Quality of Constructed Technogenic Soils in Urban Gardens Located on a Reclaimed Clay Pit
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Field and Laboratory Methods
2.3. Statistical Analysis
3. Results
3.1. Trace Element Concentrations in the Topsoil Layer
3.2. Morphological Characterization of Soil Profiles on Reclaimed Clay Pit
3.3. Physicochemical Soil Properties in the Profiles P1–P3
3.4. Trace Element Concentrations in the Profiles of Constructed Soils
4. Discussion
4.1. Classification of the Constructed Soils in Urban Gardens
- Profile P1 (left side, Figure 2A): Urbic Technosol (Arenic, Calcaric, Hortic, Humic, Pyric, Endoskeletic, Transportic);
- Profile P1 (right side, Figure 2A): Urbic Technosol (Arenic, Calcaric, Hortic, Humic, Mahic, Endoraptic, Transportic);
- Profile P3: Urbic Technosol (Arenic, Calcaric, Hortic, Humic, Pyric, Skeletic, Transportic).
4.2. Quality of Reclaimed Garden Soils in Terms of Their Physicochemical Properties and Fertility
4.3. Quality of Reclaimed Garden Soils in Terms of Contamination with Trace Elements
4.4. Maintaining Urban Gardening in Reclaimed Mining Sites
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Delshad, A.B. Community gardens: An investment in social cohesion, public health, economic sustainability, and the urban environment. Urban For. Urban Green. 2022, 70, 127549. [Google Scholar] [CrossRef]
- Kwartnik-Pruc, A.; Droj, G. The role of allotments and community gardens and the challenges facing their development in urban environments—A literature review. Land 2023, 12, 325. [Google Scholar] [CrossRef]
- Silveira, C.; Dias, A.T.C.; Amaral, F.G.; de Gois, G.; Pistón, N. The importance of private gardens and their spatial composition and configuration to urban heat island mitigation. Sustain. Cities Soc. 2024, 112, 105589. [Google Scholar] [CrossRef]
- Setiawan, W.; Gawryszewska, B. Urban garden as a water reservoir in an urban area–a literature review. Sci. Rev. Eng. Environ. Sci. 2023, 32, 221–237. [Google Scholar] [CrossRef]
- Dobson, M.C.; Crispo, M.; Blevins, R.S.; Warren, P.H.; Edmondson, J.L. An assessment of urban horticultural soil quality in the United Kingdom and its contribution to carbon storage. Sci. Total Environ. 2021, 777, 146199. [Google Scholar] [CrossRef]
- Royer, H.; Yengue, J.L.; Bech, N. Urban agriculture and its biodiversity: What is it and what lives in it? Agric. Ecosyst. Environ. 2023, 346, 108342. [Google Scholar] [CrossRef]
- Milligan, C.; Gatrell, A.; Bingley, A. ‘Cultivating health’: Therapeutic landscapes and older people in northern England. Soc. Sci. Med. 2004, 58, 1781–1793. [Google Scholar] [CrossRef]
- Armstrong, D. A survey of community gardens in upstate New York: Implications for health promotion and community development. Health Place 2000, 6, 319–327. [Google Scholar] [CrossRef]
- Wakefield, S.; Yeudall, F.; Taron, C.; Reynolds, J.; Skinner, A. Growing urban health: Community gardening in South-East Toronto. Health Promot. Int. 2007, 22, 92–101. [Google Scholar] [CrossRef]
- O’Riordan, R.; Davies, J.; Stevens, C.; Quinton, J.N.; Boyko, C. The ecosystem services of urban soils: A review. Geoderma 2021, 395, 115076. [Google Scholar] [CrossRef]
- Corrigan, M.P. Growing what you eat: Developing community gardens in Baltimore, Maryland. Appl. Geogr. 2011, 31, 1232–1241. [Google Scholar] [CrossRef]
- Sanchez-Camazano, M.; Sanchez-Martin, M.J.; Lorenzo, L.F. Lead and cadmium in soils and vegetables from urban gardens of Salamanca (Spain). Sci. Total Environ. 1994, 146, 163–168. [Google Scholar] [CrossRef] [PubMed]
