A Bivariate Return Period Copula Application of Flood Peaks and Volumes for Climate Adaptation in Semi-Arid Regions
Abstract
1. Introduction
2. Methodology
2.1. Study Area
2.2. Hydrological Data
2.3. Frequency Analysis
2.3.1. Univariate Analysis
2.3.2. Bivariate Analysis and Copula Fitting
2.4. Frequency Analysis and Return Periods
3. Results
3.1. Hydrological and Climatic Context of the 2004 Flood Event
3.2. Frequency Analysis
3.2.1. Marginal Distribution
3.2.2. Copula Function
3.2.3. Return Period
4. Discussions and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yin, J.; Gao, Y.; Chen, R.; Yu, D.; Wilby, R.; Wright, N.; Ge, Y.; Bricker, J.; Gong, H.; Guan, M. Flash Floods: Why Are More of Them Devastating the World’s Driest Regions? Setting the Agenda in Research. Nature 2023, 615, 212–215. [Google Scholar] [CrossRef]
- Nabinejad, S.; Schüttrumpf, H. Flood Risk Management in Arid and Semi-Arid Areas: A Comprehensive Review of Challenges, Needs, and Opportunities. Water 2023, 15, 3113. [Google Scholar] [CrossRef]
- Villarini, G.; Smith, J.A. Flood Peak Distributions for the Eastern United States. Water Resour. Res. 2010, 46. [Google Scholar] [CrossRef]
- Calenda, G.; Mancini, C.P.; Volpi, E. Distribution of the Extreme Peak Floods of the Tiber River from the XV Century. Adv. Water Resour. 2005, 28, 615–625. [Google Scholar] [CrossRef]
- Karmakar, S.; Simonovic, S.P. Bivariate Flood Frequency Analysis: Part 1. Determination of Marginals by Parametric and Nonparametric Techniques. J. Flood Risk Manag. 2008, 1, 190–200. [Google Scholar] [CrossRef]
- Shiau, J.T. Fitting Drought Duration and Severity with Two-Dimensional Copulas. Water Resour. Manag. 2006, 20, 795–815. [Google Scholar] [CrossRef]
- Alidoost, F.; Su, Z.; Stein, A. Evaluating the Effects of Climate Extremes on Crop Yield, Production and Price Using Multivariate Distributions: A New Copula Application. Weather Clim. Extrem. 2019, 26, 100227. [Google Scholar] [CrossRef]
- Filho, J.P.; Portela, M.; Studart, T.; Souza Filho, F. A Continuous Drought Risk Monitoring System, CDRMS, Based on Copulas. In Water: Ecology and Management; Vide Leaf: Hyderabad, India, 2020; pp. 1–31. [Google Scholar]
- Xu, K.; Yang, D.; Xu, X.; Lei, H. Copula Based Drought Frequency Analysis Considering the Spatio-Temporal Variability in Southwest China. J. Hydrol. 2015, 527, 630–640. [Google Scholar] [CrossRef]
- Genest, C.; Favre, A.-C. Everything You Always Wanted to Know about Copula Modeling but Were Afraid to Ask. J. Hydrol. Eng. 2007, 12, 347–368. [Google Scholar] [CrossRef]
- Zhang, L.; Singh, V.P. Bivariate Rainfall Frequency Distributions Using Archimedean Copulas. J. Hydrol. 2007, 332, 93–109. [Google Scholar] [CrossRef]
- Favre, A.C.; Adlouni, S.E.; Perreault, L.; Thiémonge, N.; Bobée, B. Multivariate Hydrological Frequency Analysis Using Copulas. Water Resour. Res. 2004, 40. [Google Scholar] [CrossRef]
- Gaál, L.; Szolgay, J.; Kohnová, S.; Hlavčová, K.; Parajka, J.; Viglione, A.; Merz, R.; Blöschl, G. Relation Entre Pics et Volumes de Crues: Étude Des Déterminants Climatiques et Hydrologiques. Hydrol. Sci. J. 2015, 60, 968–984. [Google Scholar] [CrossRef]
