Effects of Light Irradiation Conditions on Nitrogen and Phosphorus Removal in Microalgae–Bacteria Biofilm Systems Treating Low-Carbon-to-Nitrogen Wastewater
Abstract
1. Introduction
2. Materials and Methods
2.1. Batch Experiments
2.2. Analysis of Nitrogen Removal Pathways
2.3. Analytical Methods
2.4. Flow Cytometry (FCM) Analysis
2.5. Kinetic and Stoichiometric Parameters
3. Results and Discussion
3.1. Effect of Light Energy Density on Nitrogen and Phosphorus Removal Performance of the P-SNDPRB System
3.2. Effect of Light Energy Density on Nitrogen and Phosphorus Removal Pathways in the P-SNDPRB System
3.3. Effect of Light Energy Density on Pollutant Removal Mechanisms in the P-SNDPRB System
3.4. Effect of Light Energy Density on Microbial Physiological Activity in the P-SNDPRB System
3.5. Effect of Light Energy Density on Microbial Vitality and Population Distribution of P-SNDPRB Systems
3.5.1. Flocs
3.5.2. Biofilm
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- van Loosdrecht, M.C.M.; Brdjanovic, D. Anticipating the next century of wastewater treatment. Science 2014, 344, 1452–1453. [Google Scholar] [CrossRef]
- Stenstrom, M.K.; Larson, L.E.; Rosso, D. Aeration of large-scale municipal wastewater treatment plants: State of the art. Water Sci. Technol. 2008, 57, 973–978. [Google Scholar] [CrossRef]
- Trebuch, L.M.; Timmer, J.; Graaf, J.V.D.; Janssen, M.; Fernandes, T.V. Making waves: How to clean surface water with photogranules. Water Res. 2024, 260, 121875. [Google Scholar] [CrossRef] [PubMed]
- Tang, C.-C.; Hu, Y.-R.; He, Z.-W.; Li, Z.-H.; Tian, Y.; Wang, X.C. Promoting symbiotic relationship between microalgae and bacteria in wastewater treatment processes: Technic comparison, microbial analysis, and future perspectives. Chem. Eng. J. 2024, 498, 155703. [Google Scholar] [CrossRef]
- Sanchez-Sanchez, C.; Baquerizo, G.; Moreno-Rodríguez, E. Analysing the influence of operating conditions on the performance of algal–bacterial granular sludge processes for wastewater treatment: A review. Water. Environ. J. 2023, 37, 657–670. [Google Scholar] [CrossRef]
- Perez-Garcia, O.; Escalante, F.M.E.; De-Bashan, L.E.; Bashan, Y. Heterotrophic cultures of microalgae: Metabolism and potential products. Water Res. 2011, 45, 11–36. [Google Scholar] [CrossRef]
- Bhatia, S.K.; Ahuja, V.; Chandel, N.; Mehariya, S.; Kumar, P.; Vinayak, V.; Saratale, G.D.; Raj, T.; Kim, S.-H.; Yang, Y.-H. An overview on microalgal-bacterial granular consortia for resource recovery and wastewater treatment. Bioresour. Technol. 2022, 351, 127028. [Google Scholar] [CrossRef]
- Lee, Y.-J.; Lei, Z. Wastewater treatment using microalgal-bacterial aggregate process at zero-aeration scenario: Most recent research focuses and perspectives. Bioresour. Technol. Rep. 2022, 17, 100943. [Google Scholar] [CrossRef]
- Saravanan, A.; Kumar, P.S.; Varjani, S.; Jeevanantham, S.; Yaashikaa, P.R.; Thamarai, P.; Abirami, B.; George, C.S. A review on algal-bacterial symbiotic system for effective treatment of wastewater. Chemosphere 2021, 271, 129540. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, V.C.F.; Freitas, E.B.; Silva, P.J.; Fradinho, J.C.; Reis, M.A.M.; Oehmen, A. The impact of operational strategies on the performance of a photo-EBPR system. Water Res. 2018, 129, 190–198. [Google Scholar] [CrossRef]
- Mohamed, A.Y.A.; Welles, L.; Siggins, A.; Healy, M.G.; Brdjanovic, D.; Rada-Ariza, A.M.; Lopez-Vazquez, C.M. Effects of substrate stress and light intensity on enhanced biological phosphorus removal in a photo-activated sludge system. Water Res. 2021, 189, 116606. [Google Scholar] [CrossRef]