- Heymann, H. Schwermetall und Arsen in Hamburger Kleingaerten-Bodenbelastung und Pflanzenverfuegbarkeit. Hambg. Bodenkd. Arb. 1994, 23, 1–77. [Google Scholar]
- Finster, M.E.; Gray, K.A.; Binns, H.J. Lead levels of edibles grown in contaminated residential soils: A field survey. Sci. Total Environ. 2004, 320, 245–257. [Google Scholar] [CrossRef]
- Kachenko, A.G.; Singh, B. Heavy metals contamination in vegetables grown in urban and metal smelter contaminated sites in Australia. Water Air Soil Pollut. 2006, 169, 101–123. [Google Scholar] [CrossRef]
- Walczak, B.; Kostecki, J.; Wasylewicz, R.; Lassota, T.; Greinert, A.; Drab, M. The content of lead in soils of allotment gardens in Zielona Góra, Poland. Pol. J. Soil Sci. 2016, 48, 41. [Google Scholar] [CrossRef]
- Paltseva, A.A.; Cheng, Z.; Egendorf, S.P.; Groffman, P.M. Remediation of an urban garden with elevated levels of soil contamination. Sci. Total Environ. 2020, 722, 137965. [Google Scholar] [CrossRef]
- Gruszka, D.; Gruss, I.; Szopka, K. Assessing environmental risks of local contamination of garden urban soils with heavy metals using ecotoxicological tests. Toxics 2024, 12, 873. [Google Scholar] [CrossRef]
- Kubicz, J. Health risk assessment for allotment gardens in Wrocław. Ekon. Sr. 2014, 1, 154–163. [Google Scholar]
- Taylor, M.P.; Isley, C.F.; Fry, K.L.; Liu, X.; Gillings, M.M.; Rouillon, M.; Filippelli, G.M. A citizen science approach to identifying trace metal contamination risks in urban gardens. Environ. Int. 2021, 155, 106582. [Google Scholar] [CrossRef]
- Clark, H.F.; Brabander, D.J.; Erdil, R.M. Sources, sinks, and exposure pathways of lead in urban garden soil. J. Environ. Qual. 2006, 35, 2066–2074. [Google Scholar] [CrossRef]
- Gmochowska, W.; Pietranik, A.; Tyszka, R.; Ettler, V.; Mihaljevič, M.; Długosz, M.; Walenczak, K. Sources of pollution and distribution of Pb, Cd and Hg in Wrocław soils: Insight from chemical and Pb isotope composition. Geochemistry 2019, 79, 434–445. [Google Scholar] [CrossRef]
- Kabala, C.; Chodak, T.; Szerszen, L.; Karczewska, A.; Szopka, K.; Fratczak, U. Factors influencing the concentration of heavy metals in soils of allotment gardens in the city of Wroclaw, Poland. Fresenius Environ. Bull. 2009, 18, 1118–1124. [Google Scholar]
- Szolnoki, Z.S.; Farsang, A.; Puskás, I. Cumulative impacts of human activities on urban garden soils: Origin and accumulation of metals. Environ. Pollut. 2013, 177, 106–115. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.; Williams, P.N.; Zhan, Y.; Coughlin, S.A.; McGrath, J.W.; Chin, J.P.; Xu, Y. Municipal solid waste compost: Global trends and biogeochemical cycling. Soil Environ. Health 2023, 1, 100038. [Google Scholar] [CrossRef]
- Gambi, L.G.O.; Junior, R.A.; Vanzela, L.S.; Tagliaferro, E.R.; Vazquez, G.H.; da Silva Ueda, P.R.; Navarrete, A.A. Technosol made with urban and industrial waste: Potential for improving soil quality and growing tree seedlings. Soil Adv. 2024, 2, 100009. [Google Scholar] [CrossRef]
- Schleuß, U.; Wu, Q.; Blume, H.P. Variability of soils in urban and periurban areas in Northern Germany. CATENA 1998, 33, 255–270. [Google Scholar] [CrossRef]
- Kabala, C.; Greinert, A.; Charzyński, P.; Uzarowicz, L. Technogenic soils–soils of the year 2020 in Poland. Concept, properties and classification of technogenic soils in Poland. Soil Sci. Annu. 2021, 71, 267–280. [Google Scholar] [CrossRef]
- Nehls, T.; Rokia, S.; Mekiffer, B.; Schwartz, C.; Wessolek, G. Contribution of bricks to urban soil properties. J. Soils Sediments 2013, 13, 575–584. [Google Scholar] [CrossRef]
