2) dictates a solenoidal field. Equation (3) dictates mass conserva-
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tion. Equation (4) is the Euler equation for which pressure and the Lorentz forces apply.
The term:

~J =
~∇× ~B

4π
, (6)

is the electric current density. Equation (5) is due to the lack of heat generation (null
viscosity and null resistivity) in ideal nonbarotropic MHD and a lack of heat conduction;
thus, the only remaining thermal process is heat convection. One needs to solve for eight
variables (~v,~B, ρ, s) eight equations (Equations (1) and (3)–(5)). Equation (2) is an initial
condition on the ~B field and is satisfied automatically later due to Equation (1). For the
stationary case, we obtain:

~∇× (~v× ~B) = 0, (7)

~∇ · ~B = 0, (8)

~∇ · (ρ~v) = 0, (9)

ρ(~v · ~∇)~v = −~∇p(ρ, s) +
(~∇× ~B)× ~B

4π
. (10)

~v · ~∇s = 0. (11)

3. Variational Principle of Nonbarotropic MHD

Here, we generalize the analysis of [8] for the nonbarotropic case. Let the action be:

A ≡
∫
Ld3xdt,

L ≡ L1 + L2,

L1 ≡ ρ(
1
2
~v2 − ε(ρ, s)) +

~B2

8π
,

L2 ≡ ν[
∂ρ

∂t
+ ~∇ · (ρ~v)]− ρα

dχ

dt
− ρβ

dη

dt
− ρσ

ds
dt

−
~B

4π
· ~∇χ× ~∇η. (12)

ε is the internal energy per mass. We recall the thermodynamic identities:

dε = Tds− Pd
1
ρ
= Tds +

P
ρ2 dρ

∂ε

∂s
= T,

∂ε

∂ρ
=

P
ρ2

w = ε +
P
ρ
= ε +

∂ε

∂ρ
ρ =

∂(ρε)

∂ρ

dw = dε + d(
P
ρ
) = Tds +

1
ρ

dP (13)

In the above, T is the temperature and w is the specific enthalpy. ε is the specific
internal energy. T is the temperature. w is the specific enthalpy. A special case of the
equation of state is the polytropic equation of state [27]:

p = Kργ (14)

K and γ may depend on the specific entropy s. Hence:

∂ε

∂ρ
= Kργ−2 ⇒ ε =

K
γ− 1

ργ−1 =
p

ρ(γ− 1)
⇒ ρε =

p
γ− 1

(15)
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the last identity is up to a function dependent on s. Obviously, ν, α, β, σ are Lagrange
multipliers, which are inserted in such a way that the variational principle yields the
following equations:

∂ρ

∂t
+ ~∇ · (ρ~v) = 0,

ρ
dχ

dt
= 0,

ρ
dη

dt
= 0.

ρ
ds
dt

= 0. (16)

ν, α, β, σ may be multiple-valued. If ρ does not vanish, these are just the continuity
Equation (3), entropy conservation, and a declaration that Sakurai’s functions are moving
with the flow. Varying with respect to ~B, we obtain:

~B = ~̂B ≡ ~∇χ× ~∇η. (17)

Hence, ~B is given in Sakurai’s form and thus respects Equation (2). It can be shown that
if ~B is in Sakurai’s form and Equation (16) is fulfilled, then it follows that also Equation (1)
is respected.

We showed that the entire set of equations of nonbarotropic MHD is obtained from
the above action except Euler’s equations. We now take care of that. Let us vary the above
action with respect to ~v:

δ~v A =
∫

dt{
∫

d3xdtρδ~v · [~v− ~∇ν− α~∇χ− β~∇η − σ~∇s]

+
∮

d~S · δ~vρν +
∫

d~Σ · δ~vρ[ν]}. (18)

∮
d~S · δ~vρν is zero in generic cases. For astrophysical scenarios, ρ = 0 on the boundary of

the flow domain; in the case of a fluid contained in some pipe, the conditions δ~v · n̂ = 0 are
imposed (n̂ denotes the unit vector normal to the boundary).

∫
d~Σ on the cut of ν is zero

if ν is single-valued and [ν] = 0, which is the case for generic topologies. For ν, which is
multiple-valued, only a Kutta velocity variation [28] that is parallel to the cut will remove
the cut integral. An arbitrary velocity variation on the cut dictates ρ = 0 on said surface,
which contradicts the notion that a cut is arbitrary, as is the zero line of the azimuth. Later,
we demonstrate that the “cut” is comoving; thus, it may become quite involved. This
difficult reality may be more convenient to handle in symmetrical cases.

