# Inflation in Mimetic f(G) Gravity

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Mimetic f(G) Gravity

## 3. Inflation in Mimetic Gauss–Bonnet Gravity

#### 3.1. Example 1

#### 3.2. Example 2

#### 3.3. Example 3

## 4. Extensions of Mimetic f(G) Gravity

## 5. Conclusions

## Author Contributions

## Acknowledgments

## Conflicts of Interest

## References

- Liddle, A.R.; Lyth, D.H. Cosmological Inflation and Large-Scale Structure; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Dodelson, S. Modern Cosmology; Academic Press: Cambridge, MA, USA, 1999. [Google Scholar]
- Mukhanov, V.F.; Feldman, H.A.; Brandenberger, R.H. Theory of cosmological perturbations. Part 1. Classical perturbations. Part 2. Quantum theory of perturbations. Part 3. Extensions. Phys. Rept.
**1992**, 215, 203. [Google Scholar] [CrossRef] - Liddle, A.R. An Introduction to cosmological inflation. arXiv, 1998; arXiv:astro-ph/9901124. [Google Scholar]
- Langlois, D. Lectures on inflation and cosmological perturbations. Lect. Notes Phys.
**2010**, 800, 1. [Google Scholar] [CrossRef] - Khoury, J.; Ovrut, B.A.; Steinhardt, P.J.; Turok, N. The Ekpyrotic universe: Colliding branes and the origin of the hot big bang. Phys. Rev. D
**2001**, 64, 123522. [Google Scholar] [CrossRef] - Khoury, J.; Ovrut, B.A.; Steinhardt, P.J.; Turok, N. Density perturbations in the ekpyrotic scenario. Phys. Rev. D
**2002**, 66, 046005. [Google Scholar] [CrossRef] - Peiris, H.V.; Komatsu, E.; Verde, L.; Spergel, D.N.; Bennett, C.L.; Halpern, M.; Hinshaw, G.; Jarosik, N.; Kogut, A.; Limon, M.; et al. First year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Implications for inflation. Astrophys. J. Suppl.
**2003**, 148, 213. [Google Scholar] [CrossRef] - Hinshaw, G.; Larson, D.; Komatsu, E.; Spergel, D.N.; Bennett, C.L.; Dunkley, J.; Nolta, M.R.; Halpern, M.; Hill, R.S.; Odegard, N.; et al. Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Parameter Results. Astrophys. J. Suppl.
**2013**, 208, 19. [Google Scholar] [CrossRef] - Ade, P.A.R.; Aghanim, N.; Arnaud, M.; Arroja, F.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A.J.; Barreiro, R.B.; et al. Planck 2015 results. XX. Constraints on inflation.’ Astron. Astrophys.
**2016**, 594, A20. [Google Scholar] [CrossRef] - Ade, P.A.R.; Ahmed, Z.; Aikin, R.W.; Alexander, K.D.; Barkats, D.; Benton, S.J.; Bischoff, C.A.; Bock, J.J.; Bowens-Rubin, R.; Brevik, J.A.; Buder, I.; et al. Improved Constraints on Cosmology and Foregrounds from BICEP2 and Keck Array Cosmic Microwave Background Data with Inclusion of 95 GHz Band. Phys. Rev. Lett.
**2016**, 116. [Google Scholar] [CrossRef] [PubMed] - Lidsey, J.E.; Liddle, A.R.; Kolb, E.W.; Copeland, E.J.; Barreiro, T.; Abney, M. Reconstructing the inflation potential: An overview. Rev. Mod. Phys.
**1997**, 69, 373. [Google Scholar] [CrossRef] - Elizalde, E.; Nojiri, S.; Odintsov, S.D.; Saez-Gomez, D.; Faraoni, V. Reconstructing the universe history, from inflation to acceleration, with phantom and canonical scalar fields. Phys. Rev. D
**2008**, 77, 106005. [Google Scholar] [CrossRef] - Nojiri, S.; Odintsov, S.D. Unified cosmic history in modified gravity: From F(R) theory to Lorentz non-invariant models. Phys. Rept.
**2011**, 505, 59–144. [Google Scholar] [CrossRef] - Nojiri, S.; Odintsov, S.D. Introduction to modified gravity and gravitational alternative for dark energy. Int. J. Geom. Meth. Mod. Phys.
**2007**, 4, 115–145. [Google Scholar] [CrossRef] - Capozziello, S.; De Laurentis, M. Extended Theories of Gravity. Phys. Rept.
**2011**, 509, 167–321. [Google Scholar] [CrossRef] - Capozziello, S.; Faraoni, V. Beyond Einstein Gravity; Springer: Dordrecht, The Netherlands, 2010. [Google Scholar]
- De la Cruz-Dombriz, A.; Sáez-Gómez, D. Black holes, cosmological solutions, future singularities, and their thermodynamical properties in modified gravity theories. Entropy
