Classification of Metaplectic Fusion Categories
Abstract
:1. Introduction
- 1.
- The monoidal classes of fusion categories constructed from , and are the fusion categories underlying metaplectic modular categories.
- 2.
- Let and parameterize two different solutions to the pentagon equations. Then the fusion categories constructed from these solutions are monoidally equivalent if and only if and there exists such that .
- 3.
- For , there are exactly monoidally inequivalent metaplectic modular categories if , otherwise there are exactly .
2. Preliminaries
2.1. Fusion Categories and Modular Categories
- (Structure constants) There exist non-negative integers for such that
- (Duality) A bijection such that which extends to an anti-involution on , i.e., .
- 1.
- (-linearity) is enriched over . This is to say that is a finite dimensional vector space over k for all objects .
- 2.
- (Finiteness) There are finitely many isomorphism classes of simple objects in and for all simple objects .
- 3.
- (Rigidity) For every object , there is an object and evaluation and co-evaluation mapssuch that
2.2. Fusion and Modular Systems
- 1.
- A set of labels L containing an element called .
- 2.
- An involution such that .
- 3.
- A set map (written for ) satisfyingWe will define .
- 4.
- For every quadruple , an invertible matrix with entries satisfying
3. Monoidal Equivalence and Gauge Invariants
4. Fusion Systems
4.1. Fusion Rules for Categories
- 1.
- The automorphisms which permute the are given by ,
- 2.
- The automorphisms which permute the are given by , and
- 3.
- The automorphism group of is .
4.2. F-Matrices
4.2.1. Notation
4.2.2. Arithmetic Data
4.3. R-Matrices
Modular Data for Modular Systems
5. Monoidal Equivalence of Fusion Systems
5.1. Determining Equivalence
- 1.
- and are monoidally equivalent,
- 2.
- there exists such that , and
- 3.
- there exists such that .
5.2. Calculating the Number of Monoidal Equivalence Classes
6. Examples
- The classification of weakly integral modular categories of dimension is given in [40]. This contains those of our family for which is square free.
- The classification of integral modular categories of dimension is given in [41] where q is prime.
- Explicit formulae for the modular data of -equivariantizations of Tambara–Yamagami categories is given in [23] to which our categories are Grothendieck equivalent.
6.1.
6.2.
6.3.
6.4.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Appendix A. Proof of Solution to Pentagon Equations
References
- Landau, L. On the theory of phase transitions. Zh. Eksp. Teor. Fiz. 1937, 7, 19–32. [Google Scholar] [CrossRef]
- Wen, X.-G. Topological orders and edge excitations in fractional quantum hall states. Adv. Phys. 1995, 44, 405–473. [Google Scholar] [CrossRef] [Green Version]
- Laughlin, R.B. Anomalous quantum hall effect: An incompressible quantum fluid with fractionally charged excitations. Phys. Rev. Lett. 1983, 50, 1395–1398. [Google Scholar]
- Tsui, D.C.; Stormer, H.L.; Gossard, A.C. Two-dimensional magnetotransport in the extreme quantum limit. Phys. Rev. Lett. 1982, 48, 1559–1562. [Google Scholar]
- Rowell, E.; Stong, R.; Wang, Z. On classification of modular tensor categories. Comm. Math. Phys. 2009, 292, 343–389. [Google Scholar] [CrossRef] [Green Version]
- Hastings, M.B.; Nayak, C.; Wang, Z. Metaplectic anyons, majorana zero modes, and their computational power. Phys. Rev. B 2013, 87, 165421. [Google Scholar] [CrossRef] [Green Version]
- Hastings, M.B.; Nayak, C.; Wang, Z. On metaplectic modular categories and their applications. Comm. Math. Phys. 2014, 330, 45–68. [Google Scholar]
- Finch, P.E.; Flohr, M.; Frahm, H. Zn clock models and chains of so(n)2 non-abelian anyons: Symmetries, integrable points and low energy properties. J. Stat. Mech. Theory Exp. 2018, 2018, 023103. [Google Scholar]
- Kassel, C. ; Quantum Groups; Graduate Texts in Mathematics; Springer: New York, NY, USA, 1995; Volume 155. [Google Scholar]
- Evans, D.E.; Kawahigashi, Y. Quantum Symmetries on Operator Algebras; Oxford Mathematical Monographs; The Clarendon Press, Oxford University Press: New York, NY, USA, 1998. [Google Scholar]
- Bakalov, B.; Kirillov, A., Jr. Lectures on Tensor Categories and Modular Functors; University Lecture Series; American Mathematical Society: Providence, RI, USA, 2001; Volume 21. [Google Scholar]
- Turaev, V.G. Quantum Invariants of Knots and 3-Manifolds, revised ed.; de Gruyter Studies in Mathematics; Walter de Gruyter & Co.: Berlin, Germany, 2010; Volume 18. [Google Scholar]
- Wang, Z. Topological Quantum Computation; CBMS Regional Conference Series in Mathematics, Published for the Conference Board of the Mathematical Sciences, Washington, DC; American Mathematical Society: Providence, RI, USA, 2010; Volume 112. [Google Scholar]
- Levin, M.A.; Wen, X.-G. String-net condensation: A physical mechanism for topological phases. Phys. Rev. B 2005, 71, 045110. [Google Scholar] [CrossRef] [Green Version]