- Carvalho, V.C.F.; Kessler, M.; Fradinho, J.C.; Oehmen, A.; Reis, M.A.M. Achieving nitrogen and phosphorus removal at low C/N ratios without aeration through a novel phototrophic process. Sci. Total Environ. 2021, 793, 148501. [Google Scholar] [CrossRef]
- Meng, Q.; Zeng, W.; Zhang, J.; Liu, H.; Li, S.; Peng, Y. Combined Phototrophic Simultaneous Nitrification-Endogenous Denitrification with Phosphorus Removal (P-SNDPR) System Treating Low Carbon to Nitrogen Ratio Wastewater for Potential Carbon Neutrality. Environ. Sci. Technol. 2024, 58, 2902–2911. [Google Scholar] [CrossRef]
- Meng, Q.; Zeng, W.; Liu, H.; Zhang, J.; Ma, B.; Peng, Y. Optimizing sludge retention time for sustainable photo-enhanced biological phosphorus removal systems: Insights into nutrient fate, microbial community, and bacterial phototolerance. J. Environ. Manage. 2024, 351, 119839. [Google Scholar] [CrossRef] [PubMed]
- Abbew, A.-W.; Qiu, S.; Amadu, A.A.; Qasim, M.Z.; Chen, Z.; Wu, Z.; Wang, L.; Ge, S. Insights into the multi-targeted effects of free nitrous acid on the microalgae Chlorella sorokiniana in wastewater. Bioresour. Technol. 2022, 347, 126389. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zheng, H.; Zhao, J.; Luo, X.; Wang, Z.; Xing, B. Photodegradation elevated the toxicity of polystyrene microplastics to grouper (Epinephelus moara) through disrupting hepatic lipid homeostasis. Environ. Sci. Technol. 2020, 54, 6202–6212. [Google Scholar] [CrossRef] [PubMed]
- Chu, G.; Gao, C.; Wang, Q.; Zhang, W.; Tian, T.; Chen, W.; Gao, M. Effect of light intensity on nitrogen removal, enzymatic activity and metabolic pathway of algal-bacterial symbiosis in rotating biological contactor treating mariculture wastewater. Bioresour. Technol. 2025, 417, 131872. [Google Scholar] [CrossRef]
- Arcila, J.S.; Buitrón, G. Influence of solar irradiance levels on the formation of microalgae-bacteria aggregates for municipal wastewater treatment. Algal Res. 2017, 27, 190–197. [Google Scholar] [CrossRef]
- Wang, L.; Qiu, S.; Guo, J.; Ge, S. Light Irradiation Enables Rapid Start-Up of Nitritation through Suppressing nxrB Gene Expression and Stimulating Ammonia-Oxidizing Bacteria. Environ. Sci. Technol. 2021, 55, 13297–13305. [Google Scholar] [CrossRef]
- Yang, M.; Qiu, S.; Wang, L.; Chen, Z.; Hu, Y.; Guo, J.; Ge, S. Effect of short-term light irradiation with varying energy densities on the activities of nitrifiers in wastewater. Water Res. 2022, 216, 118291. [Google Scholar] [CrossRef]
- Liao, Y.; Bian, J.; Miao, S.; Xu, S.; Li, R.; Liu, R.; Liu, H.; Qu, J. Regulation of denitrification performance and microbial topology by lights: Insight into wavelength effects towards microbiota. Water Res. 2023, 232, 119434. [Google Scholar] [CrossRef]
- Marcilhac, C.; Sialve, B.; Pourcher, A.-M.; Ziebal, C.; Bernet, N.; Béline, F. Digestate color and light intensity affect nutrient removal and competition phenomena in a microalgal-bacterial ecosystem. Water Res. 2014, 64, 278–287. [Google Scholar] [CrossRef] [PubMed]
- Zeng, W.; Ma, S.; Huang, Y.; Xia, A.; Zhu, X.; Zhu, X.; Liao, Q. Bifunctional lighting/supporting substrate for microalgal photosynthetic biofilm to bio-remove ammonia nitrogen from high turbidity wastewater. Water Res. 2022, 223, 119041. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Tang, Z.; Yang, D.; Dai, X.; Chen, H. Enhanced growth and auto-flocculation of Scenedesmus quadricauda in anaerobic digestate using high light intensity and nanosilica: A biomineralization-inspired strategy. Water Res. 2023, 235, 119893. [Google Scholar] [CrossRef]
