Preliminary Evaluation of High-Diversity Herbaceous Seed Sowings in Different Substrates
Abstract
1. Introduction
1.1. Herbaceous Vegetation in Nature Worldwide
1.2. Application of Herbaceous Plants in Urban Areas
1.3. Urban Substrates
1.4. Composition of Urban Herbaceous Plantations and Seed Mixes
1.5. Research Questions
2. Materials and Methods
2.1. Characteristics of the Study Area
2.2. Study Area
2.3. Applied Substrates
2.4. Applied Seed Mix
2.5. Vegetation Monitoring
2.6. Data Analysis
2.6.1. Preliminary Assessment of the Plant Species of the Seed Mix
2.6.2. Multivariate Analyses
3. Results
3.1. Revision of the Plant Composition of the Seed Mix
3.2. Existing Vegetation Around the Plots
3.3. Evaluation of Plant Inventory (Seed Mixture and First-Year-Appearing Taxa) Based on the PADAPT
3.4. Vegetation and Species Level Assessment in the Plots After the First Year
3.4.1. Analysis of Vegetation Development in Different Substrates
3.4.2. Total Species Richness in Different Substrates
3.4.3. Frequency of Occurrence
3.4.4. Green Coverage in Different Substrates
3.4.5. Comparing the Species Composition of the Plots
4. Discussion
4.1. Evaluation of Seed Mixture and Sowing
4.2. Evaluation of Green Coverage
4.3. Evaluation of Species Composition in Different Substrates and Plots
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Evaluation Criteria | Value * | Definition |
---|---|---|
Plant family, Raunkiær life form, nativeness, area type, phytosociological categorization (Borhidi), Borhidi’s social behaviour type (SBT) | clear classification and known categories | |
Borhidi’s T: heat supply of the habitat where the species occurs (0–8) | 5 | in accordance with the submontane broad-leaved forest belt |
6 | in accordance with the thermophilous forest or Eurasian forest-steppe belt | |
7 | in accordance with the submediterranean woodland and Eurasian steppe belt | |
8 | in accordance with the eumediterranean evergreen belt | |
NA | no data | |
Borhidi’s W: occurrence in relation to soil moisture or the water table (1–12) | 1 | plants of extremely dry habitats or bare rock surfaces |
2 | xero-indicators of habitats with a long dry period | |
3 | xero-tolerant plants occasionally occurring on wet soils | |
4 | plants of semi-dry habitats | |
5 | plants of semi-humid habitats of mesic conditions | |
6 | plants of usually wet soils | |
7 | plants of moist but well-aerated soils | |
NA | no data | |
Borhidi’s N: in relation to the ammonia and nitrate supply of the habitats (1–9) | 1 | only in soils extremely poor in mineral nitrogen |
2 | plants of habitats very poor in nitrogen | |
3 | plants of moderately oligotrophic habitats | |
4 | plants of submesotrophic habitats | |
5 | plants of mesotrophic habitats | |
6 | plants of moderately nutrient rich habitats | |
7 | plants of soils rich in mineral nitrogen | |
8 | N-indicator plants of fertilized soils | |
NA | no data | |
Borhidi’s L: in relation to relative light intensity during the summer (1–9) | 5 | semi-shade plants |
6 | semi-shade—semi-light demanding plants | |
7 | semi-light demanding plants mostly living in full light, but also somewhat shade-tolerant | |
8 | highly light demanding plants | |
9 | full-light demanding plants of open habitats | |
NA | no data | |
Borhidi’s C: in relation to the distribution of plants according to degree of continentality of the climate (1–9) |
References
- Pokorny, M.L.; Sheley, R.L.; Svejcar, T.J.; Engel, R.E. Plant species diversity in a grassland plant community: Evidence for forbs as a critical management consideration. West. N. Am. Nat. 2004, 64, 9. [Google Scholar]
- Petermann, J.S.; Buzhdygan, O.Y. Grassland biodiversity. Curr. Biol. 2021, 31, R1195–R1201. [Google Scholar] [CrossRef] [PubMed]