**2012**, 14, 1717–1770. [Google Scholar] [CrossRef] [Green Version] - Clifton, T.; Ferreira, P.G.; Padilla, A.; Skordis, C. Modified gravity and cosmology. Phys. Rept.
**2012**, 513, 1–189. [Google Scholar] [CrossRef] - Capozziello, S.; De Laurentis, M.; Faraoni, V. ‘A bird’s eye view of f(R)-gravity. arXiv, 2009; arXiv:0909.4672v2. [Google Scholar]
- Nojiri, S.; Odintsov, S.D.; Oikonomou, V.K. Modified Gravity Theories on a Nutshell: Inflation, Bounce and Late-time Evolution. Phys. Rept.
**2017**, 692, 1–104. [Google Scholar] [CrossRef] - Olmo, G.J. Palatini Approach to Modified Gravity: F(R) Theories and Beyond. Int. J. Mod. Phys. D
**2011**, 20, 413–462. [Google Scholar] [CrossRef] - Beltran Jimenez, J.; Heisenberg, L.; Olmo, G.J.; Rubiera-Garcia, D. Born-Infeld inspired modifications of gravity. Phys. Rept.
**2018**, 727, 1. [Google Scholar] [CrossRef] - Bamba, K.; Nojiri, S.; Odintsov, S.D.; Sáez-Gómez, D. Inflationary universe from perfect fluid and F(R) gravity and its comparison with observational data. Phys. Rev. D
**2014**, 90, 124061. [Google Scholar] [CrossRef] - Starobinsky, A.A. A New Type of Isotropic Cosmological Models Without Singularity. Phys. Lett. B
**1980**, 91, 99. [Google Scholar] [CrossRef] - De la Cruz-Dombriz, A.; Elizalde, E.; Odintsov, S.D.; Sáez-Gómez, D. Spotting deviations from R
^{2}inflation. J. Cosmol. Astropart. Phys.**2016**, 1605, 060. [Google Scholar] [CrossRef] - Cognola, G.; Elizalde, E.; Nojiri, S.; Odintsov, S.D.; Sebastiani, L.; Zerbini, S. A Class of viable modified f(R) gravities describing inflation and the onset of accelerated expansion. Phys. Rev. D
**2008**, 77, 046009. [Google Scholar] [CrossRef] - Nojiri, S.; Odintsov, S.D. Modified f(R) gravity unifying R**m inflation with Lambda CDM epoch. Phys. Rev. D
**2008**, 77, 026007. [Google Scholar] [CrossRef] - Cognola, G.; Elizalde, E.; Odintsov, S.D.; Tretyakov, P.; Zerbini, S. Initial and final de Sitter universes from modified f(R) gravity. Phys. Rev. D
**2009**, 79, 044001. [Google Scholar] [CrossRef] - Odintsov, S.D.; Sáez-Chillón Gómez, D.; Sharov, G.S. Is exponential gravity a viable description for the whole cosmological history? Eur. Phys. J. C
**2017**, 77, 862. [Google Scholar] [CrossRef] [PubMed] - Harko, T.; Lobo, F.S.N.; Nojiri, S.; Odintsov, S.D. f(R,T) gravity. Phys. Rev. D
**2011**, 84, 024020. [Google Scholar] [CrossRef] - Odintsov, S.D.; Sáez-Gómez, D. f(R,T,R
_{μν}T^{μν}) gravity phenomenology and ΛCDM universe. Phys. Lett. B**2013**, 725, 437–444. [Google Scholar] [CrossRef] - Haghani, Z.; Harko, T.; Lobo, F.S.N.; Sepangi, H.R.; Shahidi, S. Further matters in space-time geometry: F(R,T,R
_{μν}T^{μν}) gravity. Phys. Rev. D**2013**, 88, 044023. [Google Scholar] [CrossRef] - Tamanini, N.; Koivisto, T.S. Consistency of nonminimally coupled f(R) gravity. Phys. Rev. D
**2013**, 88, 064052. [Google Scholar] [CrossRef] - Alvarenga, F.G.; de la Cruz-Dombriz, A.; Houndjo, M.J.S.; Rodrigues, M.E.; Sáez-Gómez, D. Dynamics of scalar perturbations in f(R,T) gravity. Phys. Rev. D
**2013**, 87, 103526. [Google Scholar] [CrossRef] [Green Version] - Nojiri, S.; Odintsov, S.D.; Sasaki, M. Gauss-Bonnet dark energy. Phys. Rev. D
**2005**, 71, 123509. [Google Scholar] [CrossRef] - Nojiri, S.; Odintsov, S.D. Modified Gauss-Bonnet theory as gravitational alternative for dark energy. Phys. Lett. B
**2005**, 631, 1–6. [Google Scholar] [CrossRef] - Cognola, G.; Elizalde, E.; Nojiri, S.; Odintsov, S.D.; Zerbini, S. Dark energy in modified Gauss-Bonnet gravity: Late-time acceleration and the hierarchy problem. Phys. Rev. D
**2006**, 73, 084007. [Google Scholar] [CrossRef] - Calcagni, G.; De Carlos, B.; De Felice, A. Ghost conditions for Gauss-Bonnet cosmologies. Nucl. Phys. B
**2006**, 752, 404–438. [Google Scholar] [CrossRef] - Koivisto, T.; Mota, D.F. Gauss-Bonnet Quintessence: Background Evolution, Large Scale Structure and Cosmological Constraints. Phys. Rev. D
**2007**, 75, 023518. [Google Scholar] [CrossRef] - Leith, B.M.; Neupane, I.P. Gauss-Bonnet cosmologies: Crossing the phantom divide and the transition from matter dominance to dark energy. J. Cosmol. Astropart. Phys.
**2007**, 2007. [Google Scholar] [CrossRef] - De la Cruz-Dombriz, A.; Saez-Gomez, D. On the stability of the cosmological solutions in f(R,G) gravity. Class. Quant. Grav.
