Abstract
In this work, we prove a new -integral identity involving a -derivative and -integral. The newly established identity is then used to show some new Simpson’s formula type inequalities for -differentiable convex functions. Finally, the newly discovered results are shown to be refinements of comparable results in the literature. Analytic inequalities of this type, as well as the techniques used to solve them, have applications in a variety of fields where symmetry is important.
MSC:
26D10; 26D15; 26A51
1. Introduction
During his lifetime, Thomas Simpson created important approaches for numerical integration and the estimation of definite integrals, which became known as Simpson’s rule (1710–1761). J. Kepler, who made a comparable calculation roughly a century before Newton, is the inspiration for Kepler’s rule. Estimations based exclusively on a three-step quadratic kernel are commonly referred to as Newton-type results because Simpson’s technique incorporates the three-point Newton–Cotes quadrature rule.
(1) Simpson’s quadrature formula (Simpson’s 1/3 rule)
(2) Simpson’s second formula or Newton–Cotes quadrature formula (Simpson’s 3/8 rule)
The following estimation, known as Simpson’s inequality, is one of many linked with these quadrature rules in the literature:
Theorem 1.
Suppose that is a four-times continuously differentiable mapping on and let Then, one has the inequality
Many researchers have focused on Simpson-type inequality in various categories of mappings in recent years. Because convexity theory is an effective and powerful technique to solve a huge number of problems from various disciplines of pure and applied mathematics, some mathematicians have worked on the results of Simpson’s and Newton’s type in obtaining a convex map. The novel Simpson’s inequalities and their applications in numerical integration quadrature formulations were presented by Dragomir et al. [1]. Furthermore, Alomari et al. [2] discovered a number of inequalities in Simpson’s kind of s-convex functions. The variance of Simpson-type inequality as a function of convexity was then observed by Sarikaya et al. in [3]. Refs. [4,5,6] can be consulted for further research on this subject.
On the other hand, quantum and post-quantum integrals for many types of functions have been used to study many integral inequalities. The authors of [7,8,9,10,11,12,13,14,15,16,17,18,19,20,21] employed left–right q-derivatives and integrals to prove HH integral inequalities and associated left–right estimates for convex and coordinated convex functions. Noor et al. proposed a generalized version of quantum integral inequalities in their paper [22]. In [23], the authors demonstrated some parameterized quantum integral inequalities for generalized quasi-convex functions. In [24], Khan et al. used the green function to prove quantum HH inequality. For convex and coordinated convex functions, the authors of [25,26,27,28,29,30] constructed new quantum Simpson’s and quantum Newton’s type inequalities. Consult [31,32,33] for quantum Ostrowski’s inequality for convex and co-ordinated convex functions. Using the left -difference operator and integral, the authors of [34] expanded the results of [9] and demonstrated HH-type inequalities and associated left estimates. In [16], the authors discovered the right estimates of HH-type inequalities, as demonstrated in [34]. Vivas-Cortez et al. [35] recently generalized the results of [11] and used the right -difference operator and integral to prove HH-type inequalities and associated left estimates.
We use the -integral to establish some new post-quantum Simpson’s type inequalities for -differentiable convex functions, as inspired by recent research. The newly revealed inequalities are also shown to be extensions of previously discovered inequalities.
The structure of this article is as follows. The principles of q-calculus, as well as other relevant topics in this subject, are briefly discussed in Section 2. The basics of -calculus, as well as some recent research in this topic, are covered in Section 3. In Section 4, we prove a new -integral identity involving a -derivative. Section 5 describes the Simpson’s type inequalities for -differentiable functions via -integrals. It is also taken into account the relationship between the findings given here and similar findings in the literature. Section 6 finishes with some research suggestions for the future.
2. Preliminaries of q-Calculus and Some Inequalities
In this section, we revisit several previously regarded ideas. In addition, we utilize the following notation here and elsewhere (see [36]):
In [37], Jackson gave the q-Jackson integral from 0 to for as follows:
provided that the sum converges absolutely.
Definition 1
([38]). For a function the left q-derivative of at is characterized by the expression
If , we define if it exists and it is finite.
