Application of a GIS-Based Slope Unit Method for Landslide Susceptibility Mapping in Helong City: Comparative Assessment of ICM, AHP, and RF Model
Abstract
:1. Introduction
2. Study Area
3. Methodology
3.1. The Mapping Unit
3.2. Landslide Inventory
- (a)
- Data collection: The existing data are the basis of this landslide investigation. Before remote sensing interpretation and field investigation, a large number of data of the study area, including formation conditions and inducing factors of geological disasters, the current situation and prevention of geological disasters, 1:50,000 topographic maps, 1:10,000 topographic maps, 1:250,000 geological maps, and satellite and aerial remote sensing information, were collected.
- (b)
- Remote sensing interpretation: Before the field investigation, the remote sensing interpretation of landslides was carried out according to the topographic features of the landslide [40].
- (c)
- Field investigation: Through field investigation, landslides interpreted through remote sensing were confirmed, and landslides not detected through remote sensing were added.
- (d)
- Production of the landslide inventory map: Based on GIS (Geographic Information System), the landslide inventory map was produced.
3.3. Influencing Factors
3.4. Multicollinearity Analysis of the Influencing Factors
3.5. Landslide Susceptibility Modeling
3.5.1. Information Content Model (ICM)
3.5.2. Analytic Hierarchy Process (AHP)
3.5.3. Random Forest (RF) Model
4. Results
4.1. Multicollinearity Analysis
4.2. Results of the Information Content Model
4.3. Results of the Analytic Hierarchy Process
4.4. Results of the Random Forest Model
5. Validation and Discussion
5.1. Validation
5.2. Comparison of Landslide Susceptibility Maps
5.3. Comparison with Other Models
5.4. Landslide Suceptibility Maps Analysis
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rotigliano, E.; Conoscenti, C.; Costanzo, D.; Agnesi, V.J.N.H. Slope units-based flow susceptibility model: Using validation tests to select controlling factors. Nat. Harzards 2012, 61, 143–153. [Google Scholar] [CrossRef]
- Sun, X.; Chen, J.; Han, X.; Bao, Y.; Zhan, J.; Peng, W. Application of a GIS-based slope unit method for landslide susceptibility mapping along the rapidly uplifting section of the upper Jinsha River, South-Western China. Bull. Eng. Geol. Environ. 2019. [Google Scholar] [CrossRef]
- Yang, X.J.; Chen, L.D. Geoinformation. Using multi-temporal remote sensor imagery to detect earthquake-triggered landslides. Int. J. Appl. Earth Obs. Geoinf. 2010, 12, 487–495. [Google Scholar] [CrossRef]
- Bao, Y.; Zhai, S.; Chen, J.; Xu, P.; Sun, X.; Zhan, J.; Zhang, W.; Zhou, X. The evolution of the Samaoding paleolandslide river blocking event at the upstream reaches of the Jinsha River, Tibetan Plateau. Geomorphology 2020, 351, 106970. [Google Scholar] [CrossRef]
- Ohlmacher, G.C.; Davis, J.C. Using multiple logistic regression and GIS technology to predict landslide hazard in northeast Kansas, USA. Eng. Geol. 2003, 69, 331–343. [Google Scholar] [CrossRef]
