A Numerical Exploration of Modified Second-Grade Nanofluid with Motile Microorganisms, Thermal Radiation, and Wu’s Slip
Abstract
1. Introduction
2. Mathematical Model
3. Numerical Procedure
4. Graphical Analysis
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Choi, S.U.; Eastman, J.A. Enhancing thermal conductivity of fluids with nanoparticles. Argonne Natl. Lab. Il USA 1995, 1–8. [Google Scholar]
- Buongiorno, J. Convective transport in nanofluids. J. Heat Transf. 2006, 128, 240–250. [Google Scholar] [CrossRef]
- Khan, M.I.; Hayat, T.; Waqas, M.; Alsaedi, A.; Khan, M.I. Effectiveness of radiative heat flux in MHD flow of Jeffrey-nanofluid subject to Brownian and thermophoresis diffusions. J. Hydrodyn. 2019, 31, 421–427. [Google Scholar] [CrossRef]
- Li, Z.; Sheikholeslami, M.; Mittal, A.S.; Shafee, A.; Haq, R.U. Nanofluid heat transfer in a porous duct in the presence of Lorentz forces using the lattice Boltzmann method. Eur. Phys. J. Plus 2019, 134, 30. [Google Scholar] [CrossRef]
- Aziz, A.; Muhammad, T.; Alsaedi, A.; Hayat, T. An optimal study for 3D rotating flow of Oldroyd-B nanofluid with convectively heated surface. J. Braz. Soc. Mech. Sci. Eng. 2019, 41, 236. [Google Scholar] [CrossRef]
- Li, Z.; Sheikholeslami, M.; Shafee, A.; Ramzan, M.; Kandasamy, R.; Al-Mdallal, Q.M. Influence of adding nanoparticles on solidification in a heat storage system considering radiation effect. J. Mol. Liquids. 2019, 273, 589–605. [Google Scholar] [CrossRef]
- Safaei, M.R.; Karimipour, A.; Abdollahi, A.; Nguyen, T.K. The investigation of thermal radiation and free convection heat transfer mechanisms of nanofluid inside a shallow cavity by lattice Boltzmann method. Phys. A Stat. Mech. Its Appl. 2018, 509, 515–535. [Google Scholar] [CrossRef]
- Sivasankaran, S.; Alsabery, A.I.; Hashim, I. Internal heat generation effect on transient natural convection in a nanofluid-saturated local thermal non-equilibrium porous inclined cavity. Phys. A Stat. Mech. Its Appl. 2018, 509, 275–293. [Google Scholar] [CrossRef]
- Sheikholeslami, M.; Keramati, H.; Shafee, A.; Li, Z.; Alawad, O.A.; Tlili, I. Nanofluid MHD forced convection heat transfer around the elliptic obstacle inside a permeable lid drive 3D enclosure considering lattice Boltzmann method. Phys. A: Stat. Mech. Its Appl. 2019, 523, 87–104. [Google Scholar] [CrossRef]
- Farshad, S.A.; Sheikholeslami, M. Simulation of nanoparticles second law treatment inside a solar collector considering turbulent flow. Physics A 2019, 525, 1–12. [Google Scholar] [CrossRef]
- Khan, S.U.; Waqas, H.; Shehzad, S.A.; Imran, M. Theoretical analysis of tangent hyperbolic nanoparticles with combined electrical MHD, activation energy and Wu’s slip features: A mathematical model. Phys. Scr. 2019, 94, 125211. [Google Scholar] [CrossRef]