**2012**, 29, 245014. [Google Scholar] [CrossRef] - Elizalde, E.; Myrzakulov, R.; Obukhov, V.V.; Saez-Gomez, D. LambdaCDM epoch reconstruction from F(R,G) and modified Gauss-Bonnet gravities. Class. Quant. Grav.
**2010**, 27, 095007. [Google Scholar] [CrossRef] - Myrzakulov, R.; Saez-Gomez, D.; Tureanu, A. On the ΛCDM Universe in f(G) gravity. Gen. Rel. Grav.
**2011**, 43, 1671. [Google Scholar] [CrossRef] - Kanti, P.; Gannouji, R.; Dadhich, N. Gauss-Bonnet Inflation. Phys. Rev. D
**2015**, 92, 041302. [Google Scholar] [CrossRef] - Kanti, P.; Gannouji, R.; Dadhich, N. Early-time cosmological solutions in Einstein-scalar-Gauss-Bonnet theory. Phys. Rev. D
**2015**, 92, 083524. [Google Scholar] [CrossRef] - Lahiri, S. Anisotropic inflation in Gauss-Bonnet gravity. J. Cosmol. Astropart. Phys.
**2016**, 1609, 025. [Google Scholar] [CrossRef] - Hikmawan, G.; Soda, J.; Suroso, A.; Zen, F.P. Comment on ?Gauss-Bonnet inflation? Phys. Rev. D
**2016**, 93, 068301. [Google Scholar] [CrossRef] - Satoh, M. Slow-roll Inflation with the Gauss-Bonnet and Chern-Simons Corrections. J. Cosmol. Astropart. Phys.
**2010**, 1011. [Google Scholar] [CrossRef] - Guo, Z.K.; Schwarz, D.J. Power spectra from an inflaton coupled to the Gauss-Bonnet term. Phys. Rev. D
**2009**, 80, 063523. [Google Scholar] [CrossRef] - Koh, S.; Lee, B.H.; Lee, W.; Tumurtushaa, G. Observational constraints on slow-roll inflation coupled to a Gauss-Bonnet term. Phys. Rev. D
**2014**, 90, 063527. [Google Scholar] [CrossRef] - Oikonomou, V.K. Singular Bouncing Cosmology from Gauss-Bonnet Modified Gravity. Phys. Rev. D
**2015**, 92, 124027. [Google Scholar] [CrossRef] - De Felice, A.; Tanaka, T. Inevitable Ghost and the Degrees of Freedom in f(R, G) Gravity. Prog. Theor. Phys.
**2010**, 124, 503–515. [Google Scholar] [CrossRef] - Feng, J.L. Dark Matter Candidates from Particle Physics and Methods of Detection. Ann. Rev. Astron. Astrophys.
**2010**, 48, 495–545. [Google Scholar] [CrossRef] - Sanders, R.H.; McGaugh, S.S. Modified Newtonian dynamics as an alternative to dark matter. Ann. Rev. Astron. Astrophys.
**2002**, 40, 263–317. [Google Scholar] [CrossRef] - Bekenstein, J.D. Modified gravity vs dark matter: Relativistic theory for MOND. PoS JHW
**2005**, 2004, 012. [Google Scholar] - Nojiri, S.; Odintsov, S.D. Dark energy, inflation and dark matter from modified F(R) gravity. arXiv, 2011; arXiv:0807.0685. [Google Scholar]
- Capozziello, S.; Cardone, V.F.; Troisi, A. Dark energy and dark matter as curvature effects. J. Cosmol. Astropart. Phys.
**2006**, 8. [Google Scholar] [CrossRef] - Capozziello, S.; De Laurentis, M. The dark matter problem from f(R) gravity viewpoint. Ann. Phys.
**2012**, 524, 545–578. [Google Scholar] [CrossRef] - Chamseddine, A.H.; Mukhanov, V. Mimetic Dark Matter. JHEP
**2013**, 1311, 135. [Google Scholar] [CrossRef] - Chamseddine, A.H.; Mukhanov, V.; Vikman, A. Cosmology with Mimetic Matter. J. Cosmol. Astropart. Phys.
**2014**, 1406. [Google Scholar] [CrossRef] - Golovnev, A. On the recently proposed Mimetic Dark Matter. Phys. Lett. B
**2014**, 728, 39–40. [Google Scholar] [CrossRef] [Green Version] - Deruelle, N.; Rua, J. Disformal Transformations, Veiled General Relativity and Mimetic Gravity. J. Cosmol. Astropart. Phys.
**2014**, 1409. [Google Scholar] [CrossRef] - Nojiri, S.; Odintsov, S.D. Mimetic F(R) gravity: Inflation, dark energy and bounce. Mod. Phys. Lett. A
**2014**, 29, 1450211. [Google Scholar] [CrossRef] - Momeni, D.; Altaibayeva, A.; Myrzakulov, R. New Modified Mimetic Gravity. Int. J. Geom. Meth. Mod. Phys.
**2014**, 11, 1450091. [Google Scholar] [CrossRef] - Astashenok, A.V.; Odintsov, S.D.; Oikonomou, V.K. Modified Gauss?Bonnet gravity with the Lagrange multiplier constraint as mimetic theory. Class. Quant. Grav.
**2015**, 32, 185007. [Google Scholar] [CrossRef] - Nojiri, S.; Odintsov, S.D.; Oikonomou, V.K. Viable Mimetic Completion of Unified Inflation-Dark Energy Evolution in Modified Gravity. Phys. Rev. D
**2016**, 94, 104050. [Google Scholar] [CrossRef] - Leon, G.; Saridakis, E.N. Dynamical behavior in mimetic F(R) gravity. J. Cosmol. Astropart. Phys.