- Ren, F.; Wu, X. GIS-Based Landslide Susceptibility Mapping Using Remote Sensing Data and Machine Learning Methods; Springer: Berlin/Heidelberg, Germany, 2014; pp. 319–333. [Google Scholar]
- Dieu Tien, B.; Shahabi, H.; Omidvar, E.; Shirzadi, A.; Geertsema, M.; Clague, J.J.; Khosravi, K.; Pradhan, B.; Binh Thai, P.; Chapi, K.; et al. Shallow landslide prediction using a novel hybrid functional machine learning algorithm. Remote Sens. 2019, 11, 931. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Li, S.; Li, X.; Jiang, Y.; Wei, W.; Wang, Z.; Bai, Y. An integrated approach for landslide susceptibility mapping by considering spatial correlation and fractal distribution of clustered landslide data. Landslides 2019, 16, 715–728. [Google Scholar] [CrossRef]
- Mondal, S.; Mandal, S. Landslide susceptibility mapping of Darjeeling Himalaya, India using index of entropy (IOE) model. Appl. Geomat. 2019, 11, 129–146. [Google Scholar] [CrossRef]
- Monsieurs, E.; Dewitte, O.; Demoulin, A. A susceptibility-based rainfall threshold approach for landslide occurrence. Nat. Hazards Earth Syst. Sci. 2019, 19, 775–789. [Google Scholar] [CrossRef] [Green Version]
- Nahayo, L.; Kalisa, E.; Maniragaba, A.; Nshimiyimana, F.X. Comparison of analytical hierarchy process and certain factor models in landslide susceptibility mapping in Rwanda. Model. Earth Syst. Environ. 2019, 5, 885–895. [Google Scholar] [CrossRef]
- Bai, S.-B.; Wang, J.; Lue, G.-N.; Zhou, P.-G.; Hou, S.-S.; Xu, S.-N. GIS-based logistic regression for landslide susceptibility mapping of the Zhongxian segment in the Three Gorges area, China. Geomorphology 2010, 115, 23–31. [Google Scholar] [CrossRef]
- Cao, C.; Wang, Q.; Chen, J.; Ruan, Y.; Zheng, L.; Song, S.; Niu, C. Landslide Susceptibility Mapping in Vertical Distribution Law of Precipitation Area: Case of the Xulong Hydropower Station Reservoir, Southwestern China. Water 2016, 8, 270. [Google Scholar] [CrossRef] [Green Version]
- Lee, S. Application of logistic regression model and its validation for landslide susceptibility mapping using GIS and remote sensing data journals. Int. J. Remote Sens. 2005, 26, 1477–1491. [Google Scholar] [CrossRef]
- Yalcin, A.; Reis, S.; Aydinoglu, A.C.; Yomralioglu, T. A GIS-based comparative study of frequency ratio, analytical hierarchy process, bivariate statistics and logistics regression methods for landslide susceptibility mapping in Trabzon, NE Turkey. Catena 2011, 85, 274–287. [Google Scholar] [CrossRef]
- Wang, F.; Xu, P.; Wang, C.; Wang, N.; Jiang, N. Application of a GIS-Based Slope Unit Method for Landslide Susceptibility Mapping along the Longzi River, Southeastern Tibetan Plateau, China. ISPRS Int. J. Geo-Inf. 2017, 6, 172. [Google Scholar] [CrossRef] [Green Version]
- Du, G.; Zhang, Y.; Yang, Z.; Guo, C.; Yao, X.; Sun, D. Landslide susceptibility mapping in the region of eastern Himalayan syntaxis, Tibetan Plateau, China: A comparison between analytical hierarchy process information value and logistic regression-information value methods. Bull. Eng. Geol. Environ. 2019, 78, 4201–4215. [Google Scholar] [CrossRef]