- Charzyński, P.; Bednarek, R.; Hudańska, P.; Świtoniak, M. Issues related to classification of garden soils from the urban area of Toruń, Poland. Soil Sci. Plant Nutr. 2018, 64, 132–137. [Google Scholar] [CrossRef]
- Molla, A.S.; Tang, P.; Sher, W.; Bekele, D.N. Chemicals of concern in construction and demolition waste fine residues: A systematic literature review. J. Environ. Manag. 2021, 299, 113654. [Google Scholar] [CrossRef]
- Levin, M.J.; Kim, K.H.J.; Morel, J.L.; Burghardt, W.; Charzynski, P.; Shaw, R.K. Soils Within Cities Global Approaches to Their Sustainable Management; Catena Soil Sciences: Stuttgart, Germany, 2017; pp. 177–196. [Google Scholar]
- Krupski, M.; Kabala, C.; Sady, A.; Gliński, R.; Wojcieszak, J. Double-and triple-depth digging and Anthrosol formation in a medieval and modern-era city (Wrocław, SW Poland). Geoarchaeological research on past horticultural practices. CATENA 2017, 153, 9–20. [Google Scholar] [CrossRef]
- Burghardt, W.; Morel, J.L.; Zhang, G.L. Development of the soil research about urban, industrial, traffic, mining and military areas (SUITMA). Soil Sci. Plant Nutr. 2015, 61, 3–21. [Google Scholar] [CrossRef]
- Kobojek, E. How post-mining areas impact the spatial development and land use of cities. The case of the city of Lódź. Space Soc. Econ. 2021, 32, 111–130. [Google Scholar] [CrossRef]
- Colten, C.E. Chicago’s waste lands: Refuse disposal and urban growth, 1840–1990. J. Hist. Geogr. 1994, 20, 124–142. [Google Scholar] [CrossRef]
- Orewere, E.; Owonubi, A.; Zainab, S. Landscape reclamation for abandoned mining site for outdoor recreation on the Jos Plateau. J. Environ. Sci. Resour. Manag. 2020, 12, 26–50. [Google Scholar]
- Kononowicz, W.; Gryniewicz-Balińska, K. Historical allotment gardens in Wrocław-the need to protection. Civ. Environ. Eng. Rep. 2016, 21, 43–52. [Google Scholar] [CrossRef]
- Gryniewicz-Balińska, K. Historical community gardens in Wroclaw as an element of the planned system of urban green areas. Kwart. Archit. Urban. 2015, 60, 45–79. [Google Scholar]
- Königliche Preussische Landesaufnahme Berlin. Topographishe Karte 1:25000 (Messtischblatt), Breslau Nord; Königliche Preussische Landesaufnahme: Berlin, Germany, 1886. [Google Scholar]
- Kabała, C.; Bekier, J.; Bińczycki, T.; Bogacz, A.; Bojko, O.; Cuske, M. Soils of Lower Silesia: Origins, Diversity and Protection; Polskie Towarzystwo Gleboznawcze, Polskie Towarzystwo Substancji Humusowych: Wrocław, Poland, 2015; pp. 25–46. [Google Scholar]
- Reichsamt für Landesaufnahme. Topographishe Karte 1:25000 (Messtischblatt), Breslau Nord A; Reichsamt für Landesaufnahme: Berlin, Germany, 1831. [Google Scholar]
- Chodak, T.; Szerszen, L.; Kabala, C. Effects of flood 1997 on soil environment of Wroclaw area. Zesz. Probl. Postępów Nauk Rol. 1999, 467, 51–57. [Google Scholar]
- IUSS Working Group WRB. World Reference Base for Soil Resources. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, 4th ed.; International Union of Soil Sciences: Vienna, Austria, 2022; pp. 1–236. [Google Scholar]
- Van Reeuwijk, L.P. Procedures for Soil Analysis; Technical paper 19; International Soil Reference and Information Centre: Wageningen, The Netherlands, 1992; pp. 1–114. [Google Scholar]
- Kesik, K.; Jadczyszyn, T.; Lipinski, W.; Jurga, B. Adaptation of the Mehlich 3 procedure for routine determination of phosphorus, potassium and magnesium in soil. Przem. Chem. 2015, 94, 973–976. [Google Scholar]
- ISO standard 54321:2020; Soil, Treated Biowaste, Sludge and Waste—Digestion of Aqua Regia Soluble Fractions of Elements. ISO: Geneva, Switzerland, 2020.