If the surface integrals vanish and also we have δ~v A = 0 for an arbitrary velocity
variation, we find that:

~v = ~̂v ≡ ~∇ν + α~∇χ + β~∇η + σ~∇s. (19)

This resembles the Clebsch form in nonmagnetic fluids [29,30]. Taking the variation
with respect to ρ, we have:

δρ A =
∫

d3xdtδρ[
1
2
~v2 − w− ∂ν

∂t
−~v · ~∇ν]

+
∫

dt
∮

d~S ·~vδρν +
∫

dt
∫

d~Σ ·~vδρ[ν]

+
∫

d3xνδρ|t1
t0

. (20)

w = ∂(ερ)
∂ρ is the enthalpy per mass. Provided

∮
d~S ·~vδρν vanishes on the boundary and∫

d~Σ ·~vδρ[ν] vanishes on the cut of ν for ν, which is multiple-valued (thus, either a Kutta-
type condition for the velocity in contradiction with the “cut” being an arbitrary surface or
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a vanishing density variation on the same) and in the beginning and the end, the following
equation results:

dν

dt
=

1
2
~v2 − w, (21)

Since the right-hand side of the equation is single-valued as it is composed of physical
variables that are not potentials, we obtain:

d[ν]
dt

= 0. (22)

Thus, the cut is comoving with the flow and may become complicated. This situation
may be less restrictive when the flow is symmetrical.

Finally, we vary with respect to both χ and η, leading to the following expressions:

δχ A=
∫

d3xdtδχ[
∂(ρα)

∂t
+ ~∇ · (ρα~v)− ~∇η ·~J]

+
∫

dt
∮

d~S · [
~B

4π
× ~∇η −~vρα]δχ

+
∫

dt
∫

d~Σ · [
~B

4π
× ~∇η −~vρα][δχ]

−
∫

d3xραδχ|t1
t0

, (23)

δη A=
∫

d3xdtδη[
∂(ρβ)

∂t
+ ~∇ · (ρβ~v) + ~∇χ ·~J]

+
∫

dt
∮

d~S · [~∇χ×
~B

4π
−~vρβ]δη

+
∫

dt
∫

d~Σ · [~∇χ×
~B

4π
−~vρβ][δη]

−
∫

d3xρβδη|t1
t0

. (24)

If the temporal and boundary conditions are satisfied with respect to the variations
δχ and δη on the domain boundary and on the cuts for the case that some (or all) of the
relevant variables are multiple-valued, we obtain the following equations:

dα

dt
=

~∇η ·~J
ρ

,
dβ

dt
= −

~∇χ ·~J
ρ

, (25)

in which Equation (3) is used. By suitable temporal conditions, we require that δη and
δχ vanish at the initial and final times. Cases making the boundary term null include
a boundary located at infinity in which both ~B and ρ are null or a boundary that is
impermeable and perfectly conducting. For the integral over the “cuts” to become null, one
can use δη and δχ, which are single-valued. It is shown that χ can always be single-valued;
hence, taking δχ to be single-valued is not a restriction. In some topologies, η is multiple-
valued, and for those cases, a single-valued δη suffices to make the cut term vanish.

Finally, we take a variation of the action with respect to s:

δs A =
∫

d3xdtδs[
∂(ρσ)

∂t
+ ~∇ · (ρσ~v)− ρT]

+
∫

dt
∮

d~S · ρσ~vδs−
∫

d3xρσδs|t1
t0

, (26)
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in which the temperature is T = ∂ε
∂s . We notice that according to Equation (19), σ is single-

valued, and hence, no cuts are needed. Taking into account the continuity Equation (3) we
obtain for locations in which the density ρ is not null, the result:

dσ

dt
= T, (27)

provided that δs A vanishes for an arbitrary δs.

4. Euler’s Equations

We shall now show that a velocity field given by Equation (19), such that the equations
for α, β, χ, η, ν, σ, s satisfy the corresponding Equations (16), (21), (25), and (27) must satisfy
Euler’s equations. Let us calculate the material derivative of ~v:

d~v
dt

=
d~∇ν

dt
+

dα

dt
~∇χ + α

d~∇χ

dt
+

dβ

dt
~∇η + β

d~∇η

dt

+
dσ

dt
~∇s + σ

d~∇s
dt

. (28)

It can be easily shown that:

d~∇ν

dt
= ~∇dν

dt
− ~∇vk

∂ν

∂xk
= ~∇(1

2
~v2 − w)− ~∇vk

∂ν

∂xk
,

d~∇η

dt
= ~∇dη

dt
− ~∇vk

∂η

∂xk
= −~∇vk

∂η

∂xk
,

d~∇χ

dt
= ~∇dχ

dt
− ~∇vk

∂χ

∂xk
= −~∇vk

∂χ

∂xk
,

d~∇s
dt

= ~∇ds
dt
− ~∇vk

∂s
∂xk

= −~∇vk
∂s

∂xk
. (29)

xk is a Cartesian coordinate, and a summation convention is assumed. Inserting the
result from Equations (16) and (29) into Equation (28) yields:

d~v
dt

= −~∇vk(
∂ν

∂xk
+ α

∂χ

∂xk
+ β

∂η

∂xk
+ σ

∂s
∂xk

)