- Chen, W.; Panahi, M.; Tsangaratos, P.; Shahabi, H.; Ilia, I.; Panahi, S.; Li, S.; Jaafari, A.; Bin Ahmad, B. Applying population-based evolutionary algorithms and a neuro-fuzzy system for modeling landslide susceptibility. Catena 2019, 172, 212–231. [Google Scholar] [CrossRef]
- Khosravi, K.; Panahi, M.; Bui, D.T. Spatial prediction of groundwater spring potential mapping based on an adaptive neuro-fuzzy inference system and metaheuristic optimization. Hydrol. Earth Syst. Sci. 2018, 22, 4771–4792. [Google Scholar] [CrossRef] [Green Version]
- Lei, T.; Xue, D.; Lv, Z.; Li, S.; Zhang, Y.; Nandi, A.K. Unsupervised Change Detection Using Fast Fuzzy Clustering for Landslide Mapping from Very High-Resolution Images. Remote Sens. 2018, 10, 1381. [Google Scholar] [CrossRef] [Green Version]
- Mokarram, M.; Zarei, A.R. Landslide Susceptibility Mapping Using Fuzzy-AHP. Geotech. Geol. Eng. 2018, 36, 3931–3943. [Google Scholar] [CrossRef]
- Kose, D.D.; Turk, T. GIS-based fully automatic landslide susceptibility analysis by weight-of-evidence and frequency ratio methods. Phys. Geogr. 2019, 40, 481–501. [Google Scholar] [CrossRef]
- Kumar, A.; Sharma, R.K.; Bansal, V.K. GIS-based comparative study of information value and frequency ratio method for landslide hazard zonation in a part of mid-Himalaya in Himachal Pradesh. Innov. Infrastruct. Solut. 2019, 4, 18. [Google Scholar] [CrossRef]
- Sevgen, E.; Kocaman, S.; Nefeslioglu, H.A.; Gokceoglu, C. A Novel Performance Assessment Approach Using Photogrammetric Techniques for Landslide Susceptibility Mapping with Logistic Regression, ANN and Random Forest. Sensors 2019, 19, 3940. [Google Scholar] [CrossRef] [Green Version]
- Binh Thai, P.; Dieu Tien, B.; Prakash, I.; Dholakia, M.B. Hybrid integration of Multilayer Perceptron Neural Networks and machine learning ensembles for landslide susceptibility assessment at Himalayan area (India) using GIS. Catena 2017, 149, 52–63. [Google Scholar] [CrossRef]
- Jiang, P.; Zeng, Z.; Chen, J.; Huang, T. Generalized regression neural networks with K-Fold cross-validation for displacement of landslide forecasting. In Advances in Neural Networks—ISNN 2014; Zeng, Z., Li, Y., King, I., Eds.; Springer International Publishing: Cham, Switzerland, 2014; Volume 8866, pp. 533–541. [Google Scholar]
- Chen, W.; Pourghasemi, H.R.; Kornejady, A.; Zhang, N. Landslide spatial modeling: Introducing new ensembles of ANN, MaxEnt, and SVM machine learning techniques. Geoderma 2017, 305, 314–327. [Google Scholar] [CrossRef]
- Hong, H.; Liu, J.; Zhu, A.X.; Shahabi, H.; Binh Thai, P.; Chen, W.; Pradhan, B.; Dieu Tien, B. A novel hybrid integration model using support vector machines and random subspace for weather-triggered landslide susceptibility assessment in the Wuning area (China). Environ. Earth Sci. 2017, 76, 652. [Google Scholar] [CrossRef]
- Liu, Y.H.; Li, D.H.; Chen, W.; Lin, B.S.; Seeboonruang, U.; Tsai, F. Soil Erosion Modeling and Comparison Using Slope Units and Grid Cells in Shihmen Reservoir Watershed in Northern Taiwan. Water 2018, 10, 1387. [Google Scholar] [CrossRef] [Green Version]