- Kowalska, J.B.; Mazurek, R.; Gąsiorek, M.; Zaleski, T. Pollution indices as useful tools for the comprehensive evaluation of the degree of soil contamination–A review. Environ. Geochem. Health 2018, 40, 2395–2420. [Google Scholar] [CrossRef] [PubMed]
- Monitoring Chemizmu Gleb Ornych Polski (Monitoring of the Chemistry of Arable Soils in Poland). Available online: https://www.gios.gov.pl/chemizm_gleb/ (accessed on 1 June 2025).
- Regulation of the Ministry of Environment (Poland) on the Assessment of Soil Contamination, 2016. Available online: https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=wdu20160001395 (accessed on 1 June 2025).
- Lal, R. Soil organic matter and water retention. Agron. J. 2020, 112, 3265–3277. [Google Scholar] [CrossRef]
- Šimanský, V.; Jonczak, J. Sorption capacity of sandy soil under long-term fertilisation. Agriculture 2019, 65, 164–171. [Google Scholar] [CrossRef]
- Karczewska, A.; Gałka, B.; Dradrach, A.; Litak, K. Solubility of arsenic and its uptake by ryegrass from polluted soils amended with organic matter. J. Geochem. Explor. 2017, 182, 193–200. [Google Scholar] [CrossRef]
- Salomon, M.J.; Cavagnaro, T.R. Healthy soils: The backbone of productive, safe and sustainable urban agriculture. J. Clean. Prod. 2022, 341, 130808. [Google Scholar] [CrossRef]
- Mocek, A.; Owczarzak, W.; Tyksinski, W.; Kaczmarek, W. Heavy metals in soils of the allotment gardens in Polkowice. Zesz. Probl. Postępów Nauk Rol. 1995, 418, 299–304. [Google Scholar]
- Ferri, R.; Hashim, D.; Smith, D.R.; Guazzetti, S.; Donna, F.; Ferretti, E.; Lucchini, R.G. Metal contamination of home garden soils and cultivated vegetables in the province of Brescia, Italy: Implications for human exposure. Sci. Total Environ. 2015, 518, 507–517. [Google Scholar] [CrossRef]
- Joimel, S.; Cortet, J.; Consalès, J.N.; Branchu, P.; Haudin, C.S.; Morel, J.L.; Schwartz, C. Contribution of chemical inputs on the trace elements concentrations of surface soils in urban allotment gardens. J. Soils Sediments 2021, 21, 328–337. [Google Scholar] [CrossRef]
- Kahle, P. Schwermetallstatus Rostocker Gartenböden. J. Plant Nutr. Soil Sci. 2000, 163, 191–196. [Google Scholar] [CrossRef]
- Cheng, Z.; Paltseva, A.; Li, I.; Morin, T.; Huot, H.; Egendorf, S.; Shaw, R. Trace metal contamination in New York City garden soils. Soil Sci. 2015, 180, 167–174. [Google Scholar] [CrossRef]
- Laidlaw, M.A.; Alankarage, D.H.; Reichman, S.M.; Taylor, M.P.; Ball, A.S. Assessment of soil metal concentrations in residential and community vegetable gardens in Melbourne, Australia. Chemosphere 2018, 199, 303–311. [Google Scholar] [CrossRef] [PubMed]