- Pontes Filho, J.D.; Souza Filho, F.d.A.; Martins, E.S.P.R.; Studart, T.M.d.C. Copula-Based Multivariate Frequency Analysis of the 2012–2018 Drought in Northeast Brazil. Water 2020, 12, 834. [Google Scholar] [CrossRef]
- Mirabbasi, R.; Fakheri-Fard, A.; Dinpashoh, Y. Bivariate Drought Frequency Analysis Using the Copula Method. Theor. Appl. Climatol. 2012, 108, 191–206. [Google Scholar] [CrossRef]
- De Michele, C.; Salvadori, G.; Canossi, M.; Petaccia, A.; Rosso, R. Bivariate Statistical Approach to Check Adequacy of Dam Spillway. J. Hydrol. Eng. 2005, 10, 50–57. [Google Scholar] [CrossRef]
- Bockheim, J.G. Classification and Development of Shallow Soils (<50cm) in the USA. Geoderma Reg. 2015, 6, 31–39. [Google Scholar] [CrossRef]
- Campos, J.N.B. Paradigms and Public Policies on Drought in Northeast Brazil: A Historical Perspective. Environ. Manag. 2015, 55, 1052–1063. [Google Scholar] [CrossRef]
- Silva, B.K.N.; Amorim, A.C.B.; Silva, C.M.S.; Lucio, P.S.; Barbosa, L.M. Rainfall-Related Natural Disasters in the Northeast of Brazil as a Response to Ocean-Atmosphere Interaction. Theor. Appl. Climatol. 2019, 138, 1821–1829. [Google Scholar] [CrossRef]
- Delgado, J.M.; Voß, S.; Bürger, G.; Vormoor, K.; Murawski, A.; Pereira, J.M.R.; Martins, E.; Vasconcelos Júnior, F.; Francke, T. Seasonal Drought Prediction for Semiarid Northeastern Brazil: Verification of Six Hydro-Meteorological Forecast Products. Hydrol. Earth Syst. Sci. 2018, 22, 5041–5056. [Google Scholar] [CrossRef]
- Stefan Hastenrath, B.; Heller, L. Dynamics of Climatic Hazards in Northeast Brazil. Q. J. R. Meteorol. Soc. 1977, 103, 77–92. [Google Scholar] [CrossRef]
- Hastenrath, S. Exploring the Climate Problems of Brazil’s Nordeste: A Review. Clim. Chang. 2012, 112, 243–251. [Google Scholar] [CrossRef]
- Uvo, C.B.; Repelli, C.A.; Zebiak, S.E.; Kushnir, Y. The Relationships between Tropical Pacific and Atlantic SST AndNortheast Brazil Monthly Precipitation. J. Clim. 1998, 11, 551–562. [Google Scholar] [CrossRef]
- U.S. Department of the Interior Bureau of Reclamation. Design Standards No. 13 Dams; U.S. Department of the Interior Bureau of Reclamation: Washington, DC, USA, 2014.
- International Commission on Large Dams-Commission Internationale Des Grands Barrages. Dam Surveillance Lessons Learnt from Case Histories; International Commission on Large Dams-Commission Internationale Des Grands Barrages: Chatou, France, 2017. [Google Scholar]
- Du, É.; Dans, R.; De, L.G.; Sécurité, L.A.; Barrage, D.U. Risk Assessment in Dam Safety Management A Reconnaissance of Benefits, Methods and Current Applications; Association of State Dam Safety Officials: Lexington, KY, USA, 2005. [Google Scholar]
- Dam Safety Guidelines 2007; Canadian Dam Association: Markham, ON, Canada, 2013; ISBN 9780993631900.
- Guru, N.; Jha, R. Flood Frequency Analysis of Tel Basin of Mahanadi River System, India Using Annual Maximum and POT Flood Data. Aquat. Procedia 2015, 4, 427–434. [Google Scholar] [CrossRef]
- Papaioannou, G.; Kohnová, S.; Bacigál, T.; Szolgay, J.; Hlavčová, K.; Loukas, A. Joint Modelling of Flood Peaks and Volumes: A Copula Application for the Danube River. J. Hydrol. Hydromech. 2016, 64, 382–392. [Google Scholar] [CrossRef]
