A Study of Carbon Stock Changes in the Alpine Grassland Ecosystem of Zoigê, China, 2000–2020
Abstract
:1. Introduction
2. Overview of the Study Area and Research Methods
2.1. Study Area Overview
2.2. Data Source
2.2.1. Land Use Classification Data
2.2.2. Field Collection
2.2.3. Soil Carbon Density Data in China
2.2.4. Meteorological Data
2.2.5. Carbon Pool Calculation Data
2.3. Research Methodology
2.3.1. InVEST Model Carbon Stock Module
2.3.2. Correction of Carbon Stock Simulation Results
3. Results and Analysis
3.1. Carbon Stock Changes in Zoigê Grassland from 2000 to 2020
3.2. Spatial Variation Characteristics of Carbon Stock in Zoigê Grassland
3.3. Land Use Type Change in Zoigê Grassland and Its Effect on Carbon Stock
4. Discussion
4.1. Spatial and Temporal Variation of Carbon Stock and Its Influencing Factors
4.2. Uncertainty Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Carvalhais, N.; Forkel, M.; Khomik, M.; Bellarby, J.; Jung, M.; Migliavacca, M.; Mu, M.; Saatchi, S.; Santoro, M.; Thurner, M.; et al. Global covariation of carbon turnover times with climate in terrestrial ecosystems. Nature 2014, 514, 213–217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, X.; Thornton, P.E.; Post, W.M. A global analysis of soil microbial biomass carbon, nitrogen and phosphorus in terrestrial ecosystems. Glob. Ecol. Biogeogr. 2013, 22, 737–749. [Google Scholar] [CrossRef]
- Gao, J.; Wang, L. Embedding spatiotemporal changes in carbon storage into urban agglomeration ecosystem management—A case study of the Yangtze River Delta, China. J. Clean. Prod. 2019, 237, 117764. [Google Scholar] [CrossRef]
- Zhang, M.; Huang, X.; Chuai, X.; Yang, H.; Lai, L.; Tan, J. Impact of land use type conversion on carbon storage in terrestrial ecosystems of China: A spatial-temporal perspective. Sci. Rep. 2015, 5, 10233. [Google Scholar] [CrossRef]
- Zhu, G.; Qiu, D.; Zhang, Z.; Sang, L.; Liu, Y.; Wang, L.; Zhao, K.; Ma, H.; Xu, Y.; Wan, Q. Land-use changes lead to a decrease in carbon storage in arid region, China. Ecol. Indic. 2021, 127, 107770. [Google Scholar] [CrossRef]
- Weiss, M.; Pongratz, J.; Pacifico, F.; de Noblet-Ducoudré, N.; Kato, E.; Jones, C.D.; Hurtt, G.C.; van den Hurk, B.J.J.M.; Gayler, V.; Friedlingstein, P.; et al. Effect of Anthropogenic Land-Use and Land-Cover Changes on Climate and Land Carbon Storage in CMIP5 Projections for the Twenty-First Century. J. Clim. 2013, 26, 6859–6881. [Google Scholar] [CrossRef]
- Vizcaíno-Bravo, Q.; Williams-Linera, G.; Asbjornsen, H. Biodiversity and carbon storage are correlated along a land use intensity gradient in a tropical montane forest watershed, Mexico. Basic Appl. Ecol. 2020, 44, 24–34. [Google Scholar] [CrossRef]
- DeFries, R.S.; Field, C.B.; Fung, I.; Collatz, G.J.; Bounoua, L. Combining satellite data and biogeochemical models to estimate global effects of human-induced land cover change on carbon emissions and primary productivity. Glob. Biogeochem. Cycles 1999, 13, 803–815. [Google Scholar] [CrossRef]
