Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = Zoigê alpine grassland

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 5346 KiB  
Article
Effects of Afforestation on Soil Aggregate Stability, Carbon, and Nitrogen in Alpine Sandy Lands
by Wangyi He, Hongyu Qian, Haodong Jiang, Xuan Gao and Yufu Hu
Forests 2025, 16(5), 782; https://doi.org/10.3390/f16050782 - 6 May 2025
Viewed by 618
Abstract
Soil aggregate stability and carbon–nitrogen content are critical indicators for assessing the vegetation restoration effects. Salix cupularis plays a vital role in rehabilitating desertified alpine meadows on the eastern Qinghai–Tibet Plateau. However, research remains limited about how afforestation influences the soil aggregate stability [...] Read more.
Soil aggregate stability and carbon–nitrogen content are critical indicators for assessing the vegetation restoration effects. Salix cupularis plays a vital role in rehabilitating desertified alpine meadows on the eastern Qinghai–Tibet Plateau. However, research remains limited about how afforestation influences the soil aggregate stability and associated carbon and nitrogen dynamics. In this study, sandy land (0 years) served as the control, and the spatial time replacement method was used to examine changes in the soil water-stable aggregate composition, stability, organic carbon (OC) and total nitrogen (TN) contents, and density at a 0–60 cm depth after 5 and 10 years of afforestation restoration (Salix cupularis). Ecological restoration significantly enhanced the proportion of macroaggregates (>0.25 mm) in the topsoil (0–20 cm), and improved aggregate stability. After 10 years of restoration, macroaggregates increased by 45.04% and 51.32%, respectively. The average weight diameter and geometric mean diameter of the aggregates increased by 51.32% and 59.53%, respectively. Following restoration, there was a gradual increase in the OC and TN contents in the soil, with the highest increase observed in the 0–10 cm layer (266.67% and 391.67%). The OC and TN of the aggregates also displayed a similar trend. Correlation analysis results indicated a significant positive relationship between the soil OC and TN contents and density, OC content in aggregates of various diameters, and the stability of these aggregates. The Pearson’s correlation coefficient for OC in aggregates > 1 mm was the highest. Compared with 5 years, 10 years of recovery were more conducive to the formation of macroaggregates, enhancement in aggregate stability, and the accumulation of OC and TN. Therefore, vegetation restoration on the Zoige Plateau can significantly enhance the soil water-stable aggregate composition and stability and can also increase the soil and OC and TN contents and density, thereby enhancing the soil ecological quality. This study provides fundamental data and theoretical support for rehabilitating desertified grasslands on the eastern Qinghai–Tibet Plateau. Full article
(This article belongs to the Special Issue Afforestation of Degraded Lands)
Show Figures

Figure 1

16 pages, 11907 KiB  
Article
Impact of Climate, Phenology, and Soil Factors on Net Ecosystem Productivity in Zoigê Alpine Grassland
by Rui Qu, Zhengwei He, Li He, Joseph Awange, Yongze Song, Bing Wang, Bo Wen and Jiao Hu
Agronomy 2025, 15(3), 685; https://doi.org/10.3390/agronomy15030685 - 12 Mar 2025
Viewed by 792
Abstract
Net ecosystem productivity (NEP) is a crucial metric for quantifying carbon storage, exchange, and cycling across global atmospheric and terrestrial ecosystems. This study examines the spatiotemporal patterns of NEP in China’s Zoigê alpine grassland and its response to climate variability, phenological changes, and [...] Read more.
Net ecosystem productivity (NEP) is a crucial metric for quantifying carbon storage, exchange, and cycling across global atmospheric and terrestrial ecosystems. This study examines the spatiotemporal patterns of NEP in China’s Zoigê alpine grassland and its response to climate variability, phenological changes, and soil conditions from 2000 to 2020. The results show a statistically significant increase in the annual NEP of the Zoigê Plateau, with an average rate of 3.18 g C/m2/year. Spatially, NEP displays strong heterogeneity, with higher values in the southwestern and northeastern marginal areas (>80 g C/m2) and lower values in the central region (<0 g C/m2). In alpine meadows (standardized total effect coefficient [STEC] = 0.52) and alpine steppes (STEC = 0.43), NEP is primarily regulated by soil moisture modulation, influenced by both water and temperature factors. This study accurately assesses NEP by incorporating regional soil characteristics, providing a more precise evaluation of changes in vegetation carbon sink sources in high-altitude areas. Full article
(This article belongs to the Special Issue Advances in Grassland Productivity and Sustainability — 2nd Edition)
Show Figures

