Greenery Effects: Comparing the Associations Between Multi-Dimensional Measurements of Urban Green Space Greenery and Engagement in Health-Related Activities Across Age Groups
Abstract
:1. Introduction
1.1. UGS and Public Health
1.2. Dimensions of UGS Greenery Measurement
1.3. Evidence on Engagement in Health-Related Activities
1.4. Research Objectives
2. Materials and Methods
2.1. Study Settings and Sample
2.2. Measuring UGS Greenery from Multiple Dimensions
2.2.1. Top–Down Greenery Measurement Using the NDVI
2.2.2. Eye-Level Greenery Measurement Using the GVI
2.2.3. Spatial Greenery Measurement Using LVV
2.3. Capturing Engagement in Health-Related Activities Across All Age Groups
2.4. Statistical Analysis
3. Results
3.1. Sample Characteristics
3.2. The Results of Preliminary Tests
3.3. Results of GLM Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
UGSs | Urban Green Spaces |
NDVI | Normalized Difference Vegetation Index |
GVI | Green View Index |
LVV | Living Vegetation Volume |
UAV | Unmanned Aerial Vehicle |
PA | Physical activity |
SI | Social interaction |
IVs | Independent variables |
DVs | Dependent variables |
CV | Control variable |
GLM | Generalized Linear Model |
ANOVA | Analysis of variance |
LRT | Likelihood ratio test |
SD | Standard deviation |
CoV | Coefficient of variation |
References
- World Urbanization Prospects the 2018 Revision; United Nations, Department of Economic and Social Affairs: New York, NY, USA, 2019.
- Guthold, R.; Ono, T.; Strong, K.L.; Chatterji, S.; Morabia, A. Worldwide Variability in Physical Inactivity: A 51-Country Survey. Am. J. Prev. Med. 2008, 34, 486–494. [Google Scholar] [CrossRef]
- Motomura, M.; Koohsari, M.J.; Lin, C.-Y.; Ishii, K.; Shibata, A.; Nakaya, T.; Kaczynski, A.T.; Veitch, J.; Oka, K. Associations of Public Open Space Attributes with Active and Sedentary Behaviors in Dense Urban Areas: A Systematic Review of Observational Studies. Health Place 2022, 75, 102816. [Google Scholar] [CrossRef]
- Rojas-Rueda, D.; Nieuwenhuijsen, M.J.; Gascon, M.; Perez-Leon, D.; Mudu, P. Green Spaces and Mortality: A Systematic Review and Meta-Analysis of Cohort Studies. Lancet Planet. Health 2019, 3, e469–e477. [Google Scholar] [CrossRef]
- Wang, P.; Meng, Y.-Y.; Lam, V.; Ponce, N. Green Space and Serious Psychological Distress among Adults and Teens: A Population-Based Study in California. Health Place 2019, 56, 184–190. [Google Scholar] [CrossRef]
- Douglas, O.; Lennon, M.; Scott, M. Green Space Benefits for Health and Well-Being: A Life-Course Approach for Urban Planning, Design and Management. Cities 2017, 66, 53–62. [Google Scholar] [CrossRef]
- Leal Filho, W.; Vidal, D.G.; Dinis, M.A.P.; Dias, R.C. (Eds.) Sustainable Policies and Practices in Energy, Environment and Health Research: Addressing Cross-Cutting Issues; World Sustainability Series; Springer International Publishing: Cham, Switzerland, 2022; ISBN 978-3-030-86303-6. [Google Scholar]
- Gascon, M.; Triguero-Mas, M.; Martínez, D.; Dadvand, P.; Forns, J.; Plasència, A.; Nieuwenhuijsen, M.J. Mental Health Benefits of Long-Term Exposure to Residential Green and Blue Spaces: A Systematic Review. Int. J. Environ. Res. Public Health 2015, 12, 4354–4379. [Google Scholar] [CrossRef]
- Larkin, A.; Hystad, P. Evaluating Street View Exposure Measures of Visible Green Space for Health Research. J. Expo. Sci. Environ. Epidemiol. 2019, 29, 447–456. [Google Scholar] [CrossRef]
- Liu, J.; Green, R.J. The Effect of Exposure to Nature on Children’s Psychological Well-Being: A Systematic Review of the Literature. Urban For. Urban Green. 2023, 81, 127846. [Google Scholar] [CrossRef]
- Markevych, I.; Schoierer, J.; Hartig, T.; Chudnovsky, A.; Hystad, P.; Dzhambov, A.M.; De Vries, S.; Triguero-Mas, M.; Brauer, M.; Nieuwenhuijsen, M.J.; et al. Exploring Pathways Linking Greenspace to Health: Theoretical and Methodological Guidance. Environ. Res. 2017, 158, 301–317. [Google Scholar] [CrossRef]