- Joe, H. Multivariate Models and Dependence Concepts; Chapman & Hall: London, UK, 1997. [Google Scholar]
- Brechmann, E.C.; Schepsmeier, U. Modeling Dependence with C- and D-Vine Copulas: The R Package CDVine. J. Stat. Softw. 2013, 52, 1–27. [Google Scholar] [CrossRef]
- Zehe, E.; Blöschl, G. Predictability of Hydrologic Response at the Plot and Catchment Scales: Role of Initial Conditions. Water Resour. Res. 2004, 40. [Google Scholar] [CrossRef]
- Brabo Alves, J.M.; Ferreira, F.F.; Campos, J.N.B.; De, F.; De, A.; Filho, S.; De Souza, E.B.; Duran, B.J.; Servain, J.; Studart, T.M.C. Mecanismos Atmosféricos Associados à Ocorrência de Precipitação Intensa Sobre o Nordeste do Brasil Durante Janeiro/2004. Rev. Bras. De Meteorol. 2006, 21, 56–76. [Google Scholar]
- Borga, M.; Anagnostou, E.N.; Blöschl, G.; Creutin, J.D. Flash Flood Forecasting, Warning and Risk Management: The HYDRATE Project. Environ. Sci. Policy 2011, 14, 834–844. [Google Scholar] [CrossRef]
- Collier, C.G. Flash Flood Forecasting: What Are the Limits of Predictability? Q. J. R. Meteorol. Soc. 2007, 133, 3–23. [Google Scholar] [CrossRef]
- Hardy, J.; Gourley, J.J.; Kirstetter, P.E.; Hong, Y.; Kong, F.; Flamig, Z.L. A Method for Probabilistic Flash Flood Forecasting. J. Hydrol. 2016, 541, 480–494. [Google Scholar] [CrossRef]
- Ruiz-Villanueva, V.; Borga, M.; Zoccatelli, D.; Marchi, L.; Gaume, E.; Ehret, U. Extreme Flood Response to Short-Duration Convective Rainfall in South-West Germany. Hydrol. Earth Syst. Sci. 2012, 16, 1543–1559. [Google Scholar] [CrossRef]
- Grimaldi, S.; Serinaldi, F. Asymmetric Copula in Multivariate Flood Frequency Analysis. Adv. Water Resour. 2006, 29, 1155–1167. [Google Scholar] [CrossRef]
- Chen, J.; Wu, X.; Finlayson, B.L.; Webber, M.; Wei, T.; Li, M.; Chen, Z. Variability and Trend in the Hydrology of the Yangtze River, China: Annual Precipitation and Runoff. J. Hydrol. 2014, 513, 403–412. [Google Scholar] [CrossRef]
River Gauge Station | Nº Years | Flood Peak (m3/s) | Flood Volume (hm3) | Average Flood Intensity (hm3/day) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Max | Mean | CV | Max | Mean | CV | Max | Mean | CV | ||
Iguatu | 46 | 3393.3 | 589.8 | 1.3 | 4451.9 | 425.6 | 1.9 | 98.2 | 10.9 | 1.6 |
Icó | 46 | 1253.5 | 431.9 | 0.7 | 3315.7 | 418.2 | 1.5 | 36.4 | 7.6 | 1.0 |
River Gauge Station | Independent Variable | Marginal Distribution | AIC | BIC | River Gauge Station | Independent Variable | Marginal Distribution | AIC | BIC |
---|---|---|---|---|---|---|---|---|---|
Iguatu | Flood Peak | exp | 680.939 | 682.768 | Ico | Flood Peak | exp | 647.199 | 650.856 |
Iguatu | Flood Peak | Weibull | 680.759 | 684.416 | Ico | Flood Peak | Weibull | 647.84 | 651.497 |
Iguatu | Flood Peak | gamma | 683.209 | 686.866 | Ico | Flood Peak | gamma | 652.263 | 654.092 |
Iguatu | Flood Peak | lnorm | 699.197 | 702.854 | Ico | Flood Peak | lnorm | 662.72 | 666.378 |
Iguatu | Flood Peak | logis | 733.728 | 737.386 | Ico | Flood Peak | logis | 663.345 | 667.002 |