- Akizuki, S.; Kishi, M.; Cuevas-Rodríguez, G.; Toda, T. Effects of different light conditions on ammonium removal in a consortium of microalgae and partial nitrifying granules. Water Res. 2020, 171, 115445. [Google Scholar] [CrossRef] [PubMed]
- Kong, L.; Zheng, R.; Feng, Y.; Du, W.; Xie, C.; Gu, Y.; Liu, S. Anammox bacteria adapt to long-term light irradiation in photogranules. Water Res. 2023, 241, 120144. [Google Scholar] [CrossRef]
- Arun, S.; Ramasamy, S.; Pakshirajan, K. Mechanistic insights into nitrification by microalgae-bacterial consortia in a photo-sequencing batch reactor under different light intensities. J. Clean Prod. 2021, 321, 128752. [Google Scholar] [CrossRef]
- APHA. Standard Methods for the Examination of Water and Wastewater, 19th ed.; American Public Health Association: Washington, DC, USA, 2005. [Google Scholar]
- Meng, Q.; Xia, Y.; Wu, J.; Zhang, M.; Zeng, W. Enhancing nutrient removal in continuous-flow anaerobic/aerobic/anoxic processes treating low C/N ratios wastewater via side-stream light irradiation: NOB suppression and PHA metabolism stimulation. Water Res. 2026, 288, 124575. [Google Scholar] [CrossRef]
- Wang, X.; Wang, S.; Zhao, J.; Dai, X.; Peng, Y. Combining simultaneous nitrification-endogenous denitrification and phosphorus removal with post-denitrification for low carbon/nitrogen wastewater treatment. Bioresour. Technol. 2016, 220, 17–25. [Google Scholar] [CrossRef]
- Li, M.; Wilkins, M. Flow cytometry for quantitation of polyhydroxybutyrate production by Cupriavidus necator using alkaline pretreated liquor from corn stover. Bioresour. Technol. 2020, 295, 122254. [Google Scholar] [CrossRef]
- Li, K.; Qian, J.; Wang, P.; Wang, C.; Fan, X.; Lu, B.; Tian, X.; Jin, W.; He, X.; Guo, W. Toxicity of Three Crystalline TiO2 Nanoparticles in Activated Sludge: Bacterial Cell Death Modes Differentially Weaken Sludge Dewaterability. Environ. Sci. Technol. 2019, 53, 4542–4555. [Google Scholar] [CrossRef]
- Du, Z.; Behrens, S.F. Tracking de novo protein synthesis in the activated sludge microbiome using BONCAT-FACS. Water Res. 2021, 205, 117696. [Google Scholar] [CrossRef]
- Bradley, I.M.; Sevillano-Rivera, M.C.; Pinto, A.J.; Guest, J.S. Impact of solids residence time on community structure and nutrient dynamics of mixed phototrophic wastewater treatment systems. Water Res. 2019, 150, 271–282. [Google Scholar] [CrossRef]
- Zhang, S.; Li, C.; Lv, H.; Cui, B.; Zhou, D. Anammox activity improved significantly by the cross-fed NO from ammonia-oxidizing bacteria and denitrifying bacteria to anammox bacteria. Water Res. 2024, 249, 120986. [Google Scholar] [CrossRef]
- Wang, Z.; Zheng, M.; Hu, Z.; Duan, H.; De Clippeleir, H.; Al-Omari, A.; Hu, S.; Yuan, Z. Unravelling adaptation of nitrite-oxidizing bacteria in mainstream PN/A process: Mechanisms and counter-strategies. Water Res. 2021, 200, 117239. [Google Scholar] [CrossRef] [PubMed]
- Meng, Q.; Zeng, W.; Wang, B.; Fan, Z.; Peng, Y. New insights in the competition of polyphosphate-accumulating organisms and glycogen-accumulating organisms under glycogen accumulating metabolism with trace Poly-P using flow cytometry. Chem. Eng. J. 2020, 385, 123915. [Google Scholar] [CrossRef]
- Acevedo, B.; Murgui, M.; Borrás, L.; Barat, R. New insights in the metabolic behaviour of PAO under negligible poly-P reserves. Chem. Eng. J. 2017, 311, 82–90. [Google Scholar] [CrossRef]
- Stone, S.; Koppel, D.J.; Binet, M.T.; Jolley, D.F.; Simpson, S.L. Application of a Multispecies Pulse-Exposure Microalgal Bioassay to Assess Duration and Time-of-Day Influences on the Toxicity of Chemicals. Environ. Sci. Technol. 2024, 58, 21155–21165. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Steinman, A.D.; Xue, Q.; Zhao, Y.; Xu, Y.; Xie, L. Effects of erythromycin and sulfamethoxazole on Microcystis aeruginosa: Cytotoxic endpoints, production and release of microcystin-LR. J. Hazard. Mater. 2020, 399, 123021. [Google Scholar] [CrossRef]