- Mielke, H.W.; Anderson, J.C.; Berry, K.J.; Mielke, P.W.; Chaney, R.L.; Leech, M. Lead concentrations in inner-city soils as a factor in the child lead problem. Am. J. Public Health 1983, 73, 1366–1369. [Google Scholar] [CrossRef]
- Antoniadis, V.; Shaheen, S.M.; Boersch, J.; Frohne, T.; Du Laing, G.; Rinklebe, J. Bioavailability and risk assessment of potentially toxic elements in garden edible vegetables and soils around a highly contaminated former mining area in Germany. J. Environ. Manag. 2017, 186, 192–200. [Google Scholar] [CrossRef]
- Dziubanek, G.; Baranowska, R.; Oleksiuk, K. Heavy metals in the soils of Upper Silesia—A problem from the past or a present hazard? J. Ecol. Health 2012, 16, 169–176. [Google Scholar]
- Karczewska, A.; Kabala, C. Environmental risk assessment as a new basis for evaluation of soil contamination in Polish law. Soil Sci. Annu. 2017, 68, 67. [Google Scholar] [CrossRef]
- Tresch, S.; Moretti, M.; Le Bayon, R.C.; Mäder, P.; Zanetta, A.; Frey, D.; Fliessbach, A. A gardener’s influence on urban soil quality. Front. Environ. Sci. 2018, 6, 25. [Google Scholar] [CrossRef]
Area | Total Concentration, mg kg−1 | ||||||||
---|---|---|---|---|---|---|---|---|---|
Zn | Pb | Cu | As | Cd | Hg | Cr | Ni | Mn | |
Geochemical background for arable soils in Poland [49] | 32.0 | 11.8 | 6.2 | 2.7 | 0.15 | 0.02 | 10.2 | 6.4 | 325 |
Legal permissible levels in medium-textured soils in Poland [50] | 500 | 250 | 150 | 20 | 3 | 4 | 300 | 150 | - |
Site History | Parameter | Total Concentration | Igeo | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Zn | Pb | Cu | Cd | Hg | Zn | Pb | Cu | Cd | Hg | ||
mg kg−1 | |||||||||||
unreclaimed area n = 20 | minimum | 186 | 47.4 | 26.7 | 0.78 | 1.11 | 2.0 | 1.4 | 1.5 | 1.8 | 5.2 |
maximum | 764 | 245 | 145 | 2.38 | 1.66 | 4.0 | 3.8 | 4.0 | 3.4 | 5.6 | |
mean | 378 a | 109 a | 64.6 a | 1.34 a | 1.35 a | 2.8 a | 2.3 a | 2.4 a | 2.5 a | 5.4 a | |
SD | 180 | 73.2 | 42.4 | 0.53 | 0.25 | 0.6 | 0.8 | 0.8 | 0.5 | 0.2 | |
reclaimed mine n = 20 | minimum | 386 | 73.8 | 42.3 | 1.48 | 1.61 | 3.2 | 2.6 | 3.0 | 2.3 | 5.7 |
maximum | 2340 | 922 | 736 | 5.13 | 5.06 | 5.6 | 5.7 | 6.3 | 4.5 | 7.4 | |
mean | 1120 b | 474 b | 276 b | 3.28 b | 3.30 b | 4.5 b | 4.6 b | 4.7 b | 3.8 b | 6.5 b | |
SD | 420 | 209 | 145 | 0.89 | 1.53 | 0.5 | 0.7 | 0.7 | 0.5 | 0.7 |
Soil Profile | Soil Horizon | Depth | Sand 2–0.05 mm | Silt 0.05–0.002 | Clay <0.002 | Texture Class | CaCO3 | pH | EC | SOC | Nt |
---|---|---|---|---|---|---|---|---|---|---|---|
cm | % | % | dS m−1 | % | |||||||
P1 | Apτ1 | 0–25 | 73 | 25 | 2 | LS | 3.6 | 7.4 | 1.1 | 5.9 | 0.368 |
Apτ2 | 25–40 | 81 | 17 | 2 | LS | 3.2 | 7.6 | 1.4 | 5.0 | 0.281 | |
ABu | 40–50 | 88 | 11 | 1 | LS | 2.4 | 7.9 | 1.8 | 4.6 | 0.279 | |