Figure 1

24 pages, 11402 KiB  
Article
A Prediction–Interaction–Driving Framework for Ecosystem Services Under Climate Change and Human Activities: A Case Study of Zoigê Plateau
by Wanting Zeng, Li He, Zhengwei He, Yang Zhao, Yan Yuan, Jintai Pang and Jiahua Zhao
Land 2025, 14(3), 441; https://doi.org/10.3390/land14030441 - 20 Feb 2025
Cited by 1 | Viewed by 606
Abstract
Under climate change and human activities, ecosystem service (ES) research lacks systematic approaches and scientific depth. This study develops a comprehensive framework integrating advanced models to predict ESs, analyze interactions, identify key drivers, and assess spatial effects on the Zoigê Plateau. The results [...] Read more.
Under climate change and human activities, ecosystem service (ES) research lacks systematic approaches and scientific depth. This study develops a comprehensive framework integrating advanced models to predict ESs, analyze interactions, identify key drivers, and assess spatial effects on the Zoigê Plateau. The results indicate the following: (1) From 2000 to 2020 and across three 2040 scenarios, water conservation (WC) improves, while carbon storage (CS) and habitat quality (HQ) decline, leading to overall ES degradation. Core ES areas face rising degradation risks from 9% to 29% under increasing environmental stress (SSP119 to SSP585). (2) ES importance follows HQ > CS > SC > WC, with bivariate interactions outperforming single-factor effects. Future scenarios show weakened interactions, correlating with higher ecological stress, indicating ES stability risks. (3) Land use (>40% explanatory power) is the primary driver, while urban expansion, slope, evapotranspiration, and precipitation contribute (6–12%). (4) ES drivers showed weak spatial patterns from 2000 to 2020 but became more stable under future scenarios, suggesting stronger environmental control. This study provides a methodological paradigm for ES analysis and supports ecological planning in alpine wetland–grassland regions. Full article
Show Figures

Figure 1

18 pages, 3320 KiB  
Article
Performance of Multiple Models for Estimating Rodent Activity Intensity in Alpine Grassland Using Remote Sensing
by Guang Dong, Wei Xian, Huaiyong Shao, Qiufang Shao and Jiaguo Qi
Remote Sens. 2023, 15(5), 1404; https://doi.org/10.3390/rs15051404 - 2 Mar 2023
Cited by 5 | Viewed by 2858
Abstract
Rodents are a vital part of the natural succession chain of the alpine grassland ecosystem, and rodent activities have an important impact on alpine grassland ecology. Moderate rodent population activities positively improve soil permeability, promote nutrient cycling, and promote biodiversity. However, too much [...] Read more.
Rodents are a vital part of the natural succession chain of the alpine grassland ecosystem, and rodent activities have an important impact on alpine grassland ecology. Moderate rodent population activities positively improve soil permeability, promote nutrient cycling, and promote biodiversity. However, too much rodent population or excessive activity intensity will bring negative effects on the ecological environment. Therefore, it is of great significance to accurately grasp the rodent activity intensity (RAI) in alpine grassland to cope with the changes in rodent populations and maintain the stability of the alpine grassland ecosystem. The Zoige alpine grassland was used as the study area in this study. In addition, UAV was sent to sample the rodent activity area in the alpine grassland. With the aid of field survey data, the surface information of rodent activity in the experimental area was identified, and the RAI index in the sample plot was calculated. Then, based on Sentinel-2A satellite remote sensing multi-spectral data and spectral index, multiple linear regression (MLR), multi-layer perceptron neural networks (MPL neural nets), random forest (RF), and support vector regression (SVR) were used to construct four models for RAI and Sentinel-2 datasets. The accuracy of the four models was compared and analyzed. The results showed that the RF model had the highest prediction accuracy (R2 = 0.8263, RWI = 0.8210, LCCC = 0.8916, RMSE = 0.0840, MAE = 0.0549), followed by the SVR model, the MLP neural nets model, and the MLR model. Overall, the nonlinear relationship between rodent activity intensity and satellite remote sensing images is obvious. Machine learning with strong nonlinear fitting ability can better characterize the RAI in alpine grassland. The RF model, with the best accuracy, can quantitatively estimate RAI in the alpine grassland, providing theoretical and technical support for monitoring RAI and rodent control in the alpine grassland. Full article
Show Figures