- Piao, S.; Fang, J.; Ciais, P.; Peylin, P.; Huang, Y.; Sitch, S.; Wang, T. The carbon balance of terrestrial ecosystems in China. Nature 2009, 458, 1009–1013. [Google Scholar] [CrossRef]
- Chen, H.; Yang, G.; Peng, C.; Zhang, Y.; Zhu, D.; Zhu, Q.; Hu, J.; Wang, M.; Zhan, W.; Zhu, E.; et al. The carbon stock of alpine peatlands on the Qinghai–Tibetan Plateau during the Holocene and their future fate. Quat. Sci. Rev. 2014, 95, 151–158. [Google Scholar] [CrossRef]
- Lai, L.; Huang, X.; Yang, H.; Chuai, X.; Zhang, M.; Zhong, T.; Chen, Z.; Chen, Y.; Wang, X.; Thompson, J.R.J.S.A. Carbon emissions from land-use change and management in China between 1990 and 2010. Sci. Adv. 2016, 2, e1601063. [Google Scholar] [CrossRef] [Green Version]
- Strohbach, M.W.; Haase, D. Above-ground carbon storage by urban trees in Leipzig, Germany: Analysis of patterns in a European city. Landsc. Urban Plan. 2012, 104, 95–104. [Google Scholar] [CrossRef]
- Li, X.; Liu, Z.; Li, S.; Li, Y. Multi-Scenario Simulation Analysis of Land Use Impacts on Habitat Quality in Tianjin Based on the PLUS Model Coupled with the InVEST Model. Sustainability 2022, 14, 6923. [Google Scholar] [CrossRef]
- Li, Y.; Liu, Z.; Li, S.; Li, X. Multi-Scenario Simulation Analysis of Land Use and Carbon Storage Changes in Changchun City Based on FLUS and InVEST Model. Land 2022, 11, 647. [Google Scholar] [CrossRef]
- Yang, J.; Xie, B.; Zhang, D. Spatio-temporal evolution of carbon stocks in the Yellow River Basin based on InVEST and CA-Markov models. Chin. J. Eco-Agric. 2021, 29, 1018–1029. [Google Scholar] [CrossRef]
- Cui, L.; Ma, Q.; Hao, Y. Relationships between main plant communities and environment in Zoige marsh. J. Ecol. Environ. 2013, 22, 1749–1756. [Google Scholar] [CrossRef]
- Shi, W.; Bai, J.; Jian, X. Carbon fixation ability of desertified grassland ecosystem in Zoige Plateau. J. Nat. Disasters 2016, 25, 42–50. [Google Scholar]
- Yang, W.-S.; Liu, Y.; Zhao, J.; Chang, X.; Wiesmeier, M.; Sun, J.; López-Vicente, M.; García-Ruiz, R.; Gómez, J.A.; Zhou, H.; et al. SOC changes were more sensitive in alpine grasslands than in temperate grasslands during grassland transformation in China: A meta-analysis. J. Clean. Prod. 2021, 308, 127430. [Google Scholar] [CrossRef]
- Su, P.; Zhou, Z.; Shi, R.; Xie, T. Variation in basic properties and carbon sequestration capacity of an alpine sod layer along moisture and elevation gradients. Acta Ecol. Sin. 2018, 38, 1040–1052. [Google Scholar] [CrossRef] [Green Version]
- Cai, Q.; Guo, Z.; Hu, Q. Vertical Distributin of Soil Organic Carbon and Carbon Storage under Different Hydrologic Conditions in Zoigê Alpine Kobresia Meadows Wetland. Sci. Silvae Sin. 2013, 49, 9–16. [Google Scholar] [CrossRef]