- Duan, Y.; Wagner, P.; Zhang, R.; Wulff, H.; Brehm, W. Physical Activity Areas in Urban Parks and Their Use by the Elderly from Two Cities in China and Germany. Landsc. Urban Plan. 2018, 178, 261–269. [Google Scholar] [CrossRef]
- Han, S.; Song, D.; Xu, L.; Ye, Y.; Yan, S.; Shi, F.; Zhang, Y.; Liu, X.; Du, H. Behaviour in Public Open Spaces: A Systematic Review of Studies with Quantitative Research Methods. Build. Environ. 2022, 223, 109444. [Google Scholar] [CrossRef]
- Mao, Y.; Xia, T.; Hu, F.; Chen, D.; He, Y.; Bi, X.; Zhang, Y.; Cao, L.; Yan, J.; Hu, J.; et al. The Greener the Living Environment, the Better the Health? Examining the Effects of Multiple Green Exposure Metrics on Physical Activity and Health among Young Students. Environ. Res. 2024, 250, 118520. [Google Scholar] [CrossRef] [PubMed]
- Nieuwenhuijsen, M.J.; Khreis, H.; Triguero-Mas, M.; Gascon, M.; Dadvand, P. Fifty Shades of Green: Pathway to Healthy Urban Living. Epidemiology 2017, 28, 63–71. [Google Scholar] [CrossRef] [PubMed]
- Putra, I.G.N.E.; Astell-Burt, T.; Cliff, D.P.; Vella, S.A.; Feng, X. Do Physical Activity, Social Interaction, and Mental Health Mediate the Association between Green Space Quality and Child Prosocial Behaviour? Urban For. Urban Green. 2021, 64, 127264. [Google Scholar] [CrossRef]
- Song, X.P.; Richards, D.R.; Tan, P.Y. Using Social Media User Attributes to Understand Human–Environment Interactions at Urban Parks. Sci. Rep. 2020, 10, 808. [Google Scholar] [CrossRef]
- Chen, S.; Christensen, K.M.; Li, S. A Comparison of Park Access with Park Need for Children: A Case Study in Cache County, Utah. Landsc. Urban Plan. 2019, 187, 119–128. [Google Scholar] [CrossRef]
- Lee, H.-S. Developing and Testing the Senior Park Environment Assessment in Korea (SPEAK) Audit Tool. Landsc. Urban Plan. 2022, 227, 104545. [Google Scholar] [CrossRef]
- Lu, Y.; Giuliano, G. Where Do People Meet? Time-Series Clustering for Social Interaction Levels in Daily-Life Spaces during the COVID-19 Pandemic. Cities 2023, 137, 104298. [Google Scholar] [CrossRef]
- Veitch, J.; Ball, K.; Rivera, E.; Loh, V.; Deforche, B.; Best, K.; Timperio, A. What Entices Older Adults to Parks? Identification of Park Features That Encourage Park Visitation, Physical Activity, and Social Interaction. Landsc. Urban Plan. 2022, 217, 104254. [Google Scholar] [CrossRef]
- Spotswood, E.N.; Benjamin, M.; Stoneburner, L.; Wheeler, M.M.; Beller, E.E.; Balk, D.; McPhearson, T.; Kuo, M.; McDonald, R.I. Nature Inequity and Higher COVID-19 Case Rates in Less-Green Neighbourhoods in the United States. Nat. Sustain. 2021, 4, 1092–1098. [Google Scholar] [CrossRef]
- Chen, L.; Liu, L.; Wu, H.; Peng, Z.; Sun, Z. Change of Residents’ Attitudes and Behaviors toward Urban Green Space Pre- and Post- COVID-19 Pandemic. Land 2022, 11, 1051. [Google Scholar] [CrossRef]
- Ugolini, F.; Massetti, L.; Pearlmutter, D.; Sanesi, G. Usage of Urban Green Space and Related Feelings of Deprivation during the COVID-19 Lockdown: Lessons Learned from an Italian Case Study. Land Use Policy 2021, 105, 105437. [Google Scholar] [CrossRef] [PubMed]
- Taczanowska, K.; Tansil, D.; Wilfer, J.; Jiricka-Pürrer, A. The Impact of Age on People’s Use and Perception of Urban Green Spaces and Their Effect on Personal Health and Wellbeing during the COVID-19 Pandemic—A Case Study of the Metropolitan Area of Vienna, Austria. Cities 2024, 147, 104798. [Google Scholar] [CrossRef]
- Poppe, L.; Van Dyck, D.; De Keyser, E.; Van Puyvelde, A.; Veitch, J.; Deforche, B. The Impact of Renewal of an Urban Park in Belgium on Park Use, Park-Based Physical Activity, and Social Interaction: A Natural Experiment. Cities 2023, 140, 104428. [Google Scholar] [CrossRef]
- Samsudin, R.; Yok, T.P.; Chua, V. Social Capital Formation in High Density Urban Environments: Perceived Attributes of Neighborhood Green Space Shape Social Capital More Directly than Physical Ones. Landsc. Urban Plan. 2022, 227, 104527. [Google Scholar] [CrossRef]