- Ostrik, V. Module categories, weak Hopf algebras and modular invariants. Transf. Groups 2003, 8, 177–206. [Google Scholar]
- Hagge, T.J.; Hong, S.-M. Some non-braided fusion categories of rank three. Commun. Contemp. Math. 2009, 11, 615–637. [Google Scholar] [CrossRef]
- Ostrik, V. Fusion categories of rank 2. Math. Res. Lett. 2003, 10, 177–183. [Google Scholar] [CrossRef]
- Ostrik, V. Pivotal fusion categories of rank 3. Mosc. Math. J. 2015, 15, 373–396. [Google Scholar]
- Kazhdan, D.; Wenzl, H. Reconstructing Monoidal Categories; I.M. Gel′fand Seminar, Adv. Soviet Math.; American Mathematical Society: Providence, RI, USA, 1993; Volume 16, pp. 111–136. [Google Scholar]
- Tambara, D.; Yamagami, S. Tensor categories with fusion rules of self-duality for finite abelian groups. J. Algebra 1998, 209, 692–707. [Google Scholar] [CrossRef] [Green Version]
- Gannon, T. The automorphisms of affine fusion rings. Adv. Math. 2002, 165, 165–193. [Google Scholar]
- Rowell, E.C. From Quantum Groups to Unitary Modular Tensor Categories; Representations of algebraic groups, quantum groups, and Lie algebras, Contemp. Math.; American Mathematical Society: Providence, RI, USA, 2006; Volume 413. [Google Scholar]
- Gelaki, S.; Naidu, D.; Nikshych, D. Centers of graded fusion categories. Algebra Number Theory 2009, 3, 959–990. [Google Scholar] [CrossRef] [Green Version]
- Ardonne, E.; Cheng, M.; Rowell, E.C.; Wang, Z. Classification of metaplectic modular categories. J. Algebra 2016, 466, 141–146. [Google Scholar] [CrossRef] [Green Version]
- Hagge, T.; Titsworth, M. Geometric Invariants for Fusion Categories. arXiv 2015, arXiv:1509.03275. [Google Scholar]
- Davidovich, O.; Hagge, T.; Wang, Z. On Arithmetic Modular Categories. arXiv 2013, arXiv:1305.2229. [Google Scholar]
- Etingof, P.; Nikshych, D.; Ostrik, V. On fusion categories. Ann. Math. 2005, 162, 581–642. [Google Scholar] [CrossRef] [Green Version]
- Etingof, P.; Gelaki, S.; Nikshych, D.; Ostrik, V. Tensor Categories; Mathematical Surveys and Monographs, American Mathematical Society: Providence, RI, USA, 2015; Volume 205. [Google Scholar]
- Müger, M. From subfactors to categories and topology. I. Frobenius algebras in and Morita equivalence of tensor categories. J. Pure Appl. Algebra 2003, 180, 81–157. [Google Scholar]
- Kitaev, A. Anyons in an exactly solved model and beyond. Ann. Phys. 2006, 321, 2–111. [Google Scholar]
- Bruillard, P.; Ng, S.-H.; Rowell, E.C.; Wang, Z. Rank-finiteness for modular categories. J. Amer. Math. Soc. 2016, 29, 857–881. [Google Scholar] [CrossRef] [Green Version]
- Mignard, M.; Schauenburg, P. Modular categories are not determined by their modular data. Lett. Math. Phys. 2021, 111, 60. [Google Scholar] [CrossRef]
- Fröhlich, J.; Gabbiani, F. Braid statistics in local quantum theory. Rev. Math. Phys. 1990, 2, 251–353. [Google Scholar]
- Mumford, D. The Red Book of Varieties and Schemes, expanded ed.; Lecture Notes in Mathematics; Springer: Berlin/Heidelberg, Germany, 1999; Volume 1358. [Google Scholar]
- Finkelberg, M. An equivalence of fusion categories. Geom. Funct. Anal. 1996, 6, 249–267. [Google Scholar] [CrossRef]
- Andersen, H.H. Tensor products of quantized tilting modules. Comm. Math. Phys. 1992, 149, 149–159. [Google Scholar] [CrossRef]
- Natale, S.; Plavnik, J.Y. Solvability of a class of braided fusion categories. Appl. Categ. Structures 2014, 22, 229–240. [Google Scholar]
- Naidu, D.; Rowell, E.C. A finiteness property for braided fusion categories. Algebr. Represent. Theory 2011, 14, 837–855. [Google Scholar] [CrossRef] [Green Version]
- Lemmermeyer, F. Reciprocity Laws; Springer Monographs in Mathematics; Springer: Berlin/Heidelberg, Germany, 2000; From Euler to Eisenstein. [Google Scholar]
- Bruillard, P.; Galindo, C.; Ng, S.-H.; Plavnik, J.Y.; Rowell, E.C.; Wang, Z. On the classification of weakly integral modular categories. J. Pure Appl. Algebra 2016, 220, 2364–2388. [Google Scholar] [CrossRef] [Green Version]
- Bruillard, P.; Galindo, C.; Hong, S.-M.; Kashina, Y.; Naidu, D.; Natale, S.; Plavnik, J.Y.; Rowell, E.C. Classification of integral modular categories of Frobenius-Perron dimension pq4 and p2q2. Canad. Math. Bull. 2014, 57, 721–734. [Google Scholar] [CrossRef]
- Ireland, K.; Rosen, M. A Classical Introduction to Modern Number Theory, 2nd ed.; Graduate Texts in Mathematics; Springer: New York, NY, USA, 1990; Volume 84. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ardonne, E.; Finch, P.E.; Titsworth, M. Classification of Metaplectic Fusion Categories. Symmetry 2021, 13, 2102. https://doi.org/10.3390/sym13112102
Ardonne E, Finch PE, Titsworth M. Classification of Metaplectic Fusion Categories. Symmetry. 2021; 13(11):2102. https://doi.org/10.3390/sym13112102
Chicago/Turabian StyleArdonne, Eddy, Peter E. Finch, and Matthew Titsworth. 2021. "Classification of Metaplectic Fusion Categories" Symmetry 13, no. 11: 2102. https://doi.org/10.3390/sym13112102