- Li, F.; Sheikholeslami, M.; Dara, R.N.; Jafaryar, M.; Shafee, A.; Nguyen-Thoi, T.; Li, Z. Numerical study for nanofluid behavior inside a storage finned enclosure involving melting process. J. Mol. Liquids. 2020, 297, 111939. [Google Scholar] [CrossRef]
- Alamri, S.Z.; Ellahi, R.; Shehzad, N.; Zeeshan, A. Convective radiative plane Poiseuille flow of nanofluid through porous medium with slip: An application of Stefan blowing. J. Mol. Liq. 2019, 273, 292–304. [Google Scholar] [CrossRef]
- Kumar, K.G. Exploration of flow and heat transfer of non-Newtonian nanofluid over a stretching sheet by considering slip factor. Int. J. Numer. Methods Heat Fluid Flow 2019. [Google Scholar] [CrossRef]
- Farhangmehr, V.; Moghadasi, H.; Asiaei, S. A nanofluid MHD flow with heat and mass transfers over a sheet by nonlinear boundary conditions: Heat and mass transfer’s enhancement. J. Cent. South Univ. 2019, 26, 1205–1217. [Google Scholar] [CrossRef]
- Tlili, I.; Hamadneh, N.N.; Khan, W.A. Thermodynamic Analysis of MHD Heat and Mass Transfer of Nanofluids Past a Static Wedge with Navier Slip and Convective Boundary Conditions. Arab. J. Sci. Eng. 2019, 44, 1255–1267. [Google Scholar] [CrossRef]
- Khan, M. Effects of multiple slip on flow of magneto-Carreau fluid along wedge with chemically reactive species. Neural Comput. Appl. 2018, 30, 2191–2203. [Google Scholar] [CrossRef]
- Khan, M.; Azam, M.; Alshomrani, A.S. Unsteady slip flow of Carreau nanofluid over a wedge with nonlinear radiation and new mass flux condition. Results Phys. 2017, 2261–2270. [Google Scholar] [CrossRef]
- Khan, S.U.; Tlili, I.; Waqas, H.; Imran, M. Effects of nonlinear thermal radiation and activation energy on modified second-grade nanofluid with Cattaneo–Christov expressions. J. Therm. Anal. Calorim. 2020, 139, 1–12. [Google Scholar] [CrossRef]
- Rahman, M.; Manzur, M.; Khan, M. Mixed convection heat transfer to modified second grade fluid in the presence of thermal radiation. J. Mol. Liq. 2016, 223, 217–223. [Google Scholar] [CrossRef]
- Khan, M.; Rahman, M.; Manzur, M. Axisymmetric flow and heat transfer to modified second grade fluid over a radially stretching sheet. Results Phys. 2017, 7, 878–889. [Google Scholar] [CrossRef]
- Waqas, H.; Imran, M.; Khan, S.U.; Shehzad, S.A.; Meraj, M.A. Slip flow of Maxwell viscoelasticity-based micropolar nanoparticles with porous medium: a numerical study. Appl. Math. Mech. 2019, 40, 1255–1268. [Google Scholar] [CrossRef]
- Man, C.S.; Sun, Q.X. On the significance of normal stress effects in the flow of glaciers. J. Glacial. 1987, 33, 268–273. [Google Scholar] [CrossRef]