- Cameron, R.W.F.; Hitchmough, J.D. Environmental Horticulture: Science and Management of Green Landscapes; CABI: Wallingford, UK, 2016. [Google Scholar]
- Dengler, J.; Janišová, M.; Török, P.; Wellstein, C. Biodiversity of Palaearctic grasslands: A synthesis. Agric. Ecosyst. Environ. 2014, 182, 1–14. [Google Scholar] [CrossRef]
- Rainer, T.; West, C. Planting in a Post-Wild World: Designing Plant Communities for Resilient Landscapes, 1st ed.; Timber Press: Portland, OR, USA, 2015. [Google Scholar]
- Hitchmough, J.D. Sowing Beauty: Designing Flowering Meadows from Seed; Timber Press: North Adams, MA, USA, 2017. [Google Scholar]
- Pickett, S.T.A.; Cadenasso, M.; Grove, M.; Nilon, C.; Pouyat, R.; Zipperer, W.; Costanza, R. Urban Ecological Systems: Linking Terrestrial Ecological, Physical, and Socioeconomic Components of Metropolitan Areas. Annu. Rev. Ecol. Syst. 2003, 32, 127–157. [Google Scholar] [CrossRef]
- Grimm, N.; Faeth, S.; Golubiewski, N.; Redman, C.; Wu, J.; Bai, X.; Briggs, J. Global Change and the Ecology of Cities. Science 2008, 319, 756–760. [Google Scholar] [CrossRef]
- Korotchenko, I.; Peregrym, M. Ukrainian Steppes in the Past, at Present and in the Future. In Eurasian Steppes. Ecological Problems and Livelihoods in a Changing World; Werger, M.J.A., Van Staalduinen, M.A., Eds.; Springer: Dordrecht, The Netherlands, 2012; pp. 173–196. [Google Scholar] [CrossRef]
- Torok-Tothmeresz-Gyepkotet-2015.pdf. Available online: https://orgprints.org/id/eprint/30119/1/Torok-Tothmeresz-Gyepkotet-2015.pdf (accessed on 10 March 2025).
- Báldi, A.; Batáry, P.; Kleijn, D. Effects of grazing and biogeographic regions on grassland biodiversity in Hungary–analysing assemblages of 1200 species. Agric. Ecosyst. Environ. 2013, 166, 28–34. [Google Scholar] [CrossRef]
- Norton, B.; Bending, G.; Clark, R.; Corstanje, R.; Dunnett, N.; Evans, K.; Grafius, D.; Gravestock, E.; Grice, S.; Harris, J.; et al. Urban meadows as an alternative to short mown grassland: Effects of composition and height on biodiversity. Ecol. Appl. 2019, 29, e01946. [Google Scholar] [CrossRef]
- Robbins, P.; Birkenholtz, T. Turfgrass revolution: Measuring the expansion of the American lawn. Land Use Policy 2003, 20, 181–194. [Google Scholar] [CrossRef]
- Balvanera, P.; Pfisterer, A.; Buchmann, N.; He, J.-S.; Nakashizuka, T.; Raffaelli, D.; Schmid, B. Quantifying the evidence for biodiversity effects on ecosystem functioning and services. Ecol. Lett. 2006, 9, 1146–1156. [Google Scholar] [CrossRef]
- Hector, A.; Bagchi, R. Biodiversity and Ecosystem Multifunctionality. Nature 2007, 448, 188–190. [Google Scholar] [CrossRef]
- Hooper, D.; Chapin, F.S., III; Ewel, J.J.; Hector, A.; Inchausti, P.; Lavorel, S.; Lawton, J.H.; Lodge, D.; Loreau, M.; Naeem, S.; et al. Effects of Biodiversity on Ecosystem Functioning: A Consensus of Current Knowledge. Ecol. Monogr. 2005, 75, 3–35. [Google Scholar] [CrossRef]
- Lundholm, J.T. Green roof plant species diversity improves ecosystem multifunctionality. J. Appl. Ecol. 2015, 52, 726–734. [Google Scholar] [CrossRef]
- Quijas, S.; Schmid, B.; Balvanera, P. Plant diversity enhances provision of ecosystem services: A new synthesis. Basic. Appl. Ecol. 2010, 11, 582–593. [Google Scholar] [CrossRef]
- Baruch, Z.; Liddicoat, C.; Cando-Dumancela, C.; Laws, M.; Morelli, H.; Weinstein, P.; Young, J.M.; Breed, M.F. Increased plant species richness associates with greater soil bacterial diversity in urban green spaces. Environ. Res. 2021, 196, 110425. [Google Scholar] [CrossRef] [PubMed]
- Bretzel, F.; Vannucchi, F.; Pezzarossa, B.; Paraskevopoulou, A.; Romano, D. Establishing wildflower meadows in anthropogenic landscapes. Front. Hortic. 2024, 2, 1248785. [Google Scholar] [CrossRef]