Graphical abstract

15 pages, 2936 KiB  
Article
A Study of Carbon Stock Changes in the Alpine Grassland Ecosystem of Zoigê, China, 2000–2020
by Rui Qu, Li He, Zhengwei He, Bing Wang, Pengyi Lyu, Jiaxian Wang, Guichuan Kang and Wenqian Bai
Land 2022, 11(8), 1232; https://doi.org/10.3390/land11081232 - 4 Aug 2022
Cited by 9 | Viewed by 2415
Abstract
Terrestrial carbon sequestration capacity is an important indicator of ecosystem service function, and the carbon storage value can reflect the climate regulation capacity of the regional ecological environment. The Zoigê alpine grassland is a representative area of the Qinghai-Tibet Plateau grassland ecosystem, with [...] Read more.
Terrestrial carbon sequestration capacity is an important indicator of ecosystem service function, and the carbon storage value can reflect the climate regulation capacity of the regional ecological environment. The Zoigê alpine grassland is a representative area of the Qinghai-Tibet Plateau grassland ecosystem, with carbon sequestration types such as alpine grassland and marsh meadow and also an important water-conserving area in the upper reaches of the Yangtze River and the Yellow River. In this study, based on the land use/cover change pattern of the Zoigê alpine grassland region from 2000 to 2020, the carbon density coefficients corrected by the regional average annual precipitation and temperature factors were used to assess the carbon stocks of the Zoigê alpine grassland for three periods from 2000 to 2020 using the InVEST model. The results showed that the carbon stocks of the Zoigê alpine grassland region were 786.19 Tg, 780.02 Tg, and 775.22 Tg in 2000, 2010, and 2020, respectively, with a cumulative loss of 10.97 Tg and carbon densities of 183.70 t/ha, 182.26 t/ha, and 181.14 t/ha, showing a decreasing trend year by year. The carbon stock of the grassland ecosystem is the absolute contributor to the regional carbon stock, and the carbon stock accounts for 75.28% of the total carbon stock. The increase in the cultivated land area with a lower carbon density and the decrease in the grassland area with a higher carbon density are the main factors leading to the decrease in the carbon stock in the regional ecosystem of the Zoigê alpine grassland. Full article
(This article belongs to the Special Issue Carbon Cycling in Terrestrial Ecosystems)
Show Figures