Definition 2
([11]). For a function the right q-derivative of at is characterized by the expression
If , we define if it exists and it is finite.
Definition 3
([38]). Let be a function. Then, the left q-definite integral on is defined as
Definition 4
([11]). Let be a function. Then, the right q-definite integral on is defined as
Alp et al. [9] proved the following Hermite–Hadamard-type inequalities for convex functions via q-integral.
Theorem 2.
For the convex mapping , the following inequality holds
In [11], Bermudo et al. established the following quantum Hermite–Hadamard-type inequalities:
Theorem 3.
For the convex mapping , the following inequality holds
Recently, Siricharuanun et al. [29] proved the following Simpson’s formula type inequality for convex functions.
Theorem 4.
Let be a -differentiable function on such that is continuous and integrable on . If is convex on , then we have the following inequality for -integrals:
where and
3. Post-Quantum Calculus and Some Inequalities
In this section, we review some fundamental notions and notations of -calculus.
The is said to be ()-integers and expressed as:
with The and are called ()-factorial and ()-binomial, respectively, and expressed as:
Definition 5
([39]). The -derivative of mapping is given as:
with
Definition 6
([40]). The left -derivative of mapping is given as:
with For , we state that if it exists and it is finite.
Definition 7
([35]). The right -derivative of mapping is given as:
with For , we state that if it exists and it is finite.
Remark 1.
Definition 8
([40]). The left -integral of mapping on is stated as:
with
Definition 9
([35]). The right -integral of mapping on is stated as:
with
Remark 2.
Remark 4.
If f is a symmetric function—that is, for —then we have
Lemma 1
([35]). We have the following equalities
where
Recently, M. Vivas-Cortez et al. [35] proved the following HH-type inequalities for convex functions using the -integral.
Theorem 5
([35]). For a convex mapping , which is differentiable on the following inequalities hold for the -integral:
where
Theorem 6
([35]). For a convex function , the following inequality holds:
where
4. An Identity
In this section, we deal with an identity that is required to reach our major estimates. In the following lemma, we first build an identity based on a two-stage kernel.
Lemma 2.
Let be a differentiable function on . If is continuous and integrable on , then one has the identity
where
Proof.
Using the fundamental properties of -integrals and the definition of function , we find that
According to Definition 6, one must also have
Now, if we substitute the above equation into (16), we obtain
When the first integral on the right-hand side of (17) is calculated using Definition 8, it is discovered that
5. Main Results
For -differentiable convex functions, we prove some new Simpson’s formula type inequalities in this section. For the sake of brevity, we start this section with certain notations that will be utilized in our new results.
Theorem 7.
Assume that the conditions of Lemma 2 hold. If is convex on , then we have following inequality for -integrals:
where and , , , are given as in (21)–(24), respectively.
Proof.
We observe that when we take the modulus in Lemma 2, because of the modulus’ characteristics, we have
Using the convexity of , we may calculate integrals on the right-hand side of (26) as follows:
Thus, we obtain
Similarly, we have
Corollary 1.
In Theorem 7, if we set , then we have the following new Simpson’s type inequality for q-integrals:
Remark 5.
In Theorem 7, if we assume and later take the limit as , then we obtain the following Simpson’s type inequality:
This is proven by Alomari et al. in [2].
Now, we can see how the inequalities appear when we utilize maps with convex -derivative powers in an absolute value.
Theorem 8.
Assume that the conditions of Lemma 2 hold. If is convex on for some , then we have following inequality for -integrals:
where , and
Proof.
When the integrals on the right-hand side of (26) are subjected to the well-known Hölder’s inequality for post-quantum integrals, it is discovered that
By using the convexity of , we obtain
Similarly, we obtain
Corollary 2.
In Theorem 8, if we set , then we obtain the following new Simpson’s type inequality for q-integrals:
Theorem 9.
Assume that the conditions of Lemma 2 hold. If is convex on for some , then we have following inequality for -integrals:
where and , , , are given as in (21)–(24), respectively.
Proof.