+ ~∇(1
2
~v2 − w) + T~∇s

+
1
ρ
((~∇η ·~J)~∇χ− (~∇χ ·~J)~∇η)

= −~∇vkvk + ~∇(1
2
~v2 − w) + T~∇s

+
1
ρ
~J × (~∇χ× ~∇η)

= −
~∇p
ρ

+
1
ρ
~J × ~B. (30)

Equations (17) and (19) are used. This shows that the nonbarotropic MHD Euler
equations can be obtained from the action of Equation (12), and thus, all the equations
of nonbarotropic MHD can be derived from the action for arbitrary volume variations
restricted only on the relevant boundaries and cuts. Boundary variations serve to obtain
boundary and initial conditions for the equations.

5. Simplified Action

It might be argued that the above claims are misleading. A simplified action for
nonbarotropic MHD is presented, and instead, six more functions α, β, χ, η, ν, σ are added
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to ~B,~v, ρ, s. The action described in Equation (12) in a pedagogical form can be simplified.
It is clear that the Lagrangian density of Equation (12) can be written as:

L = −ρ[
∂ν

∂t
+ α

∂χ

∂t
+ β

∂η

∂t
+ σ

∂s
∂t

+ ε(ρ, s)]

+
1
2

ρ[(~v− ~̂v)2 − (~̂v)2]

+
1

8π
[(~B− ~̂B)2 − (~̂B)2] +

∂(νρ)

∂t
+ ~∇ · (νρ~v). (31)

~̂v is a shorthand notation for ~∇ν + α~∇χ + β~∇η + σ~∇s (see Equation (19)), and ~̂B is a
shorthand notation for ~∇χ× ~∇η (see Equation (17)). Thus, L has four contributions:

L = L̂+ L~v + L~B + Lboundary,

L̂ ≡ −ρ

[
∂ν

∂t
+ α

∂χ

∂t
+ β

∂η

∂t
+ σ

∂s
∂t

+ ε(ρ, s) +
1
2
(~∇ν + α~∇χ + β~∇η + σ~∇s)2

]
− 1

8π
(~∇χ× ~∇η)2

L~v ≡ 1
2

ρ(~v− ~̂v)2,

L~B ≡ 1
8π

(~B− ~̂B)2,

Lboundary ≡ ∂(νρ)

∂t
+ ~∇ · (νρ~v). (32)

The only term containing ~v is (Lboundary depends on ~v, but being a boundary term in
space and time, it does not affect the derived volume equations) L~v. After we equate to zero
the variational derivative with respect to ~v, we obtain Equation (19), but this will otherwise
have no effect on the other variational derivatives. The only term depending on ~B is L~B,
and this term will lead, after we set the variational derivative to zero, to Equation (17),
but will not change other variations. Lboundary contains only complete partial derivatives
and thus does not contribute to the equations, although it can influence the boundary
conditions. Thus, Equations (16), (21), (25) and (27) are derived from:

L̂[α, β, χ, η, ν, ρ, σ, s] = −ρ[
∂ν

∂t
+ α

∂χ

∂t
+ β

∂η

∂t
+ σ

∂s
∂t

+ ε(ρ, s)

+
1
2
(~∇ν + α~∇χ + β~∇η + σ~∇s)2]

− 1
8π

(~∇χ× ~∇η)2 (33)

in which ~̂v replaces ~v and ~̂B replaces ~B. After integrating Equations (16), (21), (25),
and (27), we are allowed to insert the potentials α, β, χ, η, ν, σ, s into Equations (17) and (19),
thus deriving the vector fields ~v and ~B. To summarize, we showed that the general ideal
nonbarotropic MHD problem is reduced from eight equations (Equations (1) and (3)–(5))
and the additional constraint (Equation (2)) to a problem of eight first-order (in the tem-
poral derivative) unconstrained equations. This set of equations can be derived from the
Lagrangian density L̂.

6. Stationary Nonbarotropic MHD

Stationary configurations are unique to Eulerian fluid dynamics with no counterpart
in the Lagrangian description of fluid dynamics. Stationary configurations are defined
by the fact that the fields ~v,~B, ρ, s are independent of time. This does not imply that the
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potentials α, β, χ, η, ν, σ are functions of only the spatial coordinates. Indeed, choosing the
potentials in such a way will lead to erroneous results such that the stationary equations of
motion can not be derived from L̂ of Equation (32). This problem can be solved as follows.
Let us choose α, β, χ, ν, σ to depend on the spatial coordinates alone. η is chosen such that:

η = η̄ − t, (34)

in which η̄ depends on the spatial coordinates alone. L̂ of Equation (32) will become:

L̂ = ρ(β− ε(ρ, s))− 1
2

ρ(~∇ν + α~∇χ + β~∇η̄ + σ~∇s)2 − 1
8π

(~∇χ× ~∇η̄)2. (35)

This can be compared with [2] (Equation 6.12) for incompressible flows in which their
I is analogous to our β. Notice that β is not a conserved quantity, but I is conserved.