- Collado, S.; Oulego, P.; Alonso, S.; Díaz, M. Flow cytometric characterization of bacterial abundance and physiological status in a nitrifying-denitrifying activated sludge system treating landfill leachate. Environ. Sci. Pollut. R 2017, 24, 21262–21271. [Google Scholar] [CrossRef]
- Carvalheira, M.; Oehmen, A.; Carvalho, G.; Eusébio, M.; Reis, M.A.M. The impact of aeration on the competition between polyphosphate accumulating organisms and glycogen accumulating organisms. Water Res. 2014, 66, 296–307. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Liu, Z.; Wang, J.; Zhao, D.; Wei, J.; Peng, Y.; Miao, L. Characterizing algal-bacterial symbiotic biofilms: Insights into coexistence of algae and anaerobic microorganisms. Bioresour. Technol. 2024, 406, 130966. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Zeng, W.; Li, N.; Guo, Y.; Peng, Y. Population Structure and Morphotype Analysis of “Candidatus Accumulibacter” Using Fluorescence In Situ Hybridization-Staining-Flow Cytometry. Appl. Environ. Microb. 2019, 85, e02943-189. [Google Scholar] [CrossRef] [PubMed]





| Test | Light Intensity (W/m2) | Light Exposure Time (h) | MLSS (g/L) | Es (J/gVSS) |
|---|---|---|---|---|
| 1 | 120 | 6 | 0.5 | 32.41 |
| 2 | 295 | 6 | 0.5 | 90.27 |
| 3 | 595 | 6 | 0.5 | 160.65 |
| 4 | 1200 | 6 | 0.5 | 367.22 |
| 5 | 120 | 6 | 1 | 16.23 |
| 6 | 295 | 6 | 1 | 45.14 |
| 7 | 595 | 6 | 1 | 80.33 |
| 8 | 1200 | 6 | 1 | 183.6 |
| 9 | 120 | 10 | 0.5 | 54.21 |
| 10 | 295 | 10 | 0.5 | 150.45 |
| 11 | 595 | 10 | 0.5 | 267.75 |
| 12 | 1200 | 10 | 0.5 | 612.11 |
| 13 | 120 | 10 | 1 | 27.12 |
| 14 | 295 | 10 | 1 | 75.23 |
| 15 | 595 | 10 | 1 | 133.88 |
| 16 | 1200 | 10 | 1 | 306.22 |
| 17 | 120 | 18 | 0.5 | 97.25 |
| 18 | 295 | 18 | 0.5 | 270.81 |
| 19 | 595 | 18 | 0.5 | 481.95 |
| 20 | 1200 | 18 | 0.5 | 1101.61 |
| 21 | 120 | 18 | 1 | 48.61 |
| 22 | 295 | 18 | 1 | 135.41 |
| 23 | 595 | 18 | 1 | 240.98 |
| 24 | 1200 | 18 | 1 | 550.81 |
| Contents | Concentration |
|---|---|
| -N (mg/L) | 57.32 ± 8.21 |
| -N (mg/L) | 0.02 ± 0.01 |
| -N (mg/L) | 0.03 ± 0.01 |
| TN (mg/L) | 67.52 ± 7.51 |
| -P (mg/L) | 5.28 ± 0.72 |
| COD (mg/L) | 215.52 ± 24.21 |
| C/N | 3.19–3.92 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Z.; Hu, L.; Liu, Q.; Wang, W.; Zhao, W.; Zhu, T.; Meng, Q. Effects of Light Irradiation Conditions on Nitrogen and Phosphorus Removal in Microalgae–Bacteria Biofilm Systems Treating Low-Carbon-to-Nitrogen Wastewater. Water 2025, 17, 3426. https://doi.org/10.3390/w17233426
Huang Z, Hu L, Liu Q, Wang W, Zhao W, Zhu T, Meng Q. Effects of Light Irradiation Conditions on Nitrogen and Phosphorus Removal in Microalgae–Bacteria Biofilm Systems Treating Low-Carbon-to-Nitrogen Wastewater. Water. 2025; 17(23):3426. https://doi.org/10.3390/w17233426
Chicago/Turabian StyleHuang, Zi, Lei Hu, Qi Liu, Wentao Wang, Weijia Zhao, Tengyi Zhu, and Qingan Meng. 2025. "Effects of Light Irradiation Conditions on Nitrogen and Phosphorus Removal in Microalgae–Bacteria Biofilm Systems Treating Low-Carbon-to-Nitrogen Wastewater" Water 17, no. 23: 3426. https://doi.org/10.3390/w17233426
APA StyleHuang, Z., Hu, L., Liu, Q., Wang, W., Zhao, W., Zhu, T., & Meng, Q. (2025). Effects of Light Irradiation Conditions on Nitrogen and Phosphorus Removal in Microalgae–Bacteria Biofilm Systems Treating Low-Carbon-to-Nitrogen Wastewater. Water, 17(23), 3426. https://doi.org/10.3390/w17233426