Using the conclusions obtained in the proof of Theorem 7 after applying the well-known power mean inequality to the integrals on the right-hand side of (26), we discover that, due to the convexity of ,
We also observe that
and by using similar operations, we have
Corollary 3.
In Theorem 9, if we set , then we obtain the following new Simpson’s type inequality for the q-integral:
Remark 6.
In Theorem 9, if we set and later take the limit as , then we have the following Simpson’s type inequality:
This is given by Alomari et al. in [2].
6. Conclusions
In this investigation, we have proven different variants of Simpson’s formula type inequalities for -differentiable convex functions via post-quantum calculus. We conclude that the findings of this research are universal in nature and contribute to inequality theory, as well as applications in quantum boundary value problems, quantum mechanics, and special relativity theory for determining solution uniqueness. The findings of this study can be utilized in symmetry. Results for the case of symmetric functions can be obtained by applying the concept in Remark 4, which will be studied in future work. Future researchers will be able to obtain similar inequalities for different types of convexity and co-ordinated convexity in their future work, which is a new and important problem.
Author Contributions
All authors contributed equally in the preparation of the present work. Theorems and corollaries: M.J.V.-C., M.A.A., S.Q., I.B.S., S.J. and A.M.; review of the articles and books cited: M.J.V.-C., M.A.A., S.Q., I.B.S., S.J. and A.M.; formal analysis: M.J.V.-C., M.A.A., S.Q., I.B.S., S.J. and A.M.; writing—original draft preparation and writing—review and editing: M.J.V.-C., M.A.A., S.Q., I.B.S., S.J. and A.M. All authors have read and agreed to the published version of the manuscript.
Funding
This research was funded by the Science, Research and Innovation Promotion Fund under the Basic Research Plan–Suan Dusit University. Contract no.65-FF-010.
Institutional Review Board Statement
Not applicable.
Informed Consent Statement
Not applicable.
Data Availability Statement
Not applicable.
Acknowledgments
Miguel Vivas-Cortez wishes to thank to Dirección de Investigación from Pontificia Universidad Católica del Ecuador. In addition, all the authors wish to thank those appointed to review this article and the editorial team of Symmetry.
Conflicts of Interest
The authors declare no conflict of interest.
References
- Dragomir, S.S.; Agarwal, R.P.; Cerone, P. On Simpson’s inequality and applications. J. Inequal. Appl. 2000, 5, 533–579. [Google Scholar] [CrossRef] [Green Version]
- Alomari, M.; Darus, M.; Dragomir, S.S. New inequalities of Simpson’s type for s-convex functions with applications. RGMIA Res Rep Coll. 2009, 2. [Google Scholar]
- Sarikaya, M.Z.; Set, E.; Özdemir, M.E. On new inequalities of Simpson’s type for convex functions. RGMIA Res. Rep. Coll. 2010, 13, 2. [Google Scholar]
- Erden, S.; Iftikhar, S.; Delavar, M.R.; Kumam, P.; Thounthong, P.; Kumam, W. On generalizations of some inequalities for convex functions via quantum integrals. RACSAM 2020, 2020, 1–15. [Google Scholar] [CrossRef]
- Iftikhar, S.; Erden, S.; Kumam, P.; Awan, M.U. Local fractional Newton’s inequalities involving generalized harmonic convex functions. Adv. Differ. Equ. 2020, 2020, 1–14. [Google Scholar]