- Kajosaari, A.; Hasanzadeh, K.; Fagerholm, N.; Nummi, P.; Kuusisto-Hjort, P.; Kyttä, M. Predicting Context-Sensitive Urban Green Space Quality to Support Urban Green Infrastructure Planning. Landsc. Urban Plan. 2024, 242, 104952. [Google Scholar] [CrossRef]
- Knobel, P.; Kondo, M.; Maneja, R.; Zhao, Y.; Dadvand, P.; Schinasi, L.H. Associations of Objective and Perceived Greenness Measures with Cardiovascular Risk Factors in Philadelphia, PA: A Spatial Analysis. Environ. Res. 2021, 197, 110990. [Google Scholar] [CrossRef]
- Martinez, A.d.l.I.; Labib, S.M. Demystifying Normalized Difference Vegetation Index (NDVI) for Greenness Exposure Assessments and Policy Interventions in Urban Greening. Environ. Res. 2023, 220, 115155. [Google Scholar] [CrossRef]
- Yang, Y.; Lu, Y.; Yang, H.; Yang, L.; Gou, Z. Impact of the Quality and Quantity of Eye-Level Greenery on Park Usage. Urban For. Urban Green. 2021, 60, 127061. [Google Scholar] [CrossRef]
- Sánchez, I.A.V.; Labib, S.M. Accessing Eye-Level Greenness Visibility from Open-Source Street View Images: A Methodological Development and Implementation in Multi-City and Multi-Country Contexts. Sustain. Cities Soc. 2024, 103, 105262. [Google Scholar] [CrossRef]
- Yu, C.; Kwan, M.-P. Dynamic Greenspace Exposure, Individual Mental Health Status and Momentary Stress Level: A Study Using Multiple Greenspace Measurements. Health Place 2024, 86, 103213. [Google Scholar] [CrossRef] [PubMed]
- Gascon, M.; Cirach, M.; Martínez, D.; Dadvand, P.; Valentín, A.; Plasència, A.; Nieuwenhuijsen, M.J. Normalized Difference Vegetation Index (NDVI) as a Marker of Surrounding Greenness in Epidemiological Studies: The Case of Barcelona City. Urban For. Urban Green. 2016, 19, 88–94. [Google Scholar] [CrossRef]
- Reid, C.E.; Kubzansky, L.D.; Li, J.; Shmool, J.L.; Clougherty, J.E. It’s Not Easy Assessing Greenness: A Comparison of NDVI Datasets and Neighborhood Types and Their Associations with Self-Rated Health in New York City. Health Place 2018, 54, 92–101. [Google Scholar] [CrossRef] [PubMed]
- Teeuwen, R.; Milias, V.; Bozzon, A.; Psyllidis, A. How Well Do NDVI and OpenStreetMap Data Capture People’s Visual Perceptions of Urban Greenspace? Landsc. Urban Plan. 2024, 245, 105009. [Google Scholar] [CrossRef]
- Ki, D.; Lee, S. Analyzing the Effects of Green View Index of Neighborhood Streets on Walking Time Using Google Street View and Deep Learning. Landsc. Urban Plan. 2021, 205, 103920. [Google Scholar] [CrossRef]
- Yang, J.; Zhao, L.; Mcbride, J.; Gong, P. Can You See Green? Assessing the Visibility of Urban Forests in Cities. Landsc. Urban Plan. 2009, 91, 97–104. [Google Scholar] [CrossRef]
- Helbich, M.; Yao, Y.; Liu, Y.; Zhang, J.; Liu, P.; Wang, R. Using Deep Learning to Examine Street View Green and Blue Spaces and Their Associations with Geriatric Depression in Beijing, China. Environ. Int. 2019, 126, 107–117. [Google Scholar] [CrossRef]
- Liu, Y.; Zhao, B.; Cheng, Y.; Zhao, T.; Zhang, A.; Cheng, S.; Zhang, J. Does the Quality of Street Greenspace Matter? Examining the Associations between Multiple Greenspace Exposures and Chronic Health Conditions of Urban Residents in a Rapidly Urbanising Chinese City. Environ. Res. 2023, 222, 115344. [Google Scholar] [CrossRef]
- Liu, C.; Cao, Y.; Yang, C.; Zhou, Y.; Ai, M. Pattern Identification and Analysis for the Traditional Village Using Low Altitude UAV-Borne Remote Sensing: Multifeatured Geospatial Data to Support Rural Landscape Investigation, Documentation and Management. Comput. Environ. Urban Syst. 2020, 44, 185–195. [Google Scholar] [CrossRef]
- Lu, Y.; Yang, Y.; Sun, G.; Gou, Z. Associations between Overhead-View and Eye-Level Urban Greenness and Cycling Behaviors. Cities 2019, 88, 10–18. [Google Scholar] [CrossRef]
- Huang, F.; Peng, S.; Chen, S.; Cao, H.; Ma, N. VO-LVV—A Novel Urban Regional Living Vegetation Volume Quantitative Estimation Model Based on the Voxel Measurement Method and an Octree Data Structure. Remote Sens. 2022, 14, 855. [Google Scholar] [CrossRef]