2BCu | 50–65 | 80 | 19 | 1 | LS | 5.8 | 7.8 | 2.9 | 7.8 | 0.428 | |
3BCτ | 65–90 | 84 | 10 | 6 | LS | 0 | 7.9 | 1.9 | 1.5 | 0.118 | |
4Cl | 90–150 | 98 | 1 | 1 | S | 0 | 8.0 | 2.1 | 0.2 | 0.014 | |
5ACu | 60–110 | 77 | 22 | 1 | LS | 7.5 | 7.8 | 2.6 | 11.6 | 0.393 | |
P2 | Apτ | 0–21 | 73 | 26 | 1 | LS | 4.1 | 7.7 | 0.9 | 11.5 | 0.336 |
BCu | 21–47 | 81 | 18 | 1 | LS | 9.5 | 7.9 | 1.3 | 11.0 | 0.329 | |
2BCu | 47–55 | 55 | 30 | 15 | SL | 0.7 | 8.0 | 1.1 | 5.5 | 0.256 | |
3BCτg | 55–70 | 36 | 41 | 23 | L | 0 | 7.9 | 1.2 | 2.1 | 0.171 | |
4Cl | 70–120 | 98 | 1 | 1 | S | 0 | 7.9 | 1.4 | 0.3 | 0.024 | |
P3 | Apτ1 | 0–20 | 70 | 29 | 1 | SL | 5.0 | 7.4 | 0.5 | 9.9 | 0.484 |
Apτ2 | 20–27 | 67 | 32 | 1 | SL | 4.9 | 7.5 | 1.0 | 9.7 | 0.436 | |
ABu | 27–35 | 76 | 23 | 1 | LS | 7.1 | 7.8 | 1.5 | 7.7 | 0.318 | |
2BCu | 35–60 | 75 | 24 | 1 | LS | 9.2 | 7.8 | 2.3 | 9.3 | 0.302 | |
3ABu | 60–100 | 74 | 24 | 2 | LS | 9.5 | 8.1 | 2.7 | 9.8 | 0.312 |
Soil Profile | Soil Horizon | Depth | Exchangeable Cations | BC | CEC | BS | Plant-Available Nutrients | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Caex | Mgex | Kex | Naex | Pav | Kav | Mgav | ||||||
cm | cmolc kg−1 | % | mg kg−1 | |||||||||
P1 | Apτ1 | 0–25 | 20.7 | 1.35 | 0.36 | 0.07 | 22.4 | 21.0 | 100 | 318 | 242 | 416 |
Apτ2 | 25–40 | 21.2 | 1.41 | 0.29 | 0.09 | 23.0 | 13.2 | 100 | 145 | 170 | 222 | |
ABu | 40–50 | 17.8 | 1.29 | 0.21 | 0.12 | 19.4 | 11.7 | 100 | 50 | 111 | 159 | |
2BCu | 50–65 | 27.6 | 2.29 | 0.35 | 0.23 | 30.5 | 11.5 | 100 | n.d. | n.d. | n.d. | |
3BCτ | 65–90 | 14.1 | 0.84 | 0.13 | 0.10 | 15.10 | 7.80 | 100 | n.d. | n.d. | n.d. | |
4Cl | 90–150 | 1.60 | 0.17 | 0.10 | 0.10 | 2.00 | 2.13 | 95 | n.d. | n.d. | n.d. | |
5ACu | 60–110 | 42.3 | 4.61 | 1.03 | 0.38 | 48.3 | 29.1 | 100 | n.d. | n.d. | n.d. | |
P2 | Apτ | 0–21 | 39.2 | 3.42 | 0.27 | 0.19 | 43.1 | 26.2 | 100 | 175 | 162 | 523 |
BCu | 21–47 | 44.7 | 4.58 | 0.20 | 0.31 | 49.8 | 25.0 | 100 | 19 | 178 | 1030 | |
2BCu | 47–55 | 22.2 | 6.29 | 0.49 | 0.21 | 29.2 | 28.4 | 100 | 18 | 217 | 880 | |
3BCτg | 55–70 | 10.0 | 5.89 | 0.47 | 0.18 | 16.5 | 16.6 | 99 | n.d. | n.d. | n.d. | |
4Cl | 70–120 | 1.60 | 0.28 | 0.10 | 0.10 | 2.10 | 2.55 | 85 | n.d. | n.d. | n.d. | |
P3 | Apτ1 | 0–20 | 33.9 | 3.02 | 0.66 | 0.14 | 37.7 | 36.8 | 100 | 396 | 266 | 612 |
Apτ2 | 20–27 | 34.1 | 2.89 | 0.53 | 0.15 | 37.6 | 36.2 | 100 | 373 | 249 | 542 | |
ABu | 27–35 | 50.7 | 3.63 | 0.66 | 0.32 | 55.3 | 33.1 | 100 | 48 | 260 | 569 | |
2BCu | 35–60 | 55.9 | 5.95 | 0.71 | 0.53 | 63.1 | 45.4 | 100 | n.d. | n.d. | n.d. | |
3ABu | 60–100 | 52.9 | 6.31 | 0.98 | 0.53 | 60.8 | 30.8 | 100 | n.d. | n.d. | n.d. |