- Kuznetsov, A.V. Thermo-bioconvection in a suspension of oxytactic bacteria. Int. Commun. Heat Mass Transf. 2005, 32, 991–999. [Google Scholar] [CrossRef]
- Khan, S.U.; Waqas, H.; Bhatti, M.M.; Imran, M. Bio-convection in the Rheology of Magnetized Couple Stress Nanofluid Featuring Activation Energy and Wu’s Slip. J. Non Equilib. Thermodyn. 2020, 28, 81–95. [Google Scholar] [CrossRef]
- Waqas, H.; Khan, S.U.; Imran, M.; Bhatti, M.M. thermally developed Falkner–Skan bio-convection flow of a magnetized nanofluid in the presence of a motile gyrotactic microorganism: Buongiorno’s nanofluid model. Phys. Scr. 2019, 94, 115304. [Google Scholar] [CrossRef]
- Waqas, H.; Shehzad, S.A.; Khan, S.U.; Imran, M. Novel Numerical Computations on Flow of Nanoparticles in Porous Rotating Disk with Multiple Slip Effects and Microorganisms. J. Nanofluids 2019, 8, 1423–1432. [Google Scholar] [CrossRef]
- Waqas, H.; Khan, S.U.; Hassan, M.; Bhatti, M.M.; Imran, M. Analysis on the bio-convection flow of modified second-grade nanofluid containing gyrotactic microorganisms and nanoparticles. J. Mol. Liq. 2019, 291, 111231. [Google Scholar] [CrossRef]
- Waqas, H.; Khan, S.U.; Shehzad, S.A.; Imran, M. Radiative flow of Maxwell nanofluid containing gyrotactic microorganism and energy activation with convective Nield conditions. Heat Transf. Asian Res. 2019, 48, 1663–1687. [Google Scholar] [CrossRef]
- Waqas, H.; Khan, S.U.; Tlili, I.; Muhammad, A.; Mustafa, S.S. Significance of Bioconvective and thermally dissipation flow of viscoelastic nanoparticles with activation energy features: Novel biofuel significance. Symmetry 2020, 12, 214. [Google Scholar] [CrossRef]
- Khan, M.; Manzur, M.; Rahman, M. On axisymmetric flow and heat transfer of Cross fluid over a radially stretching sheet. Results Phys. 2017, 7, 3767–3772. [Google Scholar] [CrossRef]
- Aksoy, Y.; Pakdemirli, M.; Khalique, C.M. Boundary layer equations and stretching sheet solutions for the modified second grade fluid. Int. J. Eng. Sci. 2007, 45, 829–841. [Google Scholar] [CrossRef]
- Khan, M.; Rahman, M.U. Flow and heat transfer to modified second grade fluid over a non-linear stretching sheet. Aip Adv. 2015, 19, 087157. [Google Scholar] [CrossRef]
- Rahman, M.; Khan, M.; Manzur, M. Boundary layer flow and heat transfer of a modified second grade nanofluid with new mass flux condition. Results Phys. 2018, 10, 594–600. [Google Scholar] [CrossRef]
- Fang, T.; Yao, S.; Zhang, J.; Aziz, A. Viscous flow over a shrinking sheet with a second order slip flow model. Commun. Nonlinear Sci. Numer. Simul. 2010, 15, 1831–1842. [Google Scholar] [CrossRef]