- Xin, X.; Ding, L.; Cheng, W.; Zhu, X.; Chen, B.; Liu, Z.; He, G.; Qing, G.; Yang, G.; Tang, H. Biomass Carbon Storage and Its Effect Factors in Steppe and Agro-Pastoral Ecotones in Northern China. Sci. Agric. Sin. 2020, 49, 2757–2768. [Google Scholar] [CrossRef]
- Ma, K. Spatial and Temporal Variation of Soil Organic Carbon Storage in Zoige Alpine Wetland. Ph.D. Thesis, Beijing Forestry University, Beijing, China, 2016. [Google Scholar]
- Li, X. Study on the Spatial and Temporal Variation of Soil Organic Carbon Storage in Ruoerge Wetland. Master’s Thesis, Sichuan Agricultural University, Ya’an, China, 2016. [Google Scholar]
- Ma, Q. Study of Carbon Stocks in the Alpine Bog Ecosystem of Wakului. Ph.D. Thesis, China Academy of Forestry Science, Beijing, China, 2013. [Google Scholar]
- Zhou, W.; Cui, L.; Wang, Y.; Li, W. Carbon storage of the peatland ecosystems in Zoige Plateau, China. Chin. J. Ecol. 2016, 35, 1981–1987. [Google Scholar] [CrossRef]
- Zhou, W.; Cui, L.; Wang, Y.; Li, W. Soil Organic Carbon Storage in the Degraded Wetlands in Zoigê Plateau. Res. Soil Water Conserv. 2017, 24, 27–32. [Google Scholar] [CrossRef]
- Xia, M.; Wang, H.; Liu, Z.; Wang, N.; Liu, G.; Wang, H.; Xiao, X.; Xiao, D. Carbon stock and its value for 3 types of wetland ecosystems on Zoige Plateau, Sichuan Province. J. Fujian Agric. For. Univ. 2020, 49, 392–398. [Google Scholar] [CrossRef]
- Xu, L.; He, N.; Yu, G. A dataset of carbon density in Chinese terrestrial ecosystems (2010s). China Sci. Data 2019, 4, 90–96. [Google Scholar] [CrossRef]
- Fu, Q.; Xu, L.; Zheng, H.; Chen, J. Spatiotemporal Dynamics of Carbon Storage in Response to Urbanization: A Case Study in the Su-Xi-Chang Region, China. Processes 2019, 7, 836. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Jing, X.; Flynn, D.F.B.; Shi, Y.; Kühn, P.; Scholten, T.; He, J.-S. Changes of carbon stocks in alpine grassland soils from 2002 to 2011 on the Tibetan Plateau and their climatic causes. Geoderma 2017, 288, 166–174. [Google Scholar] [CrossRef]
- Ahirwal, J.; Nath, A.; Brahma, B.; Deb, S.; Sahoo, U.K.; Nath, A.J. Patterns and driving factors of biomass carbon and soil organic carbon stock in the Indian Himalayan region. Sci. Total Env. 2021, 770, 145292. [Google Scholar] [CrossRef]
- Alam, S.A.; Starr, M.; Clark, B.J.F. Tree biomass and soil organic carbon densities across the Sudanese woodland savannah: A regional carbon sequestration study. J. Arid Environ. 2013, 89, 67–76. [Google Scholar] [CrossRef]
- Gupta, S.; Kumar, S. Simulating climate change impact on soil carbon sequestration in agro-ecosystem of mid-Himalayan landscape using CENTURY model. Environ. Earth Sci. 2017, 76, 394. [Google Scholar] [CrossRef]
- Sun, F.; Lu, H.; Hu, Y.; Qing, Y.; Zhu, C.; Li, F.; Gou, W. The Soil Organic Carbon Storage and Its Spatial Characteristics in an Alpine Degraded Grassland of Zoige, Southwest China. Chin. J. Grassl. 2016, 38, 78–84. [Google Scholar] [CrossRef]