- Sun, X.; Xu, S.; Hua, W.; Tian, J.; Xu, Y. Feasibility Study on the Estimation of the Living Vegetation Volume of Individual Street Trees Using Terrestrial Laser Scanning. Urban For. Urban Green. 2022, 71, 127553. [Google Scholar] [CrossRef]
- Yang, Y.; Shen, X.; Cao, L. Estimation of the Living Vegetation Volume (LVV) for Individual Urban Street Trees Based on Vehicle-Mounted LiDAR Data. Remote Sens. 2024, 16, 1662. [Google Scholar] [CrossRef]
- Xia, T.; Zhao, B.; Xian, Z.; Zhang, J. How to Systematically Evaluate the Greenspace Exposure of Residential Communities? A 3-D Novel Perspective Using UAV Photogrammetry. Remote Sens. 2023, 15, 1543. [Google Scholar] [CrossRef]
- Klompmaker, J.O.; Hoek, G.; Bloemsma, L.D.; Gehring, U.; Strak, M.; Wijga, A.H.; van den Brink, C.; Brunekreef, B.; Lebret, E.; Janssen, N.A.H. Green Space Definition Affects Associations of Green Space with Overweight and Physical Activity. Environ. Res. 2018, 160, 531–540. [Google Scholar] [CrossRef]
- Huang, D.; Jiang, B.; Yuan, L. Analyzing the Effects of Nature Exposure on Perceived Satisfaction with Running Routes: An Activity Path-Based Measure Approach. Urban For. Urban Green. 2022, 68, 127480. [Google Scholar] [CrossRef]
- Villeneuve, P.J.; Ysseldyk, R.L.; Root, A.; Ambrose, S.; DiMuzio, J.; Kumar, N.; Shehata, M.; Xi, M.; Seed, E.; Li, X.; et al. Comparing the Normalized Difference Vegetation Index with the Google Street View Measure of Vegetation to Assess Associations between Greenness, Walkability, Recreational Physical Activity, and Health in Ottawa, Canada. Int. J. Environ. Res. Public Health 2018, 15, 1719. [Google Scholar] [CrossRef]
- Li, X. Examining the Spatial Distribution and Temporal Change of the Green View Index in New York City Using Google Street View Images and Deep Learning. Environ. Plan. B Urban Anal. City Sci. 2021, 48, 2039–2054. [Google Scholar] [CrossRef]
- Lu, Y.; Ferranti, E.J.S.; Chapman, L.; Pfrang, C. Assessing Urban Greenery by Harvesting Street View Data: A Review. Urban For. Urban Green. 2023, 83, 127917. [Google Scholar] [CrossRef]
- Xia, T.; Zhao, B.; Yu, J.; Gao, Y.; Wang, X.; Mao, Y.; Zhang, J. Making Residential Green Space Exposure Evaluation More Accurate: A Composite Assessment Framework That Integrates Objective and Subjective Indicators. Urban For. Urban Green. 2024, 95, 128290. [Google Scholar] [CrossRef]
- Chen, S.; Sleipness, O.; Christensen, K.; Yang, B.; Wang, H. Developing and Testing a Protocol to Systematically Assess Social Interaction with Urban Outdoor Environment. J. Environ. Psychol. 2023, 88, 102008. [Google Scholar] [CrossRef]
- Chen, S.; Sleipness, O.; Christensen, K.; Yang, B.; Park, K.; Knowles, R.; Yang, Z.; Wang, H. Exploring Associations between Social Interaction and Urban Park Attributes: Design Guideline for Both Overall and Separate Park Quality Enhancement. Cities 2024, 145, 104714. [Google Scholar] [CrossRef]
- Jennings, V.; Bamkole, O. The Relationship between Social Cohesion and Urban Green Space: An Avenue for Health Promotion. Int. J. Environ. Res. Public Health 2019, 16, 452. [Google Scholar] [CrossRef]
- Veitch, J.; Ball, K.; Flowers, E.; Deforche, B.; Timperio, A. Children’s Ratings of Park Features That Encourage Park Visitation, Physical Activity and Social Interaction. Urban For. Urban Green. 2021, 58, 126963. [Google Scholar] [CrossRef]
- Akpinar, A. Urban Green Spaces for Children: A Cross-Sectional Study of Associations with Distance, Physical Activity, Screen Time, General Health, and Overweight. Urban For. Urban Green. 2017, 25, 66–73. [Google Scholar] [CrossRef]
- He, H.; Lin, X.; Yang, Y.; Lu, Y. Association of Street Greenery and Physical Activity in Older Adults: A Novel Study Using Pedestrian-Centered Photographs. Urban For. Urban Green. 2020, 55, 126789. [Google Scholar] [CrossRef]