- Özdemir, M.E.; Akdemir, A.O.; Kavurmaci, H.; Avci, M. On the Simpson’s inequality for co-ordinated convex functions. arXiv 2010, arXiv:1101.0075. [Google Scholar]
- Ali, M.A.; Budak, H.; Abbas, M.; Chu, Y.-M. Quantum Hermite–Hadamard-type inequalities for functions with convex absolute values of second qπ2-derivatives. Adv. Differ. Equ. 2021, 2021, 1–12. [Google Scholar] [CrossRef]
- Ali, M.A.; Alp, N.; Budak, H.; Chu, Y.; Zhang, Z. On some new quantum midpoint type inequalities for twice quantum differentiable convex functions. Open Math. 2021, 19, 427–439. [Google Scholar] [CrossRef]
- Alp, N.; Sarikaya, M.Z.; Kunt, M. q-Hermite Hadamard inequalities and quantum estimates for midpoint type inequalities via convex and quasi-convex functions. J. King Saud Univ. -Sci. 2018, 30, 193–203. [Google Scholar] [CrossRef] [Green Version]
- Alp, N.; Sarikaya, M.Z. Hermite Hadamard’s type inequalities for co-ordinated convex functions on quantum integral. Appl. Math. E-Notes 2020, 20, 341–356. [Google Scholar]
- Bermudo, S.; Kórus, P.; Valdés, J.N. On q-Hermite-Hadamard inequalities for general convex functions. Acta Math. Hung. 2020, 162, 364–374. [Google Scholar] [CrossRef]
- Budak, H. Some trapezoid and midpoint type inequalities for newly defined quantum integrals. Proyecciones 2021, 40, 199–215. [Google Scholar] [CrossRef]
- Budak, H.; Ali, M.A.; Tarhanaci, M. Some new quantum Hermite-Hadamard-like inequalities for coordinated convex functions. J. Optim. Theory Appl. 2020, 186, 899–910. [Google Scholar] [CrossRef]
- Jhanthanam, S.; Tariboon, J.; Ntouyas, S.K.; Nonlapon, K. On q-Hermite-Hadamard inequalities for differentiable convex functions. Mathematics 2019, 7, 632. [Google Scholar] [CrossRef] [Green Version]
- Kalsoom, H.; Rashid, S.; Idrees, M.; Safdar, F.; Akram, S.; Baleanu, D.; Chu, Y.-M. Post quantum inequalities of Hermite-Hadamard type associated with co-ordinated higher-order generalized strongly pre-invex and quasi-pre-invex mappings. Symmetry 2020, 12, 443. [Google Scholar] [CrossRef] [Green Version]
- Latif, M.A.; Dragomir, S.S.; Momoniat, E. Some q-analogues of Hermite-Hadamard inequality of functions of two variables on finite rectangles in the plane. J. King Saud-Univ. -Sci. 2017, 29, 263–273. [Google Scholar] [CrossRef]
- Liu, W.; Hefeng, Z. Some quantum estimates of Hermite-Hadamard inequalities for convex functions. J. Appl. Anal. Comput. 2016, 7, 501–522. [Google Scholar]
- Noor, M.A.; Noor, K.I.; Awan, M.U. Some quantum estimates for Hermite-Hadamard inequalities. Appl. Math. Comput. 2015, 251, 675–679. [Google Scholar] [CrossRef]
- Sial, I.B.; Ali, M.A.; Murtaza, G.; Ntouyas, S.K.; Soontharanon, J.; Thanin, S. On Some New Inequalities of Hermite–Hadamard Midpoint and Trapezoid Type for Preinvex Functions in (p,q)-Calculus. Symmetry 2021, 13, 1864. [Google Scholar] [CrossRef]
- Sitho, S.; Ali, M.A.; Budak, H.; Ntouyas, S.K.; Tariboon, J. Trapezoid and Midpoint Type Inequalities for Preinvex Functions via Quantum Calculus. Mathematics 2021, 9, 1996. [Google Scholar] [CrossRef]
- Wannalookkhee, F.; Nonlaopon, K.; Tariboon, J.; Ntouyas, S.K. On Hermite-Hadamard type inequalities for coordinated convex functions via p,q-calculus. Mathematics 2021, 9, 698. [Google Scholar] [CrossRef]
- Noor, M.A.; Noor, K.I.; Awan, M.U. Some quantum integral inequalities via preinvex functions. Appl. Math. Comput. 2015, 269, 242–251. [Google Scholar] [CrossRef]