- Horváth, A.; Szemán, L.; Bartha, S.; Virágh, K.; Bölöni, J.; Fülöp, G.; Rév, S. A természetbarát visszagyepesítés technológiai lehetőségei: A 2008. május 22-23-án rendezett “Szakmapolitikai kihívások és kilátások a gyephasználatban 2007–2013” című szakmai-tudományos tanácskozáson elhangzott előadás szerkesztett változata. Gyepgazdálkodási Közlemények 2008, 6, 19–27. [Google Scholar] [CrossRef]
- Ignatieva, M.; Ahrné, K. Biodiverse green infrastructure for the 21st century: From “green desert” of lawns to biophilic cities. J. Archit. Urban. 2013, 37, 1–9. [Google Scholar] [CrossRef]
- Holmes, D. Superbloom Display Opens at the Tower of London, World Landscape Architecture. 2022. Available online: https://worldlandscapearchitect.com/superbloom-display-opens-at-the-tower-of-london/ (accessed on 8 March 2025).
- Szabó, K. Klímafák és Városfásítás; Starkiss Kft: Budapest, Hungary, 2023. [Google Scholar]
- Jim, C.Y. Urban soil characteristics and limitations for landscape planting in Hong Kong. Landsc. Urban Plan. 1998, 40, 235–249. [Google Scholar] [CrossRef]
- Szabó, K.; Boll, S.; Eros-Honti, Z. Applying artificial mycorrhizae in planting urban trees. Appl. Ecol. Environ. Res. 2014, 12, 835–853. [Google Scholar] [CrossRef]
- Szabó, K.; Lovas, V.; Eros-Honti, Z. The First Extensive Case-study on the Effects of Artificial Mycorrhization of Acer buergerianum Miq. in Hungary. Univers. J. Plant Sci. 2015, 3, 121–131. [Google Scholar] [CrossRef]
- Fini, A.; Frangi, P.; Amoroso, G.; Riccardo, P.; Faoro, M.; Bellasio, C.; Ferrini, F. Effect of controlled inoculation with specific mycorrhizal fungi from the urban environment on growth and physiology of containerized shade tree species growing under different water regimes. Mycorrhiza 2011, 21, 703–719. [Google Scholar] [CrossRef]
- Rokia, S.; Séré, G.; Schwartz, C.; Deeb, M.; Fournier, F.; Nehls, T.; Damas, O.; Vidal-Beaudet, L. Modelling agronomic properties of Technosols constructed with urban wastes. Waste Manag. 2014, 34, 2155–2162. [Google Scholar] [CrossRef] [PubMed]
- Bauer, M.; Krause, M.; Heizinger, V.; Kollmann, J. Using crushed waste bricks for urban greening with contrasting grassland mixtures: No negative effects of brick-augmented substrates varying in soil type, moisture and acid pre-treatment. Urban Ecosyst 2022, 25, 1369–1378. [Google Scholar] [CrossRef]
- Hitchmough, J.; Kendle, T.; Paraskevopoulou, A.T. Seedling emergence; survival; initial growth of forbs; grasses native to Britain; central/southern Europe in low productivity urban “waste” substrates. Urban Ecosyst. 2001, 5, 285–308. [Google Scholar] [CrossRef]
- Molineux, C.J.; Fentiman, C.H.; Gange, A.C. Characterising alternative recycled waste materials for use as green roof growing media in the U.K. Ecol. Eng. 2009, 35, 1507–1513. [Google Scholar] [CrossRef]
- Nehls, T.; Rokia, S.; Mekiffer, B.; Schwartz, C.; Wessolek, G. Contribution of bricks to urban soil properties. J. Soils Sediments 2012, 13, 575–584. [Google Scholar] [CrossRef]
- Young, T.; Cameron, D.D.; Sorrill, J.; Edwards, T.; Phoenix, G.K. Importance of different components of green roof substrate on plant growth and physiological performance. Urban For. Urban Green. 2014, 13, 507–516. [Google Scholar] [CrossRef]
- Ampim, P.; Sloan, J.; Cabrera, R.; Harp, D.; Jaber, F. Green roof growing media: Types, ingredients, composition and properties. J. Environ. Hortic. 2010, 28, 244–252. [Google Scholar] [CrossRef]
- Nagase, A.; Dunnett, N. The relationship between percentage of organic matter in substrate and plant growth in extensive green roofs. Landsc. Urban Plan. 2011, 103, 230–236. [Google Scholar] [CrossRef]
- Hitchmough, J.; Dunnett, N. The Dynamic Landscape: Design, Ecology and Management of Naturalistic Urban Planting, Routledge & CRC Press. 2004. Available online: https://www.routledge.com/The-Dynamic-Landscape-Design-Ecology-and-Management-of-Naturalistic-Urban/Dunnett-Hitchmough/p/book/9780415438100 (accessed on 6 October 2023).