- Nandeppanavar, M.M.; Vajravelu, K.; Abel, M.S.; Siddalingappa, M.N. Second order slip flow and heat transfer over a stretching sheet with non-linear Navier boundary condition. Int. J. Therm. Sci. 2012, 58, 143–150. [Google Scholar] [CrossRef]
- Khan, M.; Irfan, M.; Khan, W.A. Numerical assessment of solar energy aspects on 3D magneto-Carreau nanofluid: A revised proposed relation. Int. J. Hydrogen Energy 2017, 22054–22065. [Google Scholar] [CrossRef]
- Hayat, T.; Ali, S.; Farooq, M.A.; Alsaedi, A. On comparison of series and numerical solutions for flow of Eyring-Powell fluid with Newtonian heating and internal heat generation/absorption. PLoS ONE 2015, 10. [Google Scholar] [CrossRef]
- Avramenko, A.A.; Kuznetsov, A.V. Bio-thermal convection caused by combined effects of swimming of oxytactic bacteria and inclined temperature gradient in a shallow fluid layer. Int. J. Numer. Methods Heat Fluid Flow 2010, 20, 157–173. [Google Scholar] [CrossRef]
Masood et al. [39] | Present Results | ||||||||
---|---|---|---|---|---|---|---|---|---|
Exact Solution | Numerical Solution | Exact Solution | Numerical Solution | ||||||
0.5 | 10 | 0.81649658 | 2.3478745 | 0.816451160 | 2.3478704 | 0.816451161 | 2.3478701 | 0.81649645 | 2.3478744 |
1.0 | 0.70710678 | 2.3715683 | 0.70716177 | 2.3715544 | 0.70716170 | 2.3715542 | 0.70710696 | 2.3715684 | |
1.5 | 0.63245553 | 2.3877034 | 0.63257670 | 2.3876736 | 0.63257672 | 2.3876730 | 0.6324557 | 2.3877036 | |
2.0 | 0.57735027 | 2.399595 | 0.57755726 | 2.3995450 | 0.5775572 | 2.3995452 | 0.5773501 | 2.3995950 | |
2.0 | 0.95141934 | 0.9514135 | 0.9514137 | 0.9514193 | |||||
5.0 | 1.6081636 | 1.6081591 | 1.6081599 | 1.6081636 | |||||
7.0 | 1.9354025 | 1.9353982 | 1.9353985 | 1.9354025 |
0.1 | 0.2 | 0.2 | 0.2 | 1.0 | −1.0 | 0.3415 | 0.3559 | 0.3691 |
0.4 | 0.3277 | 0.3424 | 0.3546 | |||||
0.8 | 0.3158 | 0.3300 | 0.3407 | |||||
0.5 | 0.2 | 0.2 | 0.2 | 1.0 | −1.0 | 0.3388 | 0.3547 | 0.3684 |
0.4 | 0.3354 | 0.3542 | 0.3680 | |||||
0.6 | 0.3339 | 0.3559 | 0.3674 | |||||
0.5 | 0.2 | 0.1 | 0.2 | 1.0 | −1.0 | 0.3442 | 0.3571 | 0.3699 |
0.5 | 0.3440 | 0.3569 | 0.3697 | |||||
1.0 | 0.3438 | 0.3567 | 0.3695 | |||||
0.5 | 0.2 | 0.2 | 0.1 | 1.0 | −1.0 | 0.3417 | 0.3560 | 0.3692 |
0.5 | 0.3415 | 0.3558 | 0.3690 | |||||
1.0 | 0.3413 | 0.3556 | 0.3688 | |||||
0.5 | 0.2 | 0.2 | 0.2 | 2.0 | −1.0 | 0.2487 | 0.2577 | 0.2643 |
3.0 | 0.1965 | 0.2026 | 0.2067 | |||||
4.0 | 0.1624 | 0.1670 | 0.1699 | |||||
0.5 | 0.2 | 0.2 | 0.2 | 1.0 | −2.0 | 0.2732 | 0.2829 | 0.2941 |
−3.0 | 0.2337 | 0.2392 | 0.2474 | |||||
−4.0 | 0.2071 | 0.2098 | 0.2155 |
1 | 1 | 0.5 | 0.3 | 0.2 | 2 | 0.1 | 0.5 | 0.2 | 0.2 | 0.2787 | 0.2926 | 0.3024 |