**2015**, 1504. [Google Scholar] [CrossRef] - Odintsov, S.D.; Oikonomou, V.K. Accelerating cosmologies and the phase structure of F(R) gravity with Lagrange multiplier constraints: A mimetic approach. Phys. Rev. D
**2016**, 93, 023517. [Google Scholar] [CrossRef] - Sebastiani, L.; Vagnozzi, S.; Myrzakulov, R. Mimetic gravity: A review of recent developments and applications to cosmology and astrophysics. Adv. High Energy Phys.
**2017**, 2017, 3156915. [Google Scholar] [CrossRef] - Myrzakulov, R.; Sebastiani, L.; Vagnozzi, S. Inflation in f(R,ϕ)-theories and mimetic gravity scenario. Eur. Phys. J. C
**2015**, 75, 444. [Google Scholar] [CrossRef] - Bouhmadi-López, M.; Chen, C.Y.; Chen, P. Primordial Cosmology in Mimetic Born-Infeld Gravity. J. Cosmol. Astropart. Phys.
**2017**, 1711, 053. [Google Scholar] [CrossRef] - Matsumoto, J.; Odintsov, S.D.; Sushkov, S.V. Cosmological perturbations in a mimetic matter model. Phys. Rev. D
**2015**, 91, 064062. [Google Scholar] [CrossRef] - Chen, C.Y.; Bouhmadi-López, M.; Chen, P. Black hole solutions in mimetic Born-Infeld gravity. Eur. Phys. J. C
**2018**, 78, 59. [Google Scholar] [CrossRef] [PubMed] - Capozziello, S. Curvature quintessence. Int. J. Mod. Phys. D
**2002**, 11, 483–491. [Google Scholar] [CrossRef] - Capozziello, S.; Carloni, S.; Troisi, A. Quintessence without scalar fields, Recent Res. Dev. Astron. Astrophys.
**2003**, 1, 625. [Google Scholar] - Carroll, S.M.; Duvvuri, V.; Trodden, M.; Turner, M.S. Is cosmic speed-up due to new gravitational physics? Phys. Rev. D
**2004**, 70, 043528. [Google Scholar] [CrossRef] - Carloni, S.; Goswami, R.; Dunsby, P.K.S. A new approach to reconstruction methods in f(R) gravity. Class. Quant. Grav.
**2012**, 29, 135012. [Google Scholar] [CrossRef] - Elizalde, E.; Saez-Gomez, D. F(R) cosmology in presence of a phantom fluid and its scalar-tensor counterpart: Towards a unified precision model of the universe evolution. Phys. Rev. D
**2009**, 80, 044030. [Google Scholar] [CrossRef] - Goheer, N.; Larena, J.; Dunsby, P.K.S. Power-law cosmic expansion in f(R) gravity models. Phys. Rev. D
**2009**, 80, 061301. [Google Scholar] [CrossRef] - Bamba, K.; Capozziello, S.; Nojiri, S.; Odintsov, S.D. Dark energy cosmology: The equivalent description via different theoretical models and cosmography tests. Astrophys. Space Sci.
**2012**, 342, 155. [Google Scholar] [CrossRef] - Das, S.; Banerjee, N.; Dadhich, N. Curvature driven acceleration: A utopia or a reality? Class. Quant. Grav.
**2006**, 23, 4159. [Google Scholar] [CrossRef] - Saez-Gomez, D. Modified f(R) gravity from scalar-tensor theory and inhomogeneous EoS dark energy. Gen. Rel. Grav.
**2009**, 41, 1527–1538. [Google Scholar] [CrossRef] - Nojiri, S.; Odintsov, S.D.; Saez-Gomez, D. Cosmological reconstruction of realistic modified F(R) gravities. Phys. Lett. B
**2009**, 681, 74–80. [Google Scholar] [CrossRef] - De la Cruz-Dombriz, A.; Dobado, A. A f(R) gravity without cosmological constant. Phys. Rev. D
**2006**, 74, 087501. [Google Scholar] [CrossRef] - Sasaki, M.; Stewart, E.D. A General analytic formula for the spectral index of the density perturbations produced during inflation. Prog. Theor. Phys.
**1996**, 95, 71–78. [Google Scholar] [CrossRef] - Garcia-Bellido, J.; Wands, D. Metric perturbations in two field inflation. Phys. Rev. D
**1996**, 53, 5437. [Google Scholar] [CrossRef] - Garcia-Bellido, J.; Wands, D. Constraints from inflation on scalar—Tensor gravity theories. Phys. Rev. D
**1995**, 52, 6739. [Google Scholar] [CrossRef] - Kleidis, K.; Oikonomou, V.K. Loop quantum cosmology-corrected Gauss? Bonnet singular cosmology. Int. J. Geom. Meth. Mod. Phys.
**2017**, 15, 1850064. [Google Scholar] [CrossRef] - Odintsov, S.D.; Oikonomou, V.K.; Saridakis, E.N. Superbounce and Loop Quantum Ekpyrotic Cosmologies from Modified Gravity: F(R), F(G) and F(T) Theories. Ann. Phys.
**2015**, 363, 141–163. [Google Scholar] [CrossRef]