- Hitchmough, J.D.; Kendle, A.D. Paraskevopoulou, Emergence, survival and initial growth of North American prairie forbs and British meadow forbs and grasses in low-productivity urban “waste” soils. J. Hortic. Sci. Biotechnol. 2003, 78, 89–99. [Google Scholar] [CrossRef]
- Korn, P. Peter Korn’s Garden: Giving Plants What They Want, 1st ed.; Peter Korn: Landvetter, Sweden, 2013. [Google Scholar]
- Beth Chatto’s Gravel Garden-Beth Chatto Gardens. Available online: https://www.bethchatto.co.uk/garden-nursery/gallery/gravel-garden.htm (accessed on 28 June 2025).
- Delos at Sissinghurst Castle Garden|Kent, National Trust. Available online: https://www.nationaltrust.org.uk/visit/kent/sissinghurst-castle-garden/recreating-delos-at-sissinghurst (accessed on 28 June 2025).
- Alzboon, K.; Al-tabbal, J.; Al-Kharabsheh, N.M.; AL-Mefleh, N. Natural volcanic tuff as a soil mulching: Effect on plant growth and soil chemistry under water stress. Appl. Water Sci. 2019, 9, 123. [Google Scholar] [CrossRef]
- Szeleczki, B.; Tompa, R.; Kristály, F. The Effect of Rhyolite Tuff Debris and Andesite Debris on the Water Content Laboratory Experiment. In Proceedings of the “Green Deal”-Challenges and Opportunities, Gyöngyös, Hungary, 5–6 May 2022. [Google Scholar]
- Báthoryné Nagy, I.R. (Ed.) Klímaadaptív Gyepgazdálkodás a Városban; VKSZ SZIE: Veszprém, Hungary, 2021. [Google Scholar]
- Balázs, D.; Török, P.; Kapocsi, I.; Lontay, L.; Vida, E.; Valkó, O.; Lengyel, S.; Tóthmérész, B. Szik- és löszgyep-rekonstrukció vázfajokból álló magkeverék vetésével a Hortobágyi Nemzeti Park területén (Egyek-Pusztakócs). Tájökológiai Lapok 2008, 6, 323–332. [Google Scholar] [CrossRef]
- Réka, K.; Balázs, D.; Tóth, K.; Lukács, K.; Rádai, Z.; Kelemen, A.; Miglécz, T.; Tóth, Á.; Godó, L.; Valkó, O. Co-seeding grasses and forbs supports restoration of species-rich grasslands and improves weed control in ex-arable land. Sci. Rep. 2022, 12, 21239. [Google Scholar] [CrossRef]
- Valkó, O.; Vida, E.; Kelemen, A.; Török, P.; Balázs, D.; Miglécz, T.; Lengyel, S.; Tóthmérész, B. Gyeprekonstrukció napraforgó-és gabonatáblák helyén alacsony diverzitású magkeverék vetésével. Tájökológiai Lapok 2010, 8, 53–64. [Google Scholar] [CrossRef]
- Valkó, O.; Balázs, D.; Török, P.; Kirmer, A.; Tischew, S.; Kelemen, A.; Tóth, K.; Miglécz, T.; Szilvia, R.; Sonkoly, J.; et al. High-diversity sowing in establishment gaps: A promising new tool for enhancing grassland biodiversity. Tuexenia 2016, 36, 359–378. [Google Scholar] [CrossRef]
- Miglécz, T.; Donkó, Á.; Török, P.; Valkó, O.; Balázs, D.; Kelemen, A.; Tóth, K.; Drexler, D.; Tóthmérész, B. Magkeverékek fejlesztése fajgazdag szőlősorköz-takarónövényzethez. Gyepgazdálkodási Közlemények 2013, 2013, 37–42. [Google Scholar]