- Vich, G.; Delclòs-Alió, X.; Maciejewska, M.; Marquet, O.; Schipperijn, J.; Miralles-Guasch, C. Contribution of Park Visits to Daily Physical Activity Levels among Older Adults: Evidence Using GPS and Accelerometery Data. Urban For. Urban Green. 2021, 63, 127225. [Google Scholar] [CrossRef]
- Yang, L.; Ao, Y.; Ke, J.; Lu, Y.; Liang, Y. To Walk or Not to Walk? Examining Non-Linear Effects of Streetscape Greenery on Walking Propensity of Older Adults. J. Transp. Geogr. 2021, 94, 103099. [Google Scholar] [CrossRef]
- Raney, M.A.; Hendry, C.F.; Yee, S.A. Physical Activity and Social Behaviors of Urban Children in Green Playgrounds. Am. J. Prev. Med. 2019, 56, 522–529. [Google Scholar] [CrossRef]
- Zhai, Y.; Li, D.; Wu, C.; Wu, H. Urban Park Facility Use and Intensity of Seniors’ Physical Activity—An Examination Combining Accelerometer and GPS Tracking. Landsc. Urban Plan. 2021, 205, 103950. [Google Scholar] [CrossRef]
- Evenson, K.R.; Jones, S.A.; Holliday, K.M.; Cohen, D.A.; McKenzie, T.L. Park Characteristics, Use, and Physical Activity: A Review of Studies Using SOPARC (System for Observing Play and Recreation in Communities). Prev. Med. 2016, 86, 153–166. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Zhong, T.; Yeh, A.G.O.; Zhong, X.; Chen, M.; Lü, G. Mapping Seasonal Changes of Street Greenery Using Multi-Temporal Street-View Images. Sustain. Cities Soc. 2023, 92, 104498. [Google Scholar] [CrossRef]
- Wang, C.; Zou, J.; Fang, X.; Chen, S.; Wang, H. Using Social Media and Multi-Source Geospatial Data for Quantifying and Understanding Visitor’s Preferences in Rural Forest Scenes: A Case Study from Nanjing. Forests 2023, 14, 1932. [Google Scholar] [CrossRef]
- Song, W.-K. Application of UAV for Vegetation Monitoring in Urban Green Space. J. Korean Soc. Environ. Restor. Technol. 2019, 22, 61–72. [Google Scholar] [CrossRef]
- Stow, D.; Nichol, C.J.; Wade, T.; Assmann, J.J.; Simpson, G.; Helfter, C. Illumination Geometry and Flying Height Influence Surface Reflectance and NDVI Derived from Multispectral UAS Imagery. Drones 2019, 3, 55. [Google Scholar] [CrossRef]
- Tucker, C.J. Red and Photographic Infrared Linear Combinations for Monitoring Vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef]
- Dong, L.; Jiang, H.; Li, W.; Qiu, B.; Wang, H.; Qiu, W. Assessing Impacts of Objective Features and Subjective Perceptions of Street Environment on Running Amount: A Case Study of Boston. Landsc. Urban Plan. 2023, 235, 104756. [Google Scholar] [CrossRef]
- Tsai, V.J.D.; Chang, C.-T. Three-Dimensional Positioning from Google Street View Panoramas. IET Image Process. 2013, 7, 229–239. [Google Scholar] [CrossRef]
- Ye, Y.; Richards, D.; Lu, Y.; Song, X.; Zhuang, Y.; Zeng, W.; Zhong, T. Measuring Daily Accessed Street Greenery: A Human-Scale Approach for Informing Better Urban Planning Practices. Landsc. Urban Plan. 2019, 191, 103434. [Google Scholar] [CrossRef]
- Yin, L.; Wang, Z. Measuring Visual Enclosure for Street Walkability: Using Machine Learning Algorithms and Google Street View Imagery. Appl. Geogr. 2016, 76, 147–153. [Google Scholar] [CrossRef]
- Aikoh, T.; Homma, R.; Abe, Y. Comparing Conventional Manual Measurement of the Green View Index with Modern Automatic Methods Using Google Street View and Semantic Segmentation. Urban For. Urban Green. 2023, 80, 127845. [Google Scholar] [CrossRef]
- Cordts, M.; Omran, M.; Ramos, S.; Rehfeld, T.; Enzweiler, M.; Benenson, R.; Franke, U.; Roth, S.; Schiele, B. The Cityscapes Dataset for Semantic Urban Scene Understanding. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 3213–3223. [Google Scholar]
- Zięba-Kulawik, K.; Skoczylas, K.; Wężyk, P.; Teller, J.; Mustafa, A.; Omrani, H. Monitoring of Urban Forests Using 3D Spatial Indices Based on LiDAR Point Clouds and Voxel Approach. Urban For. Urban Green. 2021, 65, 127324. [Google Scholar] [CrossRef]