Soil Profile | Soil Horizon | Depth | Total Concentration (Aqua Regia-Extractable) | Total Concentration (XRF Technique) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Zn | Cu | Pb | Cd | Hg | Mn | Crxrf | Nixrf | Asxrf | Fexrf | |||
cm | mg kg−1 | % | ||||||||||
P1 | Apτ1 | 0–25 | 1080 | 207 | 311 | 2.50 | 1.20 | 486 | 60 | 50 | 61 | 1.94 |
Apτ2 | 25–40 | 1240 | 203 | 300 | 2.46 | n.d. | 459 | 73 | 52 | 54 | 2.11 | |
ABu | 40–50 | 1530 | 341 | 535 | 3.55 | n.d. | 510 | 76 | 57 | 50 | 2.23 | |
2BCu | 50–65 | 2460 | 541 | 1070 | 5.46 | n.d. | 1090 | 246 | 120 | 196 | 4.80 | |
3BCτ | 65–90 | 295 | 62 | 115 | 1.46 | 1.61 | 394 | 46 | 15 | 23 | 1.66 | |
4Cl | 90–150 | 18 | 6 | 5 | 0.25 | n.d. | 94 | 37 | 11 | 3 | 0.52 | |
5ACu | 60–110 | 3580 | 689 | 1520 | 8.25 | 4.67 | 1050 | 125 | 83 | 189 | 4.87 | |
P2 | Apτ | 0–21 | 1410 | 336 | 485 | 3.60 | 3.13 | 946 | 85 | 66 | 107 | 3.66 |
BCu | 21–47 | 1660 | 627 | 671 | 4.07 | 5.05 | 1270 | 146 | 143 | 153 | 5.2 | |
2BCu | 47–55 | 380 | 116 | 129 | 2.10 | n.d. | 916 | 91 | 60 | 41 | 3.07 | |
3BCτg | 55–70 | 103 | 33 | 92 | 1.32 | n.d. | 475 | 74 | 24 | 28 | 2.82 | |
4Cl | 70–120 | 50 | 16 | 19 | 0.37 | n.d. | 137 | 39 | 9 | 3 | 0.57 | |
P3 | Apτ1 | 0–20 | 1640 | 335 | 506 | 3.81 | 1.66 | 913 | 93 | 96 | 108 | 3.30 |
Apτ2 | 20–27 | 1700 | 363 | 499 | 3.89 | 2.06 | 917 | 96 | 90 | 120 | 3.38 | |
ABu | 27–35 | 2000 | 545 | 1220 | 4.39 | n.d. | 1170 | 121 | 128 | 292 | 4.81 | |
2BCu | 35–60 | 1700 | 386 | 673 | 4.87 | n.d. | 1810 | 216 | 447 | 199 | 6.92 | |
3ABu | 60–100 | 1560 | 408 | 649 | 4.98 | n.d. | 1470 | 137 | 178 | 145 | 5.45 |
Soil Horizons | Zn | Cu | Pb | Cd | Hg | Mn | Cr | Ni | As |
---|---|---|---|---|---|---|---|---|---|
topsoil Ap horizons | 4.9 | 4.9 | 4.5 | 3.8 | 6.0 | 0.5 | 2.4 | 2.8 | 4.4 |
subsoil with artefacts | 5.3 | 5.7 | 5.5 | 4.5 | 7.3 | 1.2 | 3.1 | 3.7 | 5.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gruszka, D.; Szopka, K.; Kabala, C. Quality of Constructed Technogenic Soils in Urban Gardens Located on a Reclaimed Clay Pit. Land 2025, 14, 1613. https://doi.org/10.3390/land14081613
Gruszka D, Szopka K, Kabala C. Quality of Constructed Technogenic Soils in Urban Gardens Located on a Reclaimed Clay Pit. Land. 2025; 14(8):1613. https://doi.org/10.3390/land14081613
Chicago/Turabian StyleGruszka, Dariusz, Katarzyna Szopka, and Cezary Kabala. 2025. "Quality of Constructed Technogenic Soils in Urban Gardens Located on a Reclaimed Clay Pit" Land 14, no. 8: 1613. https://doi.org/10.3390/land14081613
APA StyleGruszka, D., Szopka, K., & Kabala, C. (2025). Quality of Constructed Technogenic Soils in Urban Gardens Located on a Reclaimed Clay Pit. Land, 14(8), 1613. https://doi.org/10.3390/land14081613