- Valkó, O.; Deák, B.; Török, P.; Tóth, K.; Kiss, R.; Kelemen, A.; Miglécz, T.; Sonkoly, J.; Tóthmérész, B. Dynamics in vegetation and seed bank composition highlight the importance of post-restoration management in sown grasslands. Restor. Ecol. 2021, 29, e13192. [Google Scholar] [CrossRef]
- Byun, C.; de Blois, S.; Brisson, J. Plant functional group identity and diversity determine biotic resistance to invasion by an exotic grass. J. Ecol. 2013, 101, 128–139. [Google Scholar] [CrossRef]
- Fenesi, A.; Kelemen, K.; Sándor, D.; Ruprecht, E. Influential neighbours: Seeds of dominant species affect the germination of common grassland species. J. Veg. Sci. 2020, 31, 1028–1038. [Google Scholar] [CrossRef]
- Garbowski, M.; Avera, B.; Bertram, J.; Courkamp, J.; Gray, J.; Hein, K.; Lawrence, R.; McIntosh, M.; McClelland, S.; Post, A.; et al. Getting to the root of restoration: Considering root traits for improved restoration outcomes under drought and competition. Restor. Ecol. 2020, 28, 1384–1395. [Google Scholar] [CrossRef]
- Ruprecht, E.; Donath, T.; Otte, A.; Eckstein, L. Chemical effects of a dominant grass on seed germination of four familial pairs of dry grassland species. Seed Sci. Res. 2008, 18, 239–248. [Google Scholar] [CrossRef]
- Partzsch, M.; Faulhaber, M.; Meier, T. The effect of the dominant grass Festuca rupicola on the establishment of rare forbs in semi-dry grasslands. Folia Geobot. 2018, 53, 103–113. [Google Scholar] [CrossRef]
- Rehling, F.; Sandner, T.; Matthies, D. Biomass partitioning in response to intraspecific competition depends on nutrients and species characteristics: A study of 43 plant species. J. Ecol. 2021, 109, 2219–2233. [Google Scholar] [CrossRef]
- Barry, C.; Hodge, S. You Reap What You Sow: A Botanical and Economic Assessment of Wildflower Seed Mixes Available in Ireland. Conservation 2023, 3, 73–86. [Google Scholar] [CrossRef]
- Bucharova, A.; Bossdorf, O.; Hölzel, N.; Kollmann, J.; Prasse, R.; Durka, W. Mix and match: Regional admixture provenancing strikes a balance among different seed-sourcing strategies for ecological restoration. Conserv. Genet. 2019, 20, 7–17. [Google Scholar] [CrossRef]
- Atlasza, M.N. Available online: https://emna.hu (accessed on 27 June 2025).
- Balogh, P.I.; Bede-Fazekas, Á.; Dezsényi, P. Ökologikus Növényalkalmazás És Biodiverz Zöldtető Kialakítása A Budapesti Green House Irodaház Tetőkertjénél. 4D Tájépítészeti és Kertművészeti Folyóirat 2013, 8, 2–23. [Google Scholar]
- Szabó, K. The Potential Roles of Biodiverse Green Roofs in the Extending Urban Green Network. In Proceedings of the Fábos Conference on Landscape and Greenway Planning, Budapest, Hungary, 30 June–3 July 2016; Volume 5. [Google Scholar] [CrossRef]
- Vadvirágos rét Magkeverék FŐKERT-BKM. Available online: https://fokert.budapestikozmuvek.hu/vadviragos-ret-magkeverek (accessed on 26 June 2025).
- Biodiverz Magkeverékek a GreenTech-től. Available online: https://greenroof.hu/biodiverz-magkeverekek-a-greentech-tol-138 (accessed on 28 June 2025).