- McKenzie, T.L.; Cohen, D.A.; Sehgal, A.; Williamson, S.; Golinelli, D. System for Observing Play and Recreation in Communities (SOPARC): Reliability and Feasibility Measures. J. Phys. Act. Health 2006, 3 (Suppl. S1), S208–S222. [Google Scholar] [CrossRef] [PubMed]
- Hewer, M.; Scott, D.; Fenech, A. Seasonal Weather Sensitivity, Temperature Thresholds, and Climate Change Impacts for Park Visitation. Tour. Geogr. 2016, 18, 297–321. [Google Scholar] [CrossRef]
- Hooper, P.; Foster, S.; Edwards, N.; Turrell, G.; Burton, N.; Giles-Corti, B.; Brown, W.J. Positive HABITATS for Physical Activity: Examining Use of Parks and Its Contribution to Physical Activity Levels in Mid-to Older-Aged Adults. Health Place 2020, 63, 102308. [Google Scholar] [CrossRef]
- Dunn, P.K.; Smyth, G.K. Generalized Linear Models with Examples in R; Springer Texts in Statistics; Springer: New York, NY, USA, 2018; ISBN 978-1-4419-0117-0. [Google Scholar]
- Gałecki, A.; Burzykowski, T. Linear Mixed-Effects Models Using R: A Step-by-Step Approach; Springer Texts in Statistics; Springer: New York, NY, USA, 2013; ISBN 978-1-4614-3899-1. [Google Scholar]
- Chen, S.; Sleipness, O.R.; Christensen, K.M.; Feldon, D.; Xu, Y. Environmental Justice and Park Quality in an Intermountain West Gateway Community: Assessing the Spatial Autocorrelation. Landsc. Ecol. 2019, 34, 2323–2335. [Google Scholar] [CrossRef]
- Conway, D.; Li, C.Q.; Wolch, J.; Kahle, C.; Jerrett, M. A Spatial Autocorrelation Approach for Examining the Effects of Urban Greenspace on Residential Property Values. J. Real Estate Financ. Econ. 2010, 41, 150–169. [Google Scholar] [CrossRef]
- Brooks, M.E.; Kristensen, K.; van Benthem, K.J.; Magnusson, A.; Berg, C.W.; Nielsen, A.; Skaug, H.J.; Mächler, M.; Bolker, B.M. glmmTMB Balances Speed and Flexibility Among Packages for Zero-Inflated Generalized Linear Mixed Modeling. R J. 2017, 9, 378–400. [Google Scholar] [CrossRef]
- Pebesma, E.; Bivand, R. Spatial Data Science: With Applications in R, 1st ed.; Chapman and Hall/CRC: New York, NY, USA, 2023; ISBN 978-0-429-45901-6. [Google Scholar]
- Zeileis, A.; Hothorn, T. Diagnostic Checking in Regression Relationships. R News 2002, 2, 7–10. [Google Scholar]
- Han, J.; Kamber, M.; Pei, J. Data Mining: Concepts and Techniques; Elsevier: Amsterdam, The Netherlands, 2011; ISBN 978-0-12-381480-7. [Google Scholar]
- Belsley, D.A.; Kuh, E.; Welsch, R.E. Regression Diagnostics: Identifying Influential Data and Sources of Collinearity; John Wiley & Sons: Hoboken, NJ, USA, 2005; ISBN 978-0-471-72514-5. [Google Scholar]
- Zhang, L.; Wang, L.; Wu, J.; Li, P.; Dong, J.; Wang, T. Decoding Urban Green Spaces: Deep Learning and Google Street View Measure Greening Structures. Urban For. Urban Green. 2023, 87, 128028. [Google Scholar] [CrossRef]
- Chen, X.; Meng, Q.; Hu, D.; Zhang, L.; Yang, J. Evaluating Greenery around Streets Using Baidu Panoramic Street View Images and the Panoramic Green View Index. Forests 2019, 10, 1109. [Google Scholar] [CrossRef]
- Zhang, R.; Zhang, C.-Q.; Lai, P.C.; Kwan, M.-P. Park and Neighbourhood Environmental Characteristics Associated with Park-Based Physical Activity among Children in a High-Density City. Urban For. Urban Green. 2022, 68, 127479. [Google Scholar] [CrossRef]
- Baró, F.; Camacho, D.A.; Pérez Del Pulgar, C.; Triguero-Mas, M.; Anguelovski, I. School Greening: Right or Privilege? Examining Urban Nature within and around Primary Schools through an Equity Lens. Landsc. Urban Plan. 2021, 208, 104019. [Google Scholar] [CrossRef]
- Janssen, I.; Rosu, A. Undeveloped Green Space and Free-Time Physical Activity in 11 to 13-Year-Old Children. Int. J. Behav. Nutr. Phys. Act. 2015, 12, 26. [Google Scholar] [CrossRef] [PubMed]
- Truong, M.V.; Nakabayashi, M.; Hosaka, T. How to Encourage Parents to Let Children Play in Nature: Factors Affecting Parental Perception of Children’s Nature Play. Urban For. Urban Green. 2022, 69, 127497. [Google Scholar] [CrossRef]