Varying the Lagrangian L̂ =
∫
L̂d3x with respect to ν, α, β, χ, η, ρ, σ, s leads to the

following equations:

~∇ · (ρ~̂v) = 0,

ρ~̂v · ~∇χ = 0,

ρ(~̂v · ~∇η̄ − 1) = 0,

~̂v · ~∇α =
~∇η̄ · ~̂J

ρ
,

~̂v · ~∇β = −
~∇χ · ~̂J

ρ
,

β =
1
2
~̂v2 + w,

ρ~̂v · ~∇s = 0,

ρ~̂v · ~∇σ = ρT. (36)

These lead to the stationary nonbarotropic MHD equations:

~∇× (~̂v× ~̂B) = 0, (37)

ρ(~̂v · ~∇)~̂v = −~∇p(ρ, s) +
(~∇× ~̂B)× ~̂B

4π
. (38)

In what follows, we attempt to reduce the number of variational variables from eight
to three.

7. Load and Metage

The following section follows closely a similar section in [8]. Consider a thin tube
surrounding a magnetic field line as described in Figure 1. The magnetic flux contained
within the tube is:

∆Φ =
∫

~B · d~S (39)

and the mass contained within the tube is:

∆M =
∫

ρd~l · d~S, (40)

in which dl is a short distance along the tube. Since the magnetic field lines are comoving
as dictated by Equations (1) and (3), both the quantities ∆Φ and ∆M will not change during
the motion of the tube. Since the tube is thin, we may define the comoving magnetic load:

λ =
∆M
∆Φ

=
∮

ρ

B
dl, (41)
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calculated along the field line. The parts of the magnetic line that go out of the flow region
to parts of space in which ρ = 0 have zero contribution. λ is single-valued, which can be
experimentally measured in principle. Since λ is comoving, it satisfies:

dλ

dt
= 0. (42)

Figure 1. A thin tube surrounding a magnetic field line.

Furthermore, surfaces of constant magnetic load are comoving and are made from
magnetic field lines. Hence, the gradient to such surfaces must be normal to the surface,
hence orthogonal to the field lines:

~∇λ · ~B = 0. (43)

Consider an arbitrary comoving point on the field line denoted by i, and consider
another comoving point on the field line and mark it as r. The integral:

µ(r) =
∫ r

i

ρ

B
dl + µ(i), (44)

is also a comoving quantity, which we denote after Lynden-Bell and Katz [31] as the
magnetic metage. µ(i) is a number that can be chosen differently for each line. Thus:

dµ

dt
= 0. (45)

By differentiating along the field line, we derive:

~∇µ · ~B = ρ. (46)

µ will be generally multiple-valued.
We now have two comoving coordinates of flow, λ, µ; obviously, in a three-dimensional

flow, we should also have a third. However, before defining the third function, we first
change λ to a specific function of λ. Consider the magnetic flux within a load surface Φ(λ).
The magnetic flux is a comoving quantity and depends only on λ of its boundary. Define:

χ =
Φ(λ)

2π
. (47)

χ satisfies the equations:
dχ

dt
= 0, ~B · ~∇χ = 0. (48)
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Let us define η∗. Since ~∇µ is not orthogonal to ~B, we can choose ~∇η∗ to be orthogonal
to ~B and not be in the direction of ~∇χ. We chose η∗ not to depend uniquely on χ. Both
~∇η∗ and ~∇χ are orthogonal to ~B, so it must be that:

~B = A~∇χ× ~∇η∗. (49)

However, using Equation (2), we have:

~∇ · ~B = ~∇A · (~∇χ× ~∇η∗) = 0. (50)

This implies that A is a function of χ, η∗. Now, we can define a new comoving function
η such that:

η =
∫ η∗

0
A(χ, η

′∗)dη
′∗,

dη

dt
= 0. (51)

In terms of this function, we obtain the Sakurai (Euler potentials) presentation:

~B = ~∇χ× ~∇η. (52)

We thus showed how χ, η can be practically defined for a given ~B, ρ. η is defined in
a nonunique way since one can redefine η by performing: η → η + f (χ) in which f (χ)
is any arbitrary function. χ, η serve as labels of the field lines. Moreover, we obtain the
following expression for the magnetic flux:

Φ =
∫

~B · d~S =
∫

dχdη. (53)

In the case that the surface integral is performed inside a load contour, we obtain:

Φ(λ) =
∫

λ
dχdη = χ

∫
λ

dη =

{
χ[η]

χ(ηmax − ηmin)
(54)

In one case, the load surfaces are topological cylinders. η is thus multiple-valued, and
we obtain the upper value. In the second case, the surfaces of constant load are topological
spheres, and η is single-valued and has both minimal ηmin and maximal ηmax values. Hence
the lower value of is obtained. In some cases, η is identical to twice the latitude angle θ. In
those cases, ηmin = 0 (value at the “north pole”) and ηmax = 2π (value at the “south pole”).