- 15.1.1.37. Magyarország és Budapest Időjárásának Adatai. Available online: https://www.ksh.hu/stadat_files/kor/hu/kor0037.html (accessed on 22 June 2025).
- met.hu. HungaroMet Magyar Meteorológiai Szolgáltató Nonprofit Zrt. 2025. Available online: https://www.met.hu/ (accessed on 29 June 2025).
- Értékelések, O.L. Országos Légszennyezettségi Mérőhálózat. Available online: https://legszennyezettseg.met.hu/levegominoseg/ertekelesek/olm-ertekelesek (accessed on 22 June 2025).
- Patrignani, A.; Ochsner, T. Canopeo: A Powerful New Tool for Measuring Fractional Green Canopy Cover. Agron. J. 2015, 107, 2312–2320. [Google Scholar] [CrossRef]
- Pomatto, E.; Larcher, F.; Caser, M.; Gaino, W.; Devecchi, M. Evaluation of Different Combinations of Ornamental Perennials for Sustainable Management in Urban Greening. Plants 2023, 12, 3293. [Google Scholar] [CrossRef]
- Sonkoly, J.; Tóth, E.; Balogh, N.; Balogh, L.; Bartha, D.; Bata, K.; Bátori, Z.; Békefi, N.; Botta-Dukát, Z.; Bölöni, J.; et al. PADAPT 1.0–the Pannonian Database of Plant Traits. bioRxiv 2022. [Google Scholar] [CrossRef]
- Bartha, D. Ökológiai és természetvédelmi jelzőszámok a vegetáció értékelésében/Ecological and nature conservation indicators in vegetation assessment. In Tilia; Duna–Ipoly Nemzeti Park Igazgatóság: Budapest, Hungary, 2000; pp. 170–180. [Google Scholar]
- Podani, J. SYN-TAX 2000 Computer Program for Data Analysis in Ecology and Systematics; Scientia Publishing: Budapest, Hungary, 2001; Available online: https://podani.web.elte.hu/syntax2000.pdf (accessed on 22 June 2025).
- Borhidi, A. Social behaviour types, the naturalness and relative indicator values of the higher plants in the Hungarian Flora. Acta Bot. Hung. 1995, 39, 97–182. [Google Scholar]
- Hooper, D.U.; Vitousek, P.M. Effects of Plant Composition and Diversity on Nutrient Cycling. Ecol. Monogr. 1998, 68, 121–149. [Google Scholar] [CrossRef]
- Lanta, V.; Lepš, J. Effect of functional group richness and species richness in manipulated productivity–diversity studies: A glasshouse pot experiment. Acta Oecologica 2006, 29, 85–96. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Y.; Ding, J.; Chen, P.; Zhan, T.; Yao, Y.; Song, J.; Fu, B.-J. Impact of functional groups on aboveground biomass in alpine grassland communities. Prog. Progress. Phys. Geogr. Earth Environ. 2024, 48, 698–715. [Google Scholar] [CrossRef]
- Lepŝ, J.; Dole, J.; Bezemer, T.M.; Brown, V.K.; Hedlund, K.; Arroyo, M.I.; Jörgensen, H.B.; Lawson, C.S.; Mortimer, S.R.; Geldart, A.P.; et al. Long-term effectiveness of sowing high and low diversity seed mixtures to enhance plant community development on ex-arable fields. Appl. Veg. Sci. 2007, 10, 97–110. [Google Scholar] [CrossRef]
- Cevallos, D.; Szitár, K.; Halassy, M.; Kövendi-Jakó, A.; Török, K. Larger Seed Mass Predicts Higher Germination and Emergence Rates in Sandy Grassland Species with Non-Dormant Seeds. Acta Bot. Hung. 2022, 64, 237–258. [Google Scholar] [CrossRef]