- Tian, Y.; Xiao, C.; Wu, L. Slope unit-based landslide susceptibility zonation. In Proceedings of the 2010 18th International Conference on Geoinformatics, Beijing, China, 18–20 June 2010; pp. 1–5. [Google Scholar]
- Tsai, H.Y.; Tsai, C.C.; Chang, W.C. Slope unit-based approach for assessing regional seismic landslide displacement for deep and shallow failure. Eng. Geol. 2019, 248, 124–139. [Google Scholar] [CrossRef]
- Su, Q.; Zhang, J.; Zhao, S.; Wang, L.; Liu, J.; Guo, J. Comparative Assessment of Three Nonlinear Approaches for Landslide Susceptibility Mapping in a Coal Mine Area. ISPRS Int. J. Geo-Inf. 2017, 6, 228. [Google Scholar] [CrossRef] [Green Version]
- Sun, X.; Chen, J.; Bao, Y.; Han, X.; Zhan, J.; Peng, W. Landslide Susceptibility Mapping Using Logistic Regression Analysis along the Jinsha River and Its Tributaries Close to Derong and Deqin County, Southwestern China. ISPRS Int. J. Geo-Inf. 2018, 7, 438. [Google Scholar] [CrossRef] [Green Version]
- Tanyas, H.; Rossi, M.; Alvioli, M.; van Westen, C.J.; Marchesini, I. A global slope unit-based method for the near real-time prediction of earthquake-induced landslides. Geomorphology 2019, 327, 126–146. [Google Scholar] [CrossRef]
- Romstad, B.; Etzelmuller, B. Mean-curvature watersheds: A simple method for segmentation of a digital elevation model into terrain units. Geomorphology 2012, 139, 293–302. [Google Scholar] [CrossRef] [Green Version]
- Sun, X.; Chen, J.; Han, X.; Bao, Y.; Zhou, X.; Peng, W. Landslide susceptibility mapping along the upper Jinsha River, south-western China: A comparison of hydrological and curvature watershed methods for slope unit classification. Bull. Eng. Geol. Environ. 2020, 79, 4657–4670. [Google Scholar] [CrossRef]
- Binh Thai, P.; Dieu Tien, B.; Pourghasemi, H.R.; Indra, P.; Dholakia, M.B. Landslide susceptibility assesssment in the Uttarakhand area (India) using GIS: A comparison study of prediction capability of naïve bayes, multilayer perceptron neural networks, and functional trees methods. Theor. Appl. Climatol. 2017, 128, 255–273. [Google Scholar] [CrossRef]
- Conforti, M.; Pascale, S.; Robustelli, G.; Sdao, F. Evaluation of prediction capability of the artificial neural networks for mapping landslide susceptibility in the Turbolo River catchment (northern Calabria, Italy). Catena 2014, 113, 236–250. [Google Scholar] [CrossRef]
- Dahal, R.K.; Hasegawa, S.; Nonomura, A.; Yamanaka, M.; Masuda, T.; Nishino, K. GIS-based weights-of-evidence modelling of rainfall-induced landslides in small catchments for landslide susceptibility mapping. Environ. Geol. 2008, 54, 311–324. [Google Scholar] [CrossRef]
- Guzzetti, F.; Mondini, A.C.; Cardinali, M.; Fiorucci, F.; Santangelo, M.; Chang, K.-T. Landslide inventory maps: New tools for an old problem. Earth-Sci. Rev. 2012, 112, 42–66. [Google Scholar] [CrossRef] [Green Version]
- Aditian, A.; Kubota, T.; Shinohara, Y. Comparison of GIS-based landslide susceptibility models using frequency ratio, logistic regression, and artificial neural network in a tertiary region of Ambon, Indonesia. Geomorphology 2018, 318, 101–111. [Google Scholar] [CrossRef]