Comparing with Equation (47), it follows that η can be either single-valued or multiple-
valued and that its discontinuity across its cut in the multiple-valued scenario is [η] = 2π.

So far, the discussion has not differentiated the cases of stationary and nonstationary
flows. It should be noted that even for stationary flows, one can have a nonstationary
η coordinate as the magnetic field depends only on the gradient of η (see Equation (52)),
in particular if η is stationary, then η + g(t), which is clearly not stationary, will produce
according to Equation (52) a stationary magnetic field. In what follows, it is advantageous
to use the form of η given in Equation (34) in which η̄ is stationary.

χ, η, µ are sufficient to label any fluid element in three dimensions. However, for a
nonbarotropic ideal flow, there is also another possible label, s, which is comoving due to
Equation (5). The question then arises about the relation of s to the other labels. Since we
need to decide regarding the preferred set of labels, it may seem that the physical labels are
χ, η, s, which are the surfaces on which the magnetic fields lie and the entropy. Thus, µ is a
function of χ, η, s. If the magnetic field lines lie on the entropy surface, µ is an independent
label. The density is:

ρ =
∂µ

∂s
∂(χ, η, s)
∂(x, y, z)

. (55)

µ can be defined for each line separately according to Equation (44), and it is thus obvious
that such a choice exists in which µ is uniquely a function of s. One may also think of the
entropy s as functions χ, η, µ. In what follows, we shall ignore the status of s as a label
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and consider it as a variational function, which only attains the status of a label at the
variational extremum.

8. A Simpler Variational Principle of Stationary Nonbarotropic Magnetohydrodynamics

In a previous paper [18], we showed that stationary nonbarotropic magnetohydro-
dynamics can be described in terms of eight first-order differential equations and by an
action principle from which those equations can be derived. Below, we show that one can
do better for the case in which the magnetic field lines lie on an entropy surface; in this
case three functions suffice to describe stationary nonbarotropic magnetohydrodynamics.

Consider Equation (48); for a stationary flow, it takes the form:

~v · ~∇χ = 0. (56)

Hence, ~v can take the form:

~v =
~∇χ× ~K

ρ
. (57)

However, the velocity field must satisfy the stationary mass conservation Equation (3):

~∇ · (ρ~v) = 0. (58)

A sufficient condition (although not necessary) for ~v to be a solution of Equation (58)
is that ~K is of the form ~K = ~∇N; here, N is arbitrary. Thus, ~v can be written as:

~v =
~∇χ× ~∇N

ρ
. (59)

Let us now calculate~v× ~B in which ~B is given by Sakurai’s presentation Equation (52):

~v× ~B = (
~∇χ× ~∇N

ρ
)× (~∇χ× ~∇η)

=
1
ρ
~∇χ(~∇χ× ~∇N) · ~∇η. (60)

N can be at most a function of the three coordinates χ, µ, η̄; hence:

~∇N =
∂N
∂χ

~∇χ +
∂N
∂µ

~∇µ +
∂N
∂η̄

~∇η̄. (61)

Inserting Equation (61) into Equation (60) yields:

~v× ~B =
1
ρ
~∇χ

∂N
∂µ

(~∇χ× ~∇µ) · ~∇η̄. (62)

Rearranging terms and using Equation (52), we can write:

~v× ~B = −1
ρ
~∇χ

∂N
∂µ

(~∇µ · ~B). (63)

However, using Equation (46), this simplifies to the form:

~v× ~B = −~∇χ
∂N
∂µ

. (64)

Inserting Equation (64) into Equation (7) leads to the equation:

~∇(∂N
∂µ

)× ~∇χ = 0. (65)
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However, since N is at most a function of χ, µ, η̄, it follows that ∂N
∂µ is some func-

tion of χ:
∂N
∂µ

= −F(χ). (66)

This can be easily integrated to yield:

N = −µF(χ) + G(χ, η̄). (67)

Inserting N into Equation (59) results in:

~v =
~∇χ× (−F(χ)~∇µ + ∂G

∂η̄
~∇η̄)

ρ
. (68)

We shall replace χ, η̄ with χ′, η̄′ defined as:

χ′ =
∫

F(χ)dχ, η̄′ =
η̄

F(χ)
. (69)

This does not affect Equation (52) as:

~B = ~∇χ× ~∇η = ~∇χ× ~∇η̄ = ~∇χ′ × ~∇η̄′. (70)

However, the velocity takes a simpler form:

~v =
~∇χ′ × ~∇(−µ + G′(χ′, η̄′))