2 | 0.3683 | 0.3919 | 0.4077 | |||||||||
3 | 0.4336 | 0.4636 | 0.4824 | |||||||||
10 | 0.1 | 0.5 | 0.3 | 0.2 | 2 | 0.1 | 0.5 | 0.2 | 0.2 | 0.3833 | 0.3563 | 0.3489 |
0.4 | 0.3687 | 0.3424 | 0.3355 | |||||||||
0.8 | 0.3514 | 0.3260 | 0.3193 | |||||||||
10 | 1 | 0.1 | 0.3 | 0.2 | 2 | 0.1 | 0.5 | 0.2 | 0.2 | 0.3533 | 0.3276 | 0.3209 |
0.4 | 0.3332 | 0.3083 | 0.3019 | |||||||||
0.8 | 0.3133 | 0.2892 | 0.2832 | |||||||||
10 | 1 | 0.5 | 0.1 | 0.2 | 2 | 0.1 | 0.5 | 0.2 | 0.2 | 0.5577 | 0.5986 | 0.6238 |
0.4 | 0.4895 | 0.5196 | 0.5394 | |||||||||
0.5 | 0.4213 | 0.4381 | 0.4506 | |||||||||
10 | 1 | 0.5 | 0.3 | 0.1 | 2 | 0.1 | 0.5 | 0.2 | 0.2 | 0.5228 | 0.5584 | 0.5810 |
0.5 | 0.5223 | 0.5580 | 0.5807 | |||||||||
1.0 | 0.5221 | 0.5578 | 0.5805 | |||||||||
10 | 1 | 0.5 | 0.3 | 0.2 | 1 | 0.2 | 0.5 | 0.2 | 0.2 | 0.5532 | 0.5915 | 0.6151 |
1.5 | 0.5404 | 0.5773 | 0.6005 | |||||||||
1.8 | 0.5324 | 0.5687 | 0.5916 | |||||||||
10 | 1 | 0.5 | 0.3 | 0.2 | 2 | 0.2 | 0.5 | 0.2 | 0.2 | 0.5236 | 0.5589 | 0.5812 |
0.3 | 0.5264 | 0.5607 | 0.5818 | |||||||||
0.4 | 0.5277 | 0.5613 | 0.5816 | |||||||||
10 | 1 | 0.5 | 0.3 | 0.2 | 2 | 0.2 | 0.1 | 0.2 | 0.2 | 0.5668 | 0.6046 | 0.6286 |
0.4 | 0.5100 | 0.5450 | 0.5672 | |||||||||
0.5 | 0.4680 | 0.5003 | 0.5211 | |||||||||
10 | 1 | 0.5 | 0.3 | 0.2 | 2 | 0.2 | 0.5 | 0.1 | 0.2 | 0.5166 | 0.5526 | 0.5761 |
0.5 | 0.5243 | 0.5599 | 0.5823 | |||||||||
1.0 | 0.5307 | 0.5662 | 0.5879 | |||||||||
10 | 1 | 0.5 | 0.3 | 0.2 | 2 | 0.2 | 0.5 | 0.2 | 0.1 | 0.5221 | 0.5579 | 0.5806 |
0.5 | 0.5226 | 0.5582 | 0.5809 | |||||||||
1.0 | 0.5231 | 0.5586 | 0.5811 |
1 | 1 | 0.5 | 0.3 | 0.2 | 2 | 0.1 | 0.5 | 0.2 | 0.2 | 0.4181 | 0.4388 | 0.4536 |
2 | 0.5525 | 0.5878 | 0.6115 | |||||||||
3 | 0.6504 | 0.6948 | 0.7236 | |||||||||
10 | 0.1 | 0.5 | 0.3 | 0.2 | 2 | 0.1 | 0.5 | 0.2 | 0.2 | 0.5609 | 0.5207 | 0.5100 |
0.5 | 0.5633 | 0.5320 | 0.5110 | |||||||||
1.0 | 0.5650 | 0.5230 | 0.5120 | |||||||||
10 | 1 | 0.1 | 0.3 | 0.2 | 2 | 0.1 | 0.5 | 0.2 | 0.2 | 0.5528 | 0.5158 | 0.5062 |
0.5 | 0.5371 | 0.5045 | 0.4968 | |||||||||
1.0 | 0.5305 | 0.4992 | 0.4920 | |||||||||
10 | 1 | 0.5 | 0.1 | 0.2 | 2 | 0.1 | 0.5 | 0.2 | 0.2 | 0.2789 | 0.2993 | 0.3119 |
0.4 | 1.2238 | 1.2990 | 1.3485 | |||||||||
0.5 | 2.1065 | 2.1907 | 2.2531 | |||||||||
10 | 1 | 0.5 | 0.3 | 0.1 | 2 | 0.1 | 0.5 | 0.2 | 0.2 | 1.5685 | 1.6752 | 1.7429 |
0.5 | 0.3134 | 0.3348 | 0.3484 | |||||||||
1.0 | 0.1567 | 0.1674 | 0.1742 | |||||||||
10 | 1 | 0.5 | 0.3 | 0.2 | 1.0 | 0.2 | 0.5 | 0.2 | 0.2 | 0.8997 | 0.8872 | 0.9226 |
1.4 | 0.8105 | 0.8660 | 0.9007 | |||||||||
1.7 | 0.7986 | 0.8531 | 0.8875 | |||||||||
10 | 1 | 0.5 | 0.3 | 0.2 | 2 | 0.2 | 0.5 | 0.2 | 0.2 | 0.7854 | 0.8383 | 0.8718 |