Figure 1

13 pages, 16620 KiB  
Article
Assessment of Changes in Key Ecosystem Factors and Water Conservation with Remote Sensing in the Zoige
by Peng Hou, Jun Zhai, Dian-Dian Jin, Yan Zhou, Yan Chen and Hai-Feng Gao
Diversity 2022, 14(7), 552; https://doi.org/10.3390/d14070552 - 9 Jul 2022
Cited by 10 | Viewed by 2562
Abstract
As the largest alpine peat swamp wetland distribution area in the world, the Zoige has important ecological functions, including water conservation and biodiversity maintenance. In the past 20 years, the regional ecological protection and restoration measures continuously strengthened under the leadership of the [...] Read more.
As the largest alpine peat swamp wetland distribution area in the world, the Zoige has important ecological functions, including water conservation and biodiversity maintenance. In the past 20 years, the regional ecological protection and restoration measures continuously strengthened under the leadership of the local government have led to gradual improvements in the ecological environment of the region. In this study, multisource satellite remote-sensing image data were used to carry out quantitative monitoring and assessment of the main ecological elements (vegetation and water), as well as the regional leading ecosystem service function in the Zoige. Combined with local ecological protection management policies and measures, we analyzed the characteristics and effectiveness of ecological protection. We compared the ecosystem change trends of the Zoige reserve and the county, from 2001 to 2020, and found that the fractional vegetation cover (FVC) of Zoige county has increased at a rate of 0.25%/year. The growth rate was highest between 2015 and 2020, and the growth rate of FVC in the Zoige Wetland National Nature Reserve is approximately 1.89-fold that of the whole county. The water area also shows similar variation characteristics. On the whole, the water conservation capacity of the Zoige showed a significant increase from 2001 to 2020. We used high-resolution satellite remote-sensing images to capture the details of land use changes brought about by local ecological protection policies and measures, and together with macroecological indicators, we reflected on the effectiveness of regional ecological protection measures. We observed that the ecological effects of nature reserves are more direct and rapid, and the amount of water conservation within the nature reserve is about 1 × 104 m3/km2 higher than that of the surrounding grasslands. Satellite remote-sensing images can not only capture the multiscale change information of ecological indicators, such as vegetation and water, in a timely manner, but can also help us to identify the effectiveness of conservation measures by distinguishing and analyzing the causes of these changes. Full article
(This article belongs to the Special Issue Ecosystem Observation, Simulation and Assessment)
Show Figures

Figure 1

22 pages, 9041 KiB  
Article
Ecological Risk Assessment and Impact Factor Analysis of Alpine Wetland Ecosystem Based on LUCC and Boosted Regression Tree on the Zoige Plateau, China
by Mengjing Hou, Jing Ge, Jinlong Gao, Baoping Meng, Yuanchun Li, Jianpeng Yin, Jie Liu, Qisheng Feng and Tiangang Liang
Remote Sens. 2020, 12(3), 368; https://doi.org/10.3390/rs12030368 - 22 Jan 2020
Cited by 102 | Viewed by 6464
Abstract
The Zoige Plateau is typical of alpine wetland ecosystems worldwide, which play a key role in regulating global climate and ecological balance. Due to the influence of global climate change and intense human activities, the stability and sustainability of the ecosystems associated with [...] Read more.
The Zoige Plateau is typical of alpine wetland ecosystems worldwide, which play a key role in regulating global climate and ecological balance. Due to the influence of global climate change and intense human activities, the stability and sustainability of the ecosystems associated with the alpine marsh wetlands are facing enormous threats. It is important to establish a precise risk assessment method to evaluate the risks to alpine wetlands ecosystems, and then to understand the influencing factors of ecological risk. However, the multi-index evaluation method of ecological risk in the Zoige region is overly focused on marsh wetlands, and the smallest units of assessment are relatively large. Although recently developed landscape ecological risk assessment (ERA) methods can address the above limitations, the final directionality of the evaluation results is not clear. In this work, we used the landscape ERA method based on land use and land cover changes (LUCC) to evaluate the ecological risks to an alpine wetland ecosystem from a spatial pixel scale (5 km × 5 km). Furthermore, the boosted regression tree (BRT) model was adopted to quantitatively analyze the impact factors of ecological risk. The results show the following: (1) From 1990 to 2016, the land use and land cover (LULC) types in the study area changed markedly. In particular, the deep marshes and aeolian sediments, and whereas construction land areas changed dramatically, the alpine grassland changed relatively slowly. (2) The ecological risk in the study area increased and was dominated by regions with higher and moderate risk levels. Meanwhile, these areas showed notable spatio-temporal changes, significant spatial correlation, and a high degree of spatial aggregation. (3) The topographic distribution, climate changes and human activities influenced the stability of the study area. Elevation (23.4%) was the most important factor for ecological risk, followed by temperature (16.2%). Precipitation and GDP were also seen to be adverse factors affecting ecological risk, at levels of 13.0% and 12.1%, respectively. The aim of this study was to provide more precise and specific support for defining conservation objectives, and ecological management in alpine wetland ecosystems. Full article
Show Figures

Graphical abstract

Back to TopTop