- Cao, B.; Ling, C. Estimation of Aboveground Biomass and Soil Organic Carbon Density of Zoige Alpine Wetland based on GF-1 Remote Sensing Data. Remote Sens. Technol. Appl. 2021, 36, 229–236. [Google Scholar] [CrossRef]
- Gao, J.; Lei, G.; Li, L.; Lv, S.; Bai, M. The Distribution Characteristics of Soil Organic Carbon in Three Kinds of Wetland Soils in Zoigê Plateau. Wetl. Sci. 2010, 8, 327–330. [Google Scholar] [CrossRef]
- wenchang, Z. Effects of Human Activities on Carbon Fluxes and Storage in the Zoige Peatland of the Qinghai-Tibet Plateau. Ph.D. Thesis, Chinese Academy of Forestry, Beijing, China, 2015. [Google Scholar]
- Zhou, W.; Suolang, D.; Cui, L.; Wang, Y.; Li, W. Effect of drainage on organic carbon storage in peatland soils of the zoige plateau. Acta Ecol. Sin. 2016, 36, 2123–2132. [Google Scholar]
- Shi, M.; Wu, H.; Fan, X.; Jia, H.; Dong, T.; He, P.; Baqa, M.F.; Jiang, P. Trade-Offs and Synergies of Multiple Ecosystem Services for Different Land Use Scenarios in the Yili River Valley, China. Sustainability 2021, 13, 1577. [Google Scholar] [CrossRef]
- Piao, S.; He, Y.; Wang, X.; Chen, F. Estimation of Terrestrial Ecosystem Carbon Sequestration in China: Method, Progress and Prospect. Sci. Sin. Terrae 2022, 52, 1010–1020. [Google Scholar] [CrossRef]
- Wang, W.-B.; Bai, B.; Zhang, P.-Q.; Hu, L.-L. Distribution characteristics of soil organic carbon content and density in Zoige wetland. Chin. J. Ecol. 2021, 40, 3523–3530. [Google Scholar] [CrossRef]
- Pei, X.; Han, X.; Qian, J.; Chen, W.; Qin, T.; Li, X. Soil fertility assessment indicators from the perspective of natural resources comprehensive observation. Resour. Sci. 2020, 42, 1953–1964. [Google Scholar] [CrossRef]
- Zhou, H.; Tian, F.; Lu, Y.; Hu, Y.; Shi, Y. A Review on lnfluencing Factors of Grassland Soil Organic Carbon Storage. Chin. Agric. Sci. Bull. 2015, 31, 153–157. [Google Scholar]
- Huimin, Z. Spatial Pattern of Net CO2 Exchange in Terrestrial Ecosystems and Optimization of Its Model Parameters. Ph.D. Thesis, East China Normal University, Shanghai, China, 2021. [Google Scholar]
Land Use Type | Aboveground Carbon Density | Correction Results | Underground Carbon Density | Correction Results | Soil Carbon Density | Correction Results |
---|---|---|---|---|---|---|
Cropland | 5.81 | 5.86 | 28.5 | 28.57 | 31.5 | 31.53 |
Woodland | 31.53 | 22.87 | 55.92 | 45.63 | 146.88 | 132.46 |
Grassland | 35.50 | 35.58 | 36.50 | 32.55 | 132.61 | 110.80 |
Water bodies | - | - | 0 | 0 | 0 | 0 |
Wetland | 23.52 | 18.64 | 57.33 | 64.31 | 156.38 | 148.69 |
Planted surface | 0 | 1.50 | 0 | 0 | 0 | 0 |
Shrubland | 8.25 | 8.26 | 2.62 | 2.68 | 102.55 | 85.75 |
Bare land | 0 | 0 | 0 | 0 | 0 | 0 |
Snow and ice | 0 | 0 | 0 | 0 | 0 | 0 |
Years | Aboveground Carbon Density | Underground Carbon Density | Soil Carbon Density | Carbon Storages Total |
---|---|---|---|---|
2000 | 135.86 | 158.04 | 492.29 | 786.19 |