- Chen, Y.; Bouferguene, A.; Al-Hussein, M. Neighborhood Design and Regional Accessibility of Age-Restricted Communities from Resiliency and Spatial Perspectives. In Proceedings of the Construction Research Congress 2018, New Orleans, LA, USA, 2–4 April 2018. [Google Scholar]
- Buffel, T.; Verté, D.; Donder, L.D.; Witte, N.D.; Dury, S.; Vanwing, T.; Bolsenbroek, A. Theorising the Relationship between Older People and Their Immediate Social Living Environment. Int. J. Lifelong Educ. 2012, 31, 13–32. [Google Scholar] [CrossRef]
- Van Cauwenberg, J.; Cerin, E.; Timperio, A.; Salmon, J.; Deforche, B.; Veitch, J. Park Proximity, Quality and Recreational Physical Activity among Mid-Older Aged Adults: Moderating Effects of Individual Factors and Area of Residence. Int. J. Behav. Nutr. Phys. Act. 2015, 12, 46. [Google Scholar] [CrossRef]
- Kaczynski, A.T.; Besenyi, G.M.; Stanis, S.A.W.; Koohsari, M.J.; Oestman, K.B.; Bergstrom, R.; Potwarka, L.R.; Reis, R.S. Are Park Proximity and Park Features Related to Park Use and Park-Based Physical Activity among Adults? Variations by Multiple Socio-Demographic Characteristics. Int. J. Behav. Nutr. Phys. Act. 2014, 11, 146. [Google Scholar] [CrossRef]
- Hou, J.; Wang, Y.; Zhang, X.; Qiu, L.; Gao, T. The Effect of Visibility on Green Space Recovery, Perception and Preference. Trees For. People 2024, 16, 100538. [Google Scholar] [CrossRef]
- Tabrizian, P.; Baran, P.K.; Smith, W.R.; Meentemeyer, R.K. Exploring Perceived Restoration Potential of Urban Green Enclosure through Immersive Virtual Environments. J. Environ. Psychol. 2018, 55, 99–109. [Google Scholar] [CrossRef]
- Sezavar, N.; Pazhouhanfar, M.; Van Dongen, R.P.; Grahn, P. The Importance of Designing the Spatial Distribution and Density of Vegetation in Urban Parks for Increased Experience of Safety. J. Clean. Prod. 2023, 403, 136768. [Google Scholar] [CrossRef]
- Lis, A.; Zalewska, K.; Grabowski, M. The Ability to Choose How to Interact with Other People in the Park Space and Its Role in Terms of Perceived Safety and Preference. J. Environ. Psychol. 2024, 99, 102429. [Google Scholar] [CrossRef]
- Teeuwen, R.; Psyllidis, A.; Bozzon, A. Measuring Children’s and Adolescents’ Accessibility to Greenspaces from Different Locations and Commuting Settings. Comput. Environ. Urban Syst. 2023, 100, 101912. [Google Scholar] [CrossRef]
- Zhang, K.; Chen, M. Multi-Method Analysis of Urban Green Space Accessibility: Influences of Land Use, Greenery Types, and Individual Characteristics Factors. Urban For. Urban Green. 2024, 96, 128366. [Google Scholar] [CrossRef]
- Liu, Y.; Maurer, M.L.; Carstensen, T.A.; Wagner, A.M.; Skov-Petersen, H.; Olafsson, A.S. An Integrated Approach for Urban Green Travel Environments: Planning Factors, Benefits and Barriers as Perceived by Users and Planners. J. Transp. Geogr. 2024, 117, 103849. [Google Scholar] [CrossRef]
Mean | SD | CoV | Range | |
---|---|---|---|---|
Independent variables (IVs) | ||||
NDVI | 0.414 | 0.053 | 0.128 | (0.301, 0.517) |
(standardized *) | 0.523 | 0.246 | 0.470 | (0, 1) |
GVI | 0.468 | 0.172 | 0.368 | (0.138, 0.873) |
(standardized *) | 0.450 | 0.233 | 0.518 | (0, 1) |
LVV | 14,732.930 | 8644.416 | 0.587 | (6148.143, 46,776.290) |
(standardized *) | 0.211 | 0.213 | 1.009 | (0, 1) |
Control variable (CV) | ||||
Park Size | 9921.995 | 5272.066 | 0.531 | (1111.820, 25,665.020) |
(standardized *) | 0.359 | 0.215 | 0.599 | (0, 1) |
Dependent variables (DVs) | ||||
Number of PA participants | 16.53393 | 19.18376 | 1.160 | (0, 173) |
Intensity of general PA | 28.22679 | 34.17356 | 1.211 | (0, 377) |
Intensity of children’s PA | 0.4928571 | 2.544759 | 5.163 | (0, 45) |
Intensity of seniors’ PA | 6.164286 | 10.61009 | 1.721 | (0, 110) |
Number of SI participants | 16.84286 | 23.26791 | 1.381 | (0, 282) |
Intensity of general SI | 37.46964 | 54.29963 | 1.449 | (0, 673) |
Intensity of children’s SI | 0.5535714 | 2.515922 | 4.545 | (0, 30) |
Intensity of seniors’ SI | 7.183929 | 12.8428 | 1.788 | (0, 102) |
Park Size | NDVI | GVI | LVV | |
---|---|---|---|---|
Park size | 1 | 0.269 | −0.239 | 0.587 *** |