**Figure 1.**Confidence region for the parameter values of $h=\frac{{G}_{1}}{{G}_{0}}+N$ and b to be consistent with the Planck data and Background Imaging of Cosmic Extragalactic Polarisation (BICEP2)/Keck Array; h and b are constrained inside the blue region.

**Figure 2.**Constraints for the parameters $\frac{{G}_{2}}{{G}_{3}}$ and $\beta $. We have assumed $N=50$ (blue) and $N=60$ (red). To be consistent with the Planck data and Background Imaging of Cosmic Extragalactic Polarisation (BICEP2)/Keck Array, $\frac{{G}_{2}}{{G}_{3}}$ and $\beta $ are constrained inside the coloured areas.

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Zhong, Y.; Sáez-Chillón Gómez, D.
Inflation in Mimetic *f*(*G*) Gravity. *Symmetry* **2018**, *10*, 170.
https://doi.org/10.3390/sym10050170

**AMA Style**

Zhong Y, Sáez-Chillón Gómez D.
Inflation in Mimetic *f*(*G*) Gravity. *Symmetry*. 2018; 10(5):170.
https://doi.org/10.3390/sym10050170

**Chicago/Turabian Style**

Zhong, Yi, and Diego Sáez-Chillón Gómez.
2018. "Inflation in Mimetic *f*(*G*) Gravity" *Symmetry* 10, no. 5: 170.
https://doi.org/10.3390/sym10050170