2010 | 133.66 | 158.43 | 487.93 | 780.02 |
2020 | 131.35 | 158.38 | 485.49 | 775.22 |
Land Use Types | 2000 | 2010 | 2020 | ||||||
---|---|---|---|---|---|---|---|---|---|
Area (Km2) | Percentage (%) | Carbon Stock | Area (Km2) | Percentage (%) | Carbon Stock | Area (Km2) | Percentage (%) | Carbon Stock | |
Artificial surface | 44.21 | 0.10 | 0.0066 | 69.57 | 0.16 | 0.0104 | 98.54 | 0.23 | 0.0148 |
Bare ground | - | - | 0 | 106.30 | 0.25 | 0.00 | 226.37 | 0.53 | 0.00 |
Cropland | 657.22 | 1.54 | 5.2118 | 1206.31 | 2.82 | 9.5661 | 1174.74 | 2.74 | 9.3157 |
Forest | 4199.73 | 9.81 | 87.4805 | 3926.12 | 9.17 | 81.7810 | 4429.80 | 10.35 | 92.2729 |
Glacial snow | 0.42 | 0.00 | 0 | 0.43 | 0.00 | 0.00 | 204.75 | 0.48 | 0.00 |
Grassland | 33,052.38 | 77.23 | 620.7237 | 32,315.32 | 75.51 | 606.8816 | 31,248.74 | 73.01 | 586.8514 |
Shrubland | - | - | 0 | 0.35 | 0.00 | 0.0037 | 0.24 | 0.00 | 0.0026 |
Water bodies | 241.42 | 0.56 | 0 | 187.32 | 0.44 | 0.00 | 239.55 | 0.56 | 0.00 |
Wetland | 4602.41 | 10.75 | 111.1484 | 4986.08 | 11.65 | 120.4139 | 5175.06 | 12.09 | 124.9777 |
Total | 42,797.82 | 100.00 | 824.5711 | 42,797.82 | 100.00 | 818.6568 | 42,797.82 | 100.00 | 813.4351 |
2020 | 2000 | ||||||
---|---|---|---|---|---|---|---|
Artificial Surface | Cropland | Forest | Glacial Snow | Grassland | Water Bodies | Wetland | |
Artificial surface | 29.93 | 11.89 | 0.71 | - | 51.14 | 0.63 | 4.17 |
Bare ground | 0.10 | - | 2.95 | 0.01 | 223.12 | 0.24 | - |
Cropland | 5.26 | 576.12 | 7.75 | - | 566.47 | 9.14 | 8.87 |
Forest | 0.32 | 11.25 | 3843.55 | - | 559.42 | 2.37 | 2.18 |
Glacial snow | - | - | 1.58 | 0.31 | 230.89 | 0.01 | - |
Grassland | 8.15 | 42.08 | 337.44 | 0.10 | 30,448.38 | 49.56 | 347.08 |
Shrubland | - | 0.01 | 0.00 | - | 0.17 | 0.03 | 0.04 |
Water bodies | 0.28 | 4.03 | 3.80 | - | 73.70 | 126.18 | 30.86 |
Wetland | 0.17 | 11.82 | 0.55 | - | 892.97 | 52.61 | 4209.22 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qu, R.; He, L.; He, Z.; Wang, B.; Lyu, P.; Wang, J.; Kang, G.; Bai, W. A Study of Carbon Stock Changes in the Alpine Grassland Ecosystem of Zoigê, China, 2000–2020. Land 2022, 11, 1232. https://doi.org/10.3390/land11081232
Qu R, He L, He Z, Wang B, Lyu P, Wang J, Kang G, Bai W. A Study of Carbon Stock Changes in the Alpine Grassland Ecosystem of Zoigê, China, 2000–2020. Land. 2022; 11(8):1232. https://doi.org/10.3390/land11081232
Chicago/Turabian StyleQu, Rui, Li He, Zhengwei He, Bing Wang, Pengyi Lyu, Jiaxian Wang, Guichuan Kang, and Wenqian Bai. 2022. "A Study of Carbon Stock Changes in the Alpine Grassland Ecosystem of Zoigê, China, 2000–2020" Land 11, no. 8: 1232. https://doi.org/10.3390/land11081232
APA StyleQu, R., He, L., He, Z., Wang, B., Lyu, P., Wang, J., Kang, G., & Bai, W. (2022). A Study of Carbon Stock Changes in the Alpine Grassland Ecosystem of Zoigê, China, 2000–2020. Land, 11(8), 1232. https://doi.org/10.3390/land11081232