- Ayalew, L.; Yamagishi, H. The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan. Geomorphology 2005, 65, 15–31. [Google Scholar] [CrossRef]
- Ballabio, C.; Sterlacchini, S. Support Vector Machines for Landslide Susceptibility Mapping: The Staffora River Basin Case Study, Italy. Math. Geosci. 2012, 44, 47–70. [Google Scholar] [CrossRef]
- Hong, H.; Pradhan, B.; Jebur, M.N.; Bui, D.T.; Xu, C.; Akgun, A. Spatial prediction of landslide hazard at the Luxi area (China) using support vector machines. Environ. Earth Sci. 2016, 75, 40. [Google Scholar] [CrossRef]
- Kumar, D.; Thakur, M.; Dubey, C.S.; Shukla, D.P. Landslide susceptibility mapping & prediction using Support Vector Machine for Mandakini River Basin, Garhwal Himalaya, India. Geomorphology 2017, 295, 115–125. [Google Scholar] [CrossRef]
- Zhan, J.; Chen, J.; Zhang, W.; Han, X.; Sun, X.; Bao, Y. Mass movements along a rapidly uplifting river valley: An example from the upper Jinsha River, southeast margin of the Tibetan Plateau. Environ. Earth Sci. 2018, 77, 634. [Google Scholar] [CrossRef]
- Binh Thai, P.; Dieu Tien, B.; Dholakia, M.B.; Prakash, I.; Ha Viet, P.; Mehmood, K.; Hung Quoc, L. A novel ensemble classifier of rotation forest and Naive Bayer for landslide susceptibility assessment at the Luc Yen district, Yen Bai Province (Viet Nam) using GIS. Geomat. Nat. Hazards Risk 2017, 8, 649–671. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Wu, Y.; Zhai, E.; Ye, P. Coupling analysis of the heat-water dynamics and frozen depth in a seasonally frozen zone. J. Hydrol. 2020, 125603. [Google Scholar] [CrossRef]
- Feng, H.; Yu, J.; Zheng, J.; Tang, X.; Peng, C.J.E.E.S. Evaluation of different models in rainfall-triggered landslide susceptibility mapping: A case study in Chunan, southeast China. Environ. Earth Sci. 2016, 75, 1399. [Google Scholar] [CrossRef]
- Yi, Y.; Zhang, Z.; Zhang, W.; Xu, Q.; Deng, C.; Li, Q. GIS-based earthquake-triggered-landslide susceptibility mapping with an integrated weighted index model in Jiuzhaigou region of Sichuan Province, China. Nat. Hazards Earth Syst. Sci. 2019, 19, 1973–1988. [Google Scholar] [CrossRef] [Green Version]
- Hong, H.Y.; Liu, J.Z.; Zhu, A.X. Modeling landslide susceptibility using LogitBoost alternating decision trees and forest by penalizing attributes with the bagging ensemble. Sci. Total Environ. 2020, 718, 137231. [Google Scholar] [CrossRef]
- Sachdeva, S.; Kumar, B. Comparison of gradient boosted decision trees and random forest for groundwater potential mapping in Dholpur (Rajasthan), India. Stoch. Environ. Res. Risk Assess. 2020, 1–20. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, S.; Zhang, X. Classification and fractal characteristics of coal rock fragments under uniaxial cyclic loading conditions. Arab. J. Geosci. 2018, 11, 201. [Google Scholar] [CrossRef]
- Qin, Z.; Fu, H.; Chen, X. A study on altered granite meso-damage mechanisms due to water invasion-water loss cycles. Environ. Earth Sci. 2019, 78, 428. [Google Scholar] [CrossRef]
- Wang, J.; Li, S.; Li, L.; Lin, P.; Xu, Z.; Gao, C. Attribute recognition model for risk assessment of water inrush. Bull. Eng. Geol. Environ. 2019, 78, 1057–1071. [Google Scholar] [CrossRef]