NDVI | 0.269 | 1 | 0.308 * | 0.400 ** |
GVI | −0.239 | 0.308 * | 1 | 0.152 |
LVV | 0.587 *** | 0.400 ** | 0.152 | 1 |
Dependent Variables (DVs) | F Value | p Value |
---|---|---|
Number of PA participants | 12.26 | <0.001 *** |
Intensity of general PA | 14.17 | <0.001 *** |
Intensity of children’s PA | 0.062 | 0.804 |
Intensity of seniors’ PA | 15.16 | <0.001 *** |
Number of SI participants | 12.3 | <0.001 *** |
Intensity of general SI | 12.71 | <0.001 *** |
Intensity of children’s SI | 0.812 | 0.368 |
Intensity of seniors’ SI | 7.448 | 0.007 *** |
Dependent Variables (DVs) | LogLik of Models Considering Dates | LogLik of Models Not Considering Dates | Chi-Squared | p Value |
---|---|---|---|---|
Number of PA participants | −2043.9 | −2084.7 | 81.555 | <0.001 *** |
Intensity of general PA | −2340.0 | −2379.7 | 79.348 | <0.001 *** |
Intensity of children’s PA | −312.03 | −315.14 | 6.230 | 0.013 ** |
Intensity of seniors’ PA | −1476.8 | −1489.4 | 25.188 | <0.001 *** |
Number of SI participants | −2052.1 | −2094.1 | 83.905 | <0.001 *** |
Intensity of general SI | −2490.7 | −2530.4 | 79.389 | <0.001 *** |
Intensity of children’s SI | −323.84 | −324.15 | 0.617 | 0.432 |
Intensity of seniors’ SI | −1512.4 | −1522.2 | 19.706 | <0.001 *** |
Dependent Variables (DVs) | Moran’s I Statistics | p Value |
---|---|---|
Number of PA participants | 0.589 | <0.001 *** |
Intensity of general PA | 0.399 | <0.001 *** |
Intensity of children’s PA | 0.003 | 0.402 |
Intensity of seniors’ PA | 0.172 | <0.001 *** |
Number of SI participants | 0.565 | <0.001 *** |
Intensity of general SI | 0.534 | <0.001 *** |
Intensity of children’s SI | 0.140 | <0.001 *** |
Intensity of seniors’ SI | 0.238 | <0.001 *** |
Variables | Regression Models for Physical Activity (PA) | |||
---|---|---|---|---|
Number of PA Participants | Intensity of General PA | Intensity of Children’s PA | Intensity of Seniors’ PA | |
(Intercept) | 2.370 *** | 2.885 *** | 0.451 | 0.857 *** |
NDVI | 0.192 | 0.060 | −0.289 | 0.636 ** |
GVI | −0.829 *** | −0.772 *** | −2.368 * | −0.785 ** |
LVV | −0.440 ** | −0.343 | −1.932 | −1.216 *** |
Park size | 0.495 ** | 0.518 ** | −0.406 | 1.056 ** |
Spatial lag | 0.020 *** | 0.014 *** | / | 0.073 *** |
Variables | Regression Models for Social Interaction (SI) | |||
---|---|---|---|---|
Number of SI Participants | Intensity of General SI | Intensity of Children’s SI | Intensity of Seniors’ SI | |
(Intercept) | 2.451 *** | 3.292 *** | −0.558 | 1.112 *** |
NDVI | 0.236 | 0.190 | 0.536 | 0.320 |
GVI | −0.926 *** | −0.952 *** | −0.676 | −0.998 *** |
LVV | −0.484 ** | −0.359 | −2.865 * | −0.631 |
Park size | 0.560 *** | 0.501 ** | 0.285 | 0.997 ** |
Spatial lag | 0.015 *** | 0.006 *** | 0.278 ** | 0.063 *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.; Chen, S.; Chen, Y.; Shen, Z. Greenery Effects: Comparing the Associations Between Multi-Dimensional Measurements of Urban Green Space Greenery and Engagement in Health-Related Activities Across Age Groups. Land 2025, 14, 1128. https://doi.org/10.3390/land14061128
Wang C, Chen S, Chen Y, Shen Z. Greenery Effects: Comparing the Associations Between Multi-Dimensional Measurements of Urban Green Space Greenery and Engagement in Health-Related Activities Across Age Groups. Land. 2025; 14(6):1128. https://doi.org/10.3390/land14061128
Chicago/Turabian StyleWang, Chongxiao, Shuolei Chen, Yang Chen, and Zhongzhe Shen. 2025. "Greenery Effects: Comparing the Associations Between Multi-Dimensional Measurements of Urban Green Space Greenery and Engagement in Health-Related Activities Across Age Groups" Land 14, no. 6: 1128. https://doi.org/10.3390/land14061128
APA StyleWang, C., Chen, S., Chen, Y., & Shen, Z. (2025). Greenery Effects: Comparing the Associations Between Multi-Dimensional Measurements of Urban Green Space Greenery and Engagement in Health-Related Activities Across Age Groups. Land, 14(6), 1128. https://doi.org/10.3390/land14061128