- Leishman, M.; Wright, I.; Moles, A.; Westoby, M. The Evolutionary Ecology of Seed Size. In Seeds: The Ecology of Regeneration in Plant Communities; CABI Publishing: Cambridge, UK, 2000; Chapter 2; pp. 31–57. [Google Scholar] [CrossRef]
- Scotton, M. Seed production in grassland species: Morpho-biological determinants in a species-rich semi-natural grassland. Grass Forage Sci. 2018, 73, 764–776. [Google Scholar] [CrossRef]
- Moles, A.; Westoby, M.; AT, M.; Westoby, M. Seed size and plant strategy across the whole life cycle. Oikos 2006, 113, 91–105. [Google Scholar] [CrossRef]
- Török, P.; Tóth, E.; Tóth, K.; Valkó, O.; Deák, B.; Kelbert, B.; Bálint, P.; Radócz, S.; Kelemen, A.; Sonkoly, J.; et al. New measurements of thousand-seed weights of species in the Pannonian flora. Acta Bot. Hung. 2016, 58, 187–198. [Google Scholar] [CrossRef]
- Török, P.; Miglécz, T.; Valkó, O.; Tóth, K.; Kelemen, A.; Albert, Á.-J.; Matus, G.; Molnár, V.A.; Ruprecht, E.; Papp, L.; et al. New thousand-seed weight records of the Pannonian flora and their application in analysing social behaviour types. Acta Bot. Hung. 2013, 55, 429–472. [Google Scholar] [CrossRef]
- Heinonen, R.; Mattila, T. Smartphone-based estimation of green cover depends on the camera used. Agron. J. 2021, 113, 5597–5601. [Google Scholar] [CrossRef]
- Yang, J.; Lan, L.; Jin, Y.; Yu, N.; Wang, D.; Wang, E. Mechanisms underlying legume–rhizobium symbioses. J. Integr. Plant Biol. 2022, 64, 224–267. [Google Scholar] [CrossRef] [PubMed]
Budapest Climate Data | 1991–2020 | 2023 | 2024 |
---|---|---|---|
The average annual temperature (°C) | 12.5 | 13.6 | 14.4 |
The number of hot days | 33 | 42 | 67 |
Number of days affected by the heat wave | 18 | 24 | 53 |
The annual precipitation (mm) | 513 | 714 | 438 |
Code | Plot | Substrate Type |
---|---|---|
C | 1a, 1b | control |
C+OS | 2a, 2b | control with oversowing |
OS | 3a, 3b | original soil |
DR+S | 4a, 4b | demolition rubble + sand |
GRS | 5a, 5b | green roof substrate |
RA | 6a, 6b | rhyolite aggregate |
G | 7a, 7b | gravel |
TS | 8a, 8b | topsoil |
S | 9a, 9b | sand |
AA | 10a, 10b | andesite aggregate |
Taxa | Species Occurrence per Substrates | Species Occurrence per Plots | Medium That Did Not Appear |
---|---|---|---|
Achillea spp. | 8 | 16 | C, AA |
Anthemis ruthenica | 8 | 14 | C, RA |
Anthemis tinctoria | 9 | 18 | C |
Anthyllis vulneraria | 8 | 16 | C, C+OS |
Apera spica-venti | 9 | 18 | AA |
Centaurea jacea | 9 | 14 | C |
Cephalaria transsylvanica | 9 | 18 | C |
Dianthus pontederae | 8 | 15 | C, C+OS |
Gallium verum | 8 | 11 | C, C+OS |
Medicago lupulina | 10 | 20 | — |
Orlaya grandiflora | 8 | 11 | C, RA |
Papaver rhoeas | 8 | 13 | C+OS, G |
Sanguisorba minor | 9 | 16 | C |
C | C+OS | OS | DR+S | GRS | RA | G | TS | S | AA | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
a | b | a | b | a | b | a | b | a | b | a | b | a | b | a | b | a | b | a | b | |