- Zhang, S.; Li, Y.; Shen, B.; Sun, X.; Gao, L. Effective evaluation of pressure relief drilling for reducing rock bursts and its application in underground coal mines. Int. J. Rock Mech. Min. Sci. 2019, 114, 7–16. [Google Scholar] [CrossRef]
- Zhu, C.; Tao, Z.; Yang, S.; Zhao, S. V shaped gully method for controlling rockfall on high-steep slopes in China. Bull. Eng. Geol. Environ. 2019, 78, 2731–2747. [Google Scholar] [CrossRef]
- Huang, F.; Yin, K.; Huang, J.; Gui, L.; Wang, P. Landslide susceptibility mapping based on self-organizing-map network and extreme learning machine. Eng. Geol. 2017, 223, 11–22. [Google Scholar] [CrossRef]
- Pourghasemi, H.R.; Kerle, N. Random forests and evidential belief function-based landslide susceptibility assessment in Western Mazandaran Province, Iran. Environ. Earth Sci. 2016, 75, 185. [Google Scholar] [CrossRef]
- Pradhan, B.; Lee, S. Landslide susceptibility assessment and factor effect analysis: Backpropagation artificial neural networks and their comparison with frequency ratio and bivariate logistic regression modelling. Environ. Model. Softw. 2010, 25, 747–759. [Google Scholar] [CrossRef]
- Yao, X.; Tham, L.G.; Dai, F.C. Landslide susceptibility mapping based on Support Vector Machine: A case study on natural slopes of Hong Kong, China. Geomorphology 2008, 101, 572–582. [Google Scholar] [CrossRef]
- Yesilnacar, E.; Topal, T. Landslide susceptibility mapping: A comparison of logistic regression and neural networks methods in a medium scale study, Hendek region (Turkey). Eng. Geol. 2005, 79, 251–266. [Google Scholar] [CrossRef]
- Yu, C.; Chen, J. Landslide Susceptibility Mapping Using the Slope Unit for Southeastern Helong City, Jilin Province, China: A Comparison of ANN and SVM. Symmetry-Basel 2020, 12, 1047. [Google Scholar] [CrossRef]
n | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
---|---|---|---|---|---|---|---|---|---|---|---|
RI | 0 | 0 | 0.58 | 0.90 | 1.12 | 1.24 | 1.32 | 1.41 | 1.45 | 1.49 | 1.51 |
Influencing Factor | VIF |
---|---|
Lithology | 1.440 |
Slope angle | 1.748 |
Slope aspect | 1.004 |
Rainfall | 1.728 |
Land use | 1.363 |
Seismic intensity | 1.391 |
Distance to river | 1.152 |
Distance to fault | 1.094 |
Factor | Class | Landslide Count | Total Count | ICM | Factor | Class | Landslide Count | Total Count | ICM |
---|---|---|---|---|---|---|---|---|---|
Lithology | Q | 21 | 3,918,004 | 0.54 | Distance to river | 0–500 | 88 | 9,094,709 | 1.13 |
N | 2 | 6,403,667 | −2.30 | 500–1000 | 13 | 4,187,032 | 0.00 | ||
K | 6 | 3,300,622 | −0.54 | 1000–1500 | 6 | 3,625,727 | −0.63 | ||
J | 44 | 7,867,350 | 0.59 | 1500–2000 | 5 | 3,148,408 | −0.67 | ||
Pt | 76 | 25,177,330 | −0.03 | 2000–2500 | 7 | 3,205,830 | −0.35 | ||
Ar | 10 | 4,428,508 | −0.32 | >2500 | 40 | 27,833,775 | −0.77 | ||
Slope angle | 0–6 | 5 | 6,000,220 | −1.32 | Land use | Hemerophyte | 25 | 5,066,280 | 0.46 |
6–12 | 38 | 14,446,398 | −0.17 | Bare land | 15 | 2,777,508 | 0.55 | ||
12–18 | 78 | 26,126,800 | −0.04 | Leaf wood | 111 | 2,943,655 | 2.49 | ||
18–24 | 29 | 4,422,539 | 0.75 | Coniferous forest | 6 | 6,305,813 | −1.18 | ||