ρ
, (71)

G′ = G
F . We recall that µ is defined in Equation (44) up to a constant, which may vary

between field lines. As the lines are labeled by their χ′, η̄′ values, we can add a function of
χ′, η̄′ to µ without affecting its desired properties. We thus define µ′ in the form:

µ′ = µ− G′(χ′, η̄′). (72)

µ′ can be nonsingle-valued. Inserting Equation (72) into Equation (71) leads to:

~v =
~∇µ′ × ~∇χ′

ρ
. (73)

The primes on χ, µ, η̄ will be ignored from now on. This is analogous to [2]
(Equation 7.11) for incompressible flows; our µ and χ resemble their A and Ψ. ~v satisfies
the following:

~v · ~∇µ = 0, ~v · ~∇χ = 0, ~v · ~∇η̄ = 1, (74)

where we used Equation (45) and (52). µ, χ are both comoving and stationary.
η̄ satisfies Equation (34). If:

basis = (~∇χ, ~∇η̄, ~∇µ), (75)

is a local vector basis at any point in space, then their exists a dual basis:

dual basis =
1
ρ
(~∇η̄ × ~∇µ, ~∇µ× ~∇χ, ~∇χ× ~∇η̄) = (

~∇η̄ × ~∇µ

ρ
,~v,

~B
ρ
), (76)

such that:
basisi · dual basisj = δij, i, j ∈ [1, 2, 3], (77)

δij is Kronecker’s delta. The surfaces χ, µ, η̄ generate a local vector basis for space, while
the physical fields of interest ~v,~B are contained in the dual basis. We can now construct a
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vector product of ~v and ~B, and taking into account Equations (52) and (73), we arrive at
the equation:

~v× ~B = ~∇χ; (78)

thus, ~v and ~B lie on χ surfaces and are a vector basis for this two-dimensional surface. This
can be compared with [2] (Equation 5.6) for incompressible flows; the J appearing in that
paper is analogous to χ.

9. A Three-Function Variational Principle for Stationary MHD

Previously, we demonstrated that, provided that the ~v is given by Equation (73) and
~B is given by Equation (52), then Equations (7)–(9) are satisfied. To complete the set of
equations we show how the Euler Equation (4) can be derived from the action:

A ≡
∫
Ld3xdt,

L ≡ ρ(
1
2
~v2 − ε(ρ, s))−

~B2

8π
, (79)

in which both ~v and ~B are given by Equations (52) and (73), respectively, and the density ρ
is given by Equation (45):

ρ = ~∇µ · ~B = ~∇µ · (~∇χ× ~∇η) =
∂(χ, η, µ)

∂(x, y, z)
. (80)

The Lagrangian density of Equation (79) takes the more explicit form:

L[χ, η, µ] = ρ

(
1
2
(
~∇µ× ~∇χ

ρ
)2 − ε(ρ, s(χ, η, µ))

)
− (~∇χ× ~∇η)2

8π
(81)

and can be seen explicitly to depend on only three functions. We underline that the
magnetic field lines lie on entropy surfaces. s must be a function of χ, η only and does not
depend on µ. Let us make arbitrary small variations δαi = (δχ, δη, δµ) of the functions
αi = (χ, η, µ). Let us define a ∆ variation that does not modify the αi’s, such that:

∆αi = δαi + (~ξ · ~∇)αi = 0, (82)

in which ~ξ is the Lagrangian displacement; thus:

δαi = −~∇αi ·~ξ. (83)

This leads to the equation:

~ξ ≡ − ∂~r
∂αi

δαi. (84)

Making a variation of ρ given in Equation (80) with respect to αi yields:

δρ = −~∇ · (ρ~ξ). (85)

Making a variation of s results in:

δs =
∂s
∂αi

δαi = −
∂s
∂αi

~∇αi ·~ξ = −~∇s ·~ξ. (86)

Furthermore, taking the variation of ~B given by Sakurai’s Equation (52) with respect
to αi yields:

δ~B = ~∇× (~ξ × ~B). (87)
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It remains to calculate δ~v by varying Equation (73); this yields:

δ~v = − δρ

ρ
~v +

1
ρ
~∇× (ρ~ξ ×~v). (88)

Varying the action results in:

δA =
∫

δLd3xdt,

δL = δρ(
1
2
~v2 − w(ρ, s))− ρTδs + ρ~v · δ~v−

~B · δ~B
4π

, (89)

Inserting Equations (85), (87), and (88) into Equation (89) yields:

δL = ~v · ~∇× (ρ~ξ ×~v)−
~B · ~∇× (~ξ × ~B)

4π
− δρ(

1
2
~v2 + w) + ρT~∇s ·~ξ

= ~v · ~∇× (ρ~ξ ×~v)−
~B · ~∇× (~ξ × ~B)

4π
+ ~∇ · (ρ~ξ)(1

2
~v2 + w)