- Nwaeze, E.R.; Tameru, A.M. New parameterized quantum integral inequalities via η-quasiconvexity. Adv. Differ. Equ. 2019, 2019, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.A.; Noor, M.; Nwaeze, E.R.; Chu, Y.-M. Quantum Hermite–Hadamard inequality by means of a Green function. Adv. Differ. Equ. 2020, 2020, 1–20. [Google Scholar]
- Ali, M.A.; Budak, H.; Zhang, Z.; Yildrim, H. Some new Simpson’s type inequalities for co-ordinated convex functions in quantum calculus. Math. Meth. Appl. Sci. 2021, 44, 4515–4540. [Google Scholar] [CrossRef]
- Ali, M.A.; Abbas, M.; Budak, H.; Agarwal, P.; Murtaza, G.; Chu, Y. New quantum boundaries for quantum Simpson’s and quantum Newton’s type inequalities for preinvex functions. Adv. Differ. Equ. 2021, 2021, 1–21. [Google Scholar] [CrossRef]
- Budak, H.; Erden, S.; Ali, M.A. Simpson and Newton type inequalities for convex functions via newly defined quantum integrals. Math. Meth. Appl. Sci. 2020, 44, 378–390. [Google Scholar] [CrossRef]
- Budak, H.; Ali, M.A.; Tunç, T. Quantum Ostrowski-type integral inequalities for functions of two variables. Math. Meth. Appl. Sci. 2021, 44, 5857–5872. [Google Scholar] [CrossRef]
- Siricharuanun, P.; Erden, S.; Ali, M.A.; Budak, H.; Chasreechai, S.; Thanin, S. Some New Simpson’s and Newton’s Formulas Type Inequalities for Convex Functions in Quantum Calculus. Mathematics 2021, 9, 1992. [Google Scholar] [CrossRef]
- Vivas-Cortez, M.; Ali, M.A.; Kashuri, A.; Sial, I.B.; Zhang, Z. Some New Newton’s Type Integral Inequalities for Co-Ordinated Convex Functions in Quantum Calculus. Symmetry 2020, 12, 1476. [Google Scholar] [CrossRef]
- Ali, M.A.; Chu, Y.-M.; Budak, H.; Akkurt, A.; Yildrim, H. Quantum variant of Montgomery identity and Ostrowski-type inequalities for the mappings of two variables. Adv. Differ. Equ. 2021, 2021, 1–26. [Google Scholar] [CrossRef]
- Ali, M.A.; Budak, H.; Akkurt, A.; Chu, Y.-M. Quantum Ostrowski type inequalities for twice quantum differentiable functions in quantum calculus. Open Math. 2021, 19, 440–449. [Google Scholar] [CrossRef]
- Budak, H.; Ali, M.A.; Alp, N.; Chu, Y.-M. Quantum Ostrowski type integral inequalities. J. Math. Inequal. 2021, in press. [Google Scholar]
- Kunt, M.; İşcan, İ.; Alp, N.; Sarikaya, M.Z. p,q-Hermite-Hadamard inequalities and p,q-estimates for midpoint inequalities via convex quasi-convex functions. Rev. R. Acad. Cienc. Exactas F s. Nat. Ser. A Mat. RACSAM 2018, 112, 969–992. [Google Scholar] [CrossRef]
- Vivas-Cortez, M.; Ali, M.A.; Budak, H.; Kalsoom, H.; Agarwal, P. Some New Hermite–Hadamard and Related Inequalities for Convex Functions via p,q-Integral. Entropy 2021, 23, 828. [Google Scholar] [CrossRef]
- Kac, V.; Cheung, P. Quantum Calculus; Springer: New York, NY, USA, 2002. [Google Scholar]
- Jackson, F.H. On a q-definite integrals. Quarterly J. Pure Appl. Math. 1910, 41, 193–203. [Google Scholar]
- Tariboon, J.; Ntouyas, S.K. Quantum calculus on finite intervals and applications to impulsive difference equations. Adv. Differ. Equ. 2013, 2013, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Sadjang, P.N. On the fundamental theorem of (p,q)-calculus and some (p,q)-Taylor formulas. Results Math. 2018, 73, 1–21. [Google Scholar]
- Tunç, M.; Göv, E. Some integral inequalities via (p,q)-calculus on finite intervals. RGMIA Res. Rep. Coll. 2016, 19, 1–12. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).