11 March | 54.8 | 65.6 | 78.1 | 54.4 | 5.5 | 5.0 | 19.9 | 9.3 | 24.6 | 24.0 | 5.9 | 6.0 | 3.3 | 4.5 | 37.0 | 34.9 | 7.0 | 13.5 | 4.7 | 2.3 |
11 April | 69.4 | 67.8 | 65.1 | 54.8 | 38.4 | 34.1 | 74.8 | 55.1 | 77.9 | 81.6 | 36.5 | 32.2 | 33.7 | 28.1 | 70.1 | 61.9 | 36.0 | 51.0 | 12.7 | 8.7 |
1 May | 72.5 | 60.5 | 64.1 | 63.9 | 57.9 | 56.7 | 83.6 | 79.5 | 77.0 | 89.1 | 65.4 | 62.1 | 59.7 | 50.6 | 74.1 | 63.9 | 50.3 | 64.9 | 49.2 | 39.1 |
4 June | 43.0 | 63.1 | 68.3 | 75.1 | 59.3 | 63.0 | 57.9 | 63.5 | 46.0 | 45.5 | 66.1 | 72.4 | 76.3 | 72.9 | 64.6 | 61.8 | 61.0 | 68.2 | 78.5 | 75.7 |
7 July | 8.8 | 20.8 | 19.4 | 28.3 | 16.0 | 14.9 | 7.5 | 20.2 | 7.0 | 7.5 | 6.9 | 26.2 | 24.9 | 27.2. | 26.3 | 26.0 | 17.2 | 24.9 | 45.2 | 46.8 |
1 September | 10.5 | 5.0 | 5.0 | 11.1 | 2.5 | 7.6 | 4.7 | 8.5 | 10.3 | 13.0 | 13.3 | 27.6 | 8.8 | 33.0 | 8.4 | 11.8 | 6.6 | 15.4 | 13.3 | 28.2 |
30 October | 16.4 | 22.3 | 54.8 | 55.9 | 16.1 | 20.4 | 48.0 | 5.11 | 65.4 | 49.3 | 79.5 | 80.1 | 40.6 | 67.4 | 71.2 | 76.5 | 52.8 | 48.6 | 48.7 | 52.5 |
12 December | 19.9 | 19.2 | 34.0 | 40.5 | 14.4 | 14.8 | 34.1 | 38.5 | 38.1 | 36.0 | 62.9 | 61.9 | 35.2 | 50.0 | 49.2 | 51.6 | 38.7 | 37.7 | 38.2 | 38.0 |
C | C+OS | OS | DR+S | GRS | RA | G | TS | S | AA | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
a | b | a | b | a | b | a | b | a | b | a | b | a | b | a | b | a | b | a | b | ||
4 June | original | 43.0 | 63.1 | 68.3 | 75.1 | 59.3 | 63.0 | 57.9 | 63.5 | 46.0 | 45.5 | 66.1 | 72.4 | 76.3 | 72.9 | 64.6 | 61.8 | 61.0 | 68.2 | 78.5 | 75.7 |
corrected | 48.7 | 66.7 | 79.5 | 86.7 | 83.2 | 79.6 | 93.1 | 93.9 | 90.8 | 92.6 | 89.3 | 84.1 | 92.0 | 81.0 | 85.6 | 85.3 | 80.8 | 90.2 | 86.6 | 86.1 | |
12 December | original | 19.9 | 19.2 | 34.0 | 40.5 | 14.2 | 14.8 | 34.1 | 38.5 | 38.1 | 36.0 | 62.9 | 61.9 | 35.2 | 50.0 | 49.2 | 51.6 | 38.7 | 37.7 | 38.2 | 38.0 |
corrected | 22.1 | 28.6 | 44.4 | 46.8 | 16.5 | 18.8 | 47.9 | 56.7 | 76.4 | 77.6 | 84.3 | 87.5 | 52.8 | 68.0 | 86.3 | 87.3 | 66.0 | 62.8 | 52.2 | 56.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Doma-Tarcsányi, J.; Gergely, A.; Serdült, Á.; Szabó, K. Preliminary Evaluation of High-Diversity Herbaceous Seed Sowings in Different Substrates. Land 2025, 14, 1746. https://doi.org/10.3390/land14091746
Doma-Tarcsányi J, Gergely A, Serdült Á, Szabó K. Preliminary Evaluation of High-Diversity Herbaceous Seed Sowings in Different Substrates. Land. 2025; 14(9):1746. https://doi.org/10.3390/land14091746
Chicago/Turabian StyleDoma-Tarcsányi, Judit, Attila Gergely, Ádám Serdült, and Krisztina Szabó. 2025. "Preliminary Evaluation of High-Diversity Herbaceous Seed Sowings in Different Substrates" Land 14, no. 9: 1746. https://doi.org/10.3390/land14091746
APA StyleDoma-Tarcsányi, J., Gergely, A., Serdült, Á., & Szabó, K. (2025). Preliminary Evaluation of High-Diversity Herbaceous Seed Sowings in Different Substrates. Land, 14(9), 1746. https://doi.org/10.3390/land14091746