+ ρT~∇s ·~ξ. (90)

Using the well-known vector identity:

~A · ~∇× (~C× ~A) = ~∇ · ((~C× ~A)× ~A) + (~C× ~A) · ~∇× ~A (91)

and the theorem of Gauss, we can write now Equation (89) in the form:

δA =
∫

dt{
∮

d~S · [ρ(~ξ ×~v)×~v− (~ξ × ~B)× ~B
4π

+ (
1
2
~v2 + w)ρ~ξ]

+
∫

d3x~ξ · [ρ~v× ~ω +~J × ~B− ρ~∇(1
2
~v2 + w) + ρT~∇s]}. (92)

Time integration is of no consequence in the above. Notice that we used Equation (6)
and the vorticity ~ω = ~∇×~v. If δA = 0 for ~ξ, nullifying the boundary term, but otherwise
arbitrary, then:

ρ~v× ~ω +~J × ~B− ρ~∇(1
2
~v2 + w) + ρT~∇s = 0. (93)

Using the well-known vector identity:

1
2
~∇(~v2) = (~v · ~∇)~v +~v× (~∇×~v) (94)

and rearranging terms, we recover the stationary Euler equation:

ρ(~v · ~∇)~v = −~∇p +~J × ~B. (95)

10. An Application: Helical Stratified Magnetic Field
10.1. The Magnetic Field and Related Labels

Consider [32] a magnetohydrodynamic flow of uniform density ρ. Furthermore,
assume that the flow contains a helical stratified magnetic field:

~B =

{
2B⊥(1− R

a )φ̂ + Bz0ẑ R < a
0 R > a

(96)

R, φ, z are cylindrical coordinates. R̂, φ̂, ẑ are unit vectors. Bz0, B⊥ are constants. The field is
confined to a cylinder of radius a and does not depend on z. We assume that z = 0 and
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z = L are identified such that a topological torus is realized. The only field lines that will
be closed are such that:

n
m

=
B⊥

πRBz0

(
1− R

a

)
L, n, m integers (97)

Lines not satisfying this condition are surface-filling. The field lines lie on cylindrical
surfaces, so one can calculate the flux through a circular surface lying on the plane z and
bounded by R. The flux is:

Φ =
∫

~B · d~S = πR2Bz0 (98)

The χ function can now be calculated according to Equation (47) to yield the value:

χ =
1
2

Bz0R2. (99)

Solving Equation (17) for η, we obtain the following nonunique solution:

η = φ− 2B⊥
Bz0

(1− R
a
)

z
R

. (100)

Finally, we solve Equation (46) for µ; here, we suggest the following simple and
nonunique solution:

µ =
ρ

Bz0
z. (101)

Thus, µ surfaces are just z planes. Notice that since we have identified the planes
z = 0 and z = L, µ is nonsingle-valued. The same can be said to be on η, which is doubly
nonsingle-valued in both the z and φ directions.

10.2. The Velocity Field

A stationary velocity field ~v must satisfy Equations (7) and (9). Such a velocity field
can be constructed using the labels µ and χ (see Equation (73)):

~v = k
~∇µ× ~∇χ

ρ
. (102)

k is a dimensional constant that we chose such that k = v0
a . Plugging in µ from Equation (101)

and χ from Equation (99), we arrive at the simple expression:

~v = v0
R
a

φ̂, (103)

This expression can be shown to solve Equations (1) and (3) by direct substitution.
Equation (10) can be solved by the pressure function:

p(R) = ρ

[
B2
⊥

π

(
3

R
a
− R2

a2 − ln(
R
a
)− 2

)
+

1
2

v2
0

(
R2

a2 − 1
)]

, p(a) = 0. (104)

11. The Three-Function Action Principle for a Static Configuration

The static configuration is a stationary flow such that ~v = 0. In this case, the mass
conservation Equation (7) and magnetic field Equation (9) are satisfied trivially. To complete
the set of equations, we show how the static Euler Equation (4) can be derived from
the action:
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A ≡ −
∫
Ld3xdt,

L ≡ ρε(ρ, s) +
~B2

8π
, (105)

in which ~B is given by Equation (52) and the density ρ is given by Equation (80). The
Lagrangian density of Equation (105) can be put in the more explicit form:

L[χ, η, µ] = ρε(ρ, s(χ, η, µ)) +
(~∇χ× ~∇η)2

8π
(106)

Varying the action results in:

δA = −
∫

δLd3xdt,

δL = δρ(w(ρ, s)) + ρTδs +
~B · δ~B

4π
, (107)

Inserting Equations (85) and (87) into Equation (107) yields:

δL =
~B · ~∇× (~ξ × ~B)

4π
+ δρw + ρT~∇s ·~ξ

=
~B · ~∇× (~ξ × ~B)

4π
− ~∇ · (ρ~ξ)w + ρT~∇s ·~ξ. (108)