24–30 | 9 | 99,524 | 3.37 | Mixed forest | 2 | 7,509,325 | −2.46 | ||
Slope aspect | N | 0 | 4458 | 0.00 | Seismic intensity | VI | 155 | 44,424,311 | 0.11 |
NE | 1 | 1,603,815 | −1.61 | VII | 4 | 5,854,173 | −1.52 | ||
E | 27 | 9,892,010 | −0.13 | VIII | 0 | 816,997 | 0.00 | ||
SE | 44 | 11,758,719 | 0.18 | Distance to fault | 0–600 | 30 | 8,493,314 | 0.13 | |
S | 49 | 10,308,180 | 0.42 | 600–1200 | 10 | 3,912,575 | −0.20 | ||
SW | 25 | 9,108,996 | −0.13 | 1200–1800 | 17 | 4,060,718 | 0.30 | ||
W | 12 | 7,405,201 | −0.65 | 1800–2400 | 14 | 4,389,149 | 0.02 | ||
NW | 1 | 1,014,102 | −1.15 | 2400–3000 | 5 | 1,370,885 | 0.16 | ||
Rainfall | 500–520 | 57 | 4,872,206 | 1.32 | >3000 | 83 | 28,868,870 | −0.08 | |
520–540 | 29 | 1,0162,854 | −0.09 | ------ | |||||
540–560 | 27 | 12,711,943 | −0.38 | ||||||
560–580 | 13 | 15,620,685 | −1.32 | ||||||
580–600 | 3 | 7,727,793 | −2.08 |
Factor | Class | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | Weight | CI/CR |
---|---|---|---|---|---|---|---|---|---|---|---|
Lithology | Q | 1 | 8 | 5 | 1 | 3 | 4 | 0.3141 | 0.074/0.060 | ||
N | 1/8 | 1 | 1/3 | 1/9 | 1/5 | 1/4 | 0.0281 | ||||
K | 1/5 | 3 | 1 | 1/7 | 1/3 | 1/2 | 0.0548 | ||||
J | 1 | 9 | 7 | 1 | 3 | 5 | 0.3474 | ||||
Pt | 1/3 | 5 | 3 | 1/3 | 1 | 6 | 0.1810 | ||||
Ar | 1/4 | 4 | 2 | 1/5 | 1/6 | 1 | 0.0745 | ||||
Slope angle | 0–6 | 1 | 1/3 | 1/4 | 1/6 | 1/8 | 0.0381 | 0.051/0.046 | |||
6–12 | 3 | 1 | 1/2 | 1/5 | 1/7 | 0.0708 | |||||
12–18 | 4 | 2 | 1 | 1/3 | 1/5 | 0.1152 | |||||
18–24 | 6 | 5 | 3 | 1 | 1/3 | 0.2616 | |||||
24–30 | 8 | 7 | 5 | 3 | 1 | 0.5142 | |||||
Slope aspect | N | 1 | 1/2 | 1/5 | 1/6 | 1/8 | 1/5 | 1/3 | 1/2 | 0.0271 | 0.023/0.016 |
NE | 2 | 1 | 1/4 | 1/5 | 1/7 | 1/4 | 1/3 | 1/2 | 0.0358 | ||
E | 5 | 4 | 1 | 1/2 | 1/4 | 1 | 2 | 3 | 0.1231 | ||
SE | 6 | 5 | 2 | 1 | 1/3 | 2 | 3 | 4 | 0.1917 | ||
S | 8 | 7 | 4 | 3 | 1 | 4 | 5 | 6 | 0.3754 | ||
SW | 5 | 4 | 1 | 1/2 | 1/4 | 1 | 2 | 3 | 0.1231 | ||
W | 3 | 2 | 1/2 | 1/3 | 1/5 | 1/2 | 1 | 4 | 0.0816 | ||
NW | 2 | 1 | 1/3 | 1/4 | 1/6 | 1/3 | 1/4 | 1 | 0.0423 | ||
Rainfall | 500–520 | 1 | 1/2 | 1/2 | 1/3 | 1/4 | 0.0791 | 0.008/0.007 | |||
520–540 | 2 | 1 | 1 | 1/2 | 1/3 | 0.1367 | |||||
540–560 | 2 | 1 | 1 | 1/2 | 1/3 | 0.1367 | |||||
560–580 | 3 | 2 | 2 | 1 | 1/2 | 0.2444 | |||||
580–600 | 4 | 3 | 3 | 2 | 1 | 0.4030 | |||||
Land use | Hemerophyte | 1 | 1/2 | 1/4 | 3 | 4 | 0.1529 | 0.035/0.031 | |||
Bare land | 2 | 1 | 1/3 | 4 | 5 | 0.2359 | |||||
Leaf wood | 4 | 3 | 1 | 6 | 7 | 0.4963 | |||||
Coniferous forest | 1/3 | 1/4 | 1/6 | 1 | 2 | 0.0688 | |||||
Mixed forest | 1/4 | 1/5 | 1/7 | 1/2 | 1 | 0.0461 | |||||
Seismic intensity | VI | 1 | 1/2 | 1/4 | 0.1365 | 0.009/0.016 | |||||
VII | 2 | 1 | 1/3 | 0.2385 | |||||||
VIII | 4 | 3 | 1 | 0.6250 | |||||||
Distance to river | 0–500 | 1 | 5 | 3 | 3 | 2 | 4 | 0.3720 | 0.06/0.005 | ||
500–1000 | 1/5 | 1 | 1/2 | 1/2 | 1/3 | 1 | 0.0700 | ||||
1000–1500 | 1/3 | 2 | 1 | 1 | 1/2 | 2 | 0.1297 | ||||
1500–2000 | 1/3 | 2 | 1 | 1 | 1/2 | 2 | 0.1297 | ||||
2000–2500 | 1/2 | 3 | 2 | 2 | 1 | 3 | 0.2254 | ||||
>2500 | 1/4 | 1 | 1/2 | 1/2 | 1/3 | 1 | 0.0731 | ||||