0.3 | 0.7896 | 0.8410 | 0.8724 | |||||||||
0.4 | 0.7916 | 0.8420 | 0.8727 | |||||||||
10 | 1 | 0.5 | 0.3 | 0.2 | 2 | 0.2 | 0.1 | 0.2 | 0.2 | 0.8501 | 0.9069 | 0.9428 |
0.4 | 0.7650 | 0.8174 | 0.8509 | |||||||||
0.5 | 0.7020 | 0.7505 | 0.7817 | |||||||||
10 | 1 | 0.5 | 0.3 | 0.2 | 2 | 0.2 | 0.5 | 0.1 | 0.2 | 0.7749 | 0.8289 | 0.8642 |
0.5 | 0.7864 | 0.8398 | 0.8735 | |||||||||
1.0 | 0.7960 | 0.8493 | 0.8818 | |||||||||
10 | 1 | 0.5 | 0.3 | 0.2 | 2 | 0.2 | 0.5 | 0.2 | 0.1 | 0.7832 | 0.8368 | 0.8710 |
0.5 | 0.7839 | 0.8374 | 0.8713 | |||||||||
1.0 | 0.7846 | 0.8379 | 0.8717 |
0.3 | 1 | 0.5 | 0.1 | 2 | 0.2 | 0.2 | 0.5502 | 0.6417 | 0.6981 |
0.5 | 0.6270 | 0.7235 | 0.7831 | ||||||
0.7 | 0.7039 | 0.8635 | 0.9632 | ||||||
0.5 | 1.2 | 0.5 | 0.1 | 2 | 0.2 | 0.2 | 0.4321 | 0.5000 | 0.5367 |
1.6 | 0.4060 | 0.4631 | 0.4915 | ||||||
2.0 | 0.3879 | 0.4379 | 0.4613 | ||||||
0.5 | 1 | 0.5 | 0.2 | 2 | 0.2 | 0.2 | 0.4389 | 0.5105 | 0.5534 |
0.4160 | 0.4778 | 0.5131 | |||||||
0.3898 | 0.4363 | 0.4620 | |||||||
0.5 | 1 | 0.5 | 0.2 | 2 | 0.2 | 0.2 | 0.4781 | 0.5635 | 0.6155 |
0.3 | 0.4903 | 0.5729 | 0.6215 | ||||||
0.4 | 0.4974 | 0.5784 | 0.6247 | ||||||
0.5 | 1 | 0.5 | 0.2 | 1.0 | 0.2 | 0.2 | 0.3846 | 0.4403 | 0.4741 |
1.4 | 0.4297 | 0.5013 | 0.5452 | ||||||
1.8 | 0.4737 | 0.5602 | 0.6133 | ||||||
0.5 | 1 | 0.5 | 0.2 | 2 | 0.1 | 0.2 | 0.4568 | 0.5447 | 0.6003 |
0.5 | 0.4787 | 0.5649 | 0.6173 | ||||||
1.0 | 0.4966 | 0.5819 | 0.6322 | ||||||
0.5 | 1 | 0.5 | 0.2 | 2 | 0.2 | 0.1 | 0.4726 | 0.5594 | 0.6127 |
0.5 | 0.4740 | 0.5604 | 0.6135 | ||||||
1.0 | 0.4753 | 0.5615 | 0.6142 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Waqas, H.; Imran, M.; Farooq, U.; Mallawi, F.; Tlili, I. A Numerical Exploration of Modified Second-Grade Nanofluid with Motile Microorganisms, Thermal Radiation, and Wu’s Slip. Symmetry 2020, 12, 393. https://doi.org/10.3390/sym12030393
Li Y, Waqas H, Imran M, Farooq U, Mallawi F, Tlili I. A Numerical Exploration of Modified Second-Grade Nanofluid with Motile Microorganisms, Thermal Radiation, and Wu’s Slip. Symmetry. 2020; 12(3):393. https://doi.org/10.3390/sym12030393
Chicago/Turabian StyleLi, Yurong, Hassan Waqas, Muhammad Imran, Umar Farooq, Fouad Mallawi, and Iskander Tlili. 2020. "A Numerical Exploration of Modified Second-Grade Nanofluid with Motile Microorganisms, Thermal Radiation, and Wu’s Slip" Symmetry 12, no. 3: 393. https://doi.org/10.3390/sym12030393
APA StyleLi, Y., Waqas, H., Imran, M., Farooq, U., Mallawi, F., & Tlili, I. (2020). A Numerical Exploration of Modified Second-Grade Nanofluid with Motile Microorganisms, Thermal Radiation, and Wu’s Slip. Symmetry, 12(3), 393. https://doi.org/10.3390/sym12030393