Using the well-known vector identity (Equations (91)) and the theorem of Gauss, we
can write now Equation (107) in the form:

δA =
∫

dt{
∮

d~S · [− (~ξ × ~B)× ~B
4π

+ wρ~ξ]

+
∫

d3x~ξ · [~J × ~B− ρ~∇w + ρT~∇s]}. (109)

The time integration is of no consequence in the above expression. We used
Equation (6). If δA = 0 for an arbitrary ~ξ, but such that the boundary term is null, then we
obtain:

~J × ~B− ρ~∇w + ρT~∇s = 0. (110)

and rearranging terms, we recover the stationary Euler equation:

~J × ~B− ~∇p = 0. (111)

12. Transport Phenomena

In many plasmas including static configurations, heat is transferred preferably along
magnetic field lines:

~JH = −k̂~∇T. (112)

in which k̂ is a tensor of heat conductivity. This tensor is usually larger in the magnetic
field direction and thus can be written as:

k̂ = k⊥(I − b̂⊗ b̂) + k‖ b̂⊗ b̂. (113)

In the above, b̂ ≡ ~B
B is a unit vector in the magnetic field direction, ⊗ is the tensor product,

I is the unit matrix, k⊥ is the heat conductivity in the directions perpendicular to the
magnetic field lines, and k‖ is the larger heat conductivity in the direction parallel to the
magnetic field lines. The equation for a stationary heat flux configuration is:

~∇ ·~JH = 0⇒ ~∇ · (k̂~∇T) = 0. (114)
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This equation can be derived from the heat Lagrangian and Lagrangian density:

LH ≡
∫
LHd3x, LH ≡

1
2
(~∇T)t k̂~∇T =

1
2

∂iTk̂ij∂jT. (115)

In the above, (~∇T)t is the transpose of ~∇T, ∂i ≡ ∂
∂xi

, and the Einstein summation conven-
tion is assumed. Taking the variation with respect to the temperature T yields:

δLH = (~∇T)t k̂~∇δT; (116)

hence:
δLH =

∫
d3x
[
~∇ · (k̂~∇TδT)− δT~∇ · (k̂~∇T)

]
, (117)

and using the theorem of Gauss:

δLH =
∫

d~S · (k̂~∇T)δT −
∫

d3xδT~∇ · (k̂~∇T); (118)

thus for appropriate boundary conditions, we derive Equation (114). We notice that heat
conduction is not taken into account in ideal MHD, which only assumes the convection
of heat. However, provided that conduction is seen as a secondary process with respect
to convection, we may obtain using the ideal variational principle a stationary or static
magnetic field configuration using the appropriate variational expression given in previous
sections. Then using the known magnetic field configuration, we derive the appropriate
heat flux transport using LH .

13. Conclusions

It is shown that stationary nonbarotropic magnetohydrodynamics can be derived
from a variational principle of three functions. We showed this for both the stationary and
static cases.

Possible applications include stability studies of stationary MHD and the development
of numerical methods for integrating MHD equations. It may be possible to incorporate
the current formalism in existing codes instead of developing a new code from scratch.
Possible codes were described in [33–37]. We anticipate applications of this work to linear
and nonlinear stability studies of known MHD configurations [20,21,38]. To achieve this,
we may need to add additional constants of motion constraints to the action [39–43]. As for
designing numerical methods for integratingthe equations of MHD, one may follow the
approach described in [22–24,28].

Another application of the variational variables is obtaining analytic solutions for the
MHD equations. Although the equations are very difficult to solve, both being partial
differential equations and nonlinear, possible solutions can be found using variational
functions. An example for this approach is the self-gravitating torus described in [25] and
also in Section 10.

One can use continuous symmetries that appear in the action to derive through the
Noether theorem new conservation laws. An example of such a derivation can be found
in [32,44].

Topological invariants have always been useful, and there are such invariants in MHD
flows. For example, the two helicities (magnetic helicity and cross-helicity) have long
been useful in research into the problem of hydrogen fusion and in various astrophysical
scenarios. In previous studied [8,12,45], relations between the helicities and symmetries
of MHD were made. Furthermore, the functions of the current action are helpful for
identifying and characterizing new topological invariants in MHD [32,46,47].

Although ideal MHD does not describe real plasmas fully, we showed here how
processes such as heat conduction can be also described using variational analysis provided
that the magnetic field configuration is given approximately by ideal variational analysis.
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To conclude, we underline the limitations of the current work. First, MHD is a
fluid theory and as such misses some of the processes that can only be addressed by a
detailed kinetic model. Second, ideal MHD considered here neglects important nonideal
processes such as resistive heating, heat conduction, and viscous effects. Moreover, we
assume magnetic fields that lie on surfaces (that is Equation (17)), while for some MHD
configurations, magnetic field lines are volume filling; for such cases, the current approach
is not applicable.
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