Distance to fault | 0–600 | 1 | 4 | 1/2 | 2 | 1 | 3 | 0.1952 | 0.028/0.023 | ||
600–1200 | 1/4 | 1 | 1/6 | 1/3 | 1/5 | 1/2 | 0.0435 | ||||
1200–1800 | 2 | 6 | 1 | 3 | 2 | 4 | 0.3376 | ||||
1800–2400 | 1/2 | 3 | 1/3 | 1 | 1/3 | 2 | 0.1077 | ||||
2400–3000 | 1 | 5 | 1/2 | 3 | 1 | 6 | 0.2514 | ||||
>3000 | 1/3 | 2 | 1/4 | 1/2 | 1/6 | 1 | 0.0646 | ||||
All | Lithology | 1 | 1/2 | 4 | 5 | 6 | 7 | 2 | 3 | 0.2307 | 0.041/0.029 |
Slope angle | 2 | 1 | 5 | 6 | 7 | 8 | 3 | 4 | 0.3313 | ||
Slope aspect | 1/4 | 1/5 | 1 | 2 | 3 | 4 | 1/3 | 1/2 | 0.0709 | ||
Rainfall | 1/5 | 1/6 | 1/2 | 1 | 2 | 3 | 1/4 | 1/3 | 0.0477 | ||
Land use | 1/6 | 1/7 | 1/3 | 1/2 | 1 | 2 | 1/5 | 1/4 | 0.0327 | ||
Seismic intensity | 1/7 | 1/8 | 1/4 | 1/3 | 1/2 | 1 | 1/6 | 1/5 | 0.0236 | ||
Distance to river | 1/2 | 1/3 | 3 | 4 | 5 | 6 | 1 | 2 | 0.1572 | ||
Distance to fault | 1/3 | 1/4 | 2 | 3 | 4 | 5 | 1/2 | 1 | 0.1059 |
Models | Susceptibility | Landslides Count | Landslides Ratio | Class Area (km2) | Class Ratio |
---|---|---|---|---|---|
SU-ICM | Low | 2 | 1.26% | 897.03 | 17.56% |
Moderate | 11 | 6.92% | 1142.43 | 22.36% | |
High | 42 | 26.42% | 1696.53 | 33.20% | |
Very High | 103 | 64.78% | 1373.56 | 26.88% | |
SU-AHP | Low | 8 | 5.03% | 942.80 | 18.45% |
Moderate | 28 | 17.61% | 1964.54 | 38.45% | |
High | 45 | 28.30% | 1410.72 | 27.61% | |
Very High | 78 | 49.06% | 791.49 | 15.49% | |
SU-RF | Low | 0 | 0.00% | 1907.41 | 37.33% |
Moderate | 6 | 3.77% | 1571.90 | 30.76% | |
High | 35 | 22.01% | 1100.75 | 21.54% | |
Very High | 118 | 74.21% | 529.49 | 10.36% | |
GU-ICM | Low | 2 | 1.26% | 756.05 | 14.80% |
Moderate | 22 | 13.84% | 2188.98 | 42.84% | |
High | 35 | 22.01% | 1275.39 | 24.96% | |
Very High | 100 | 62.89% | 889.13 | 17.40% | |
GU-AHP | Low | 16 | 10.06% | 1274.84 | 24.95% |
Moderate | 52 | 32.70% | 2044.59 | 40.02% | |
High | 35 | 22.01% | 1109.42 | 21.71% | |
Very High | 56 | 35.22% | 680.70 | 13.32% | |
GU-RF | Low | 5 | 3.14% | 1100.92 | 21.55% |
Moderate | 23 | 14.47% | 2082.84 | 40.76% | |
High | 54 | 33.96% | 1491.10 | 29.18% | |
Very High | 77 | 48.43% | 434.68 | 8.51% |
Source | Mapping Units | Method | Prediction Accuracy |
---|---|---|---|
This study | Grid units | ICM AHP | 83.4% |
70.9% | |||
RF | 94.6% | ||
Slope units | ICM AHP | 87.1% | |
80.5% | |||
RF | 91.3 | ||
Yu et al. (2020) [63] | Slope units | ANN | 89.7% |
SVM | 90.7% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, C.; Chen, J. Application of a GIS-Based Slope Unit Method for Landslide Susceptibility Mapping in Helong City: Comparative Assessment of ICM, AHP, and RF Model. Symmetry 2020, 12, 1848. https://doi.org/10.3390/sym12111848
Yu C, Chen J. Application of a GIS-Based Slope Unit Method for Landslide Susceptibility Mapping in Helong City: Comparative Assessment of ICM, AHP, and RF Model. Symmetry. 2020; 12(11):1848. https://doi.org/10.3390/sym12111848
Chicago/Turabian StyleYu, Chenglong, and Jianping Chen. 2020. "Application of a GIS-Based Slope Unit Method for Landslide Susceptibility Mapping in Helong City: Comparative Assessment of ICM, AHP, and RF Model" Symmetry 12, no. 11: 1848. https://doi.org/10.3390/sym12111848