Iguatu | Flood Peak | norm | 742.223 | 745.881 | Ico | Flood Peak | norm | 663.428 | 667.085 |
Iguatu | Average Flood Intensity | exp | 1582.25 | 1585.907 | Ico | Average Flood Intensity | exp | 1540.048 | 1543.705 |
Iguatu | Average Flood Intensity | Weibull | 1584.866 | 1586.695 | Ico | Average Flood Intensity | Weibull | 1551.035 | 1552.863 |
Iguatu | Average Flood Intensity | gamma | 1584.467 | 1588.125 | Ico | Average Flood Intensity | gamma | 1551.457 | 1555.114 |
Iguatu | Average Flood Intensity | lnorm | 1594.066 | 1597.724 | Ico | Average Flood Intensity | lnorm | 1553.972 | 1557.629 |
Iguatu | Average Flood Intensity | logis | 1650.119 | 1653.777 | Ico | Average Flood Intensity | logis | 1584.282 | 1587.94 |
Iguatu | Average Flood Intensity | norm | 1665.873 | 1669.53 | Ico | Average Flood Intensity | norm | 1593.683 | 1597.34 |
River Gauge Station | Copula Function | Par | AIC | BIC | RMSE |
---|---|---|---|---|---|
Iguatu | Gumbel | 2.210 | −36.294 | −32.637 | 0.048 |
Iguatu | Frank | 7.901 | −37.378 | −33.720 | 0.049 |
Iguatu | Gaussian | 0.819 | −43.935 | −40.278 | 0.049 |
Iguatu | Survival Gumbel | 2.563 | −44.847 | −41.190 | 0.052 |
Iguatu | Clayton | 2.458 | −36.552 | −32.895 | 0.058 |
Ico | Gaussian | 0.778 | −37.781 | −34.124 | 0.029 |
Ico | Frank | 7.149 | −36.575 | −32.918 | 0.030 |
Ico | Survival Gumbel | 2.260 | −39.037 | −35.380 | 0.030 |
Ico | Gumbel | 2.010 | −29.649 | −25.991 | 0.034 |
Ico | Clayton | 2.036 | −35.650 | −31.993 | 0.034 |
Event Year | Jaguaribe River Gauge Station—Iguatu | Salgado River Gauge Station—Icó | ||||||
---|---|---|---|---|---|---|---|---|
Flood Peak | Average Flood Intensity | Or | & | Flood Peak | Average Flood Intensity | Or | & | |
1973 | 4.7 | 1.5 | 1.5 | 4.8 | 2.3 | 1.5 | 1.5 | 2.5 |
1974 | 63.0 | 14.8 | 13.5 | 102.7 | 18.3 | 34.1 | 13.9 | 81.3 |
1975 | 2.4 | 1.6 | 1.6 | 2.6 | 3.2 | 4.3 | 2.6 | 6.0 |
1976 | 2.0 | 2.4 | 1.8 | 2.9 | 1.6 | 2.5 | 1.5 | 2.7 |
1977 | 2.4 | 2.1 | 1.8 | 2.9 | 2.4 | 2.5 | 1.9 | 3.3 |
1978 | 1.8 | 1.3 | 1.3 | 1.8 | 5.8 | 1.9 | 1.9 | 6.3 |
1979 | 1.4 | 1.1 | 1.1 | 1.4 | 1.8 | 1.4 | 1.3 | 1.9 |
1980 | 1.9 | 1.4 | 1.4 | 2.0 | 16.9 | 6.1 | 5.4 | 25.6 |
1981 | 7.5 | 34.3 | 7.1 | 46.7 | 12.9 | 3.5 | 3.3 | 15.9 |
1982 | 1.4 | 1.1 | 1.1 | 1.5 | 1.4 | 1.3 | 1.2 | 1.5 |
1983 | 1.0 | 1.0 | 1.0 | 1.0 | 1.1 | 1.5 | 1.1 | 1.5 |
1984 | 13.9 | 5.3 | 4.8 | 18.6 | 2.2 | 1.8 | 1.6 | 2.6 |
1985 | 122.0 | 28.5 | 25.6 | 238.3 | 42.8 | 59.5 | 28.3 | 207.4 |
1986 | 4.7 | 5.9 | 3.7 | 8.8 | 2.6 | 1.7 | 1.6 | 2.9 |
1987 | 4.6 | 6.7 | 3.8 | 9.6 | 3.9 | 1.6 | 1.6 | 4.2 |
1988 | 2.4 | 2.5 | 2.0 | 3.2 | 2.8 | 2.4 | 2.0 | 3.6 |
1989 | 17.8 | 12.4 | 9.3 | 34.9 | 6.2 | 2.9 | 2.6 | 7.7 |
1990 | 1.7 | 1.4 | 1.3 | 1.8 | 1.9 | 1.5 | 1.4 | 2.1 |
1991 | 1.2 | 1.2 | 1.1 | 1.2 | 1.6 | 1.8 | 1.4 | 2.1 |
1992 | 1.6 | 1.4 | 1.4 | 1.8 | 2.2 | 1.8 | 1.6 | 2.6 |
1993 | 1.1 | 1.1 | 1.1 | 1.1 | 1.0 | 1.1 | 1.0 | 1.2 |
1994 | 1.2 | 1.3 | 1.2 | 1.4 | 1.3 | 8.7 | 1.3 | 8.8 |
1995 | 2.5 | 2.8 | 2.1 | 3.5 | 3.0 | 1.9 | 1.7 | 3.4 |
1996 | 2.0 | 1.8 | 1.6 | 2.3 | 10.7 | 3.2 | 3.0 | 13.1 |
1997 | 4.6 | 1.9 | 1.9 | 4.9 | 2.0 | 1.2 | 1.2 | 2.0 |
1998 | 1.2 | 1.3 | 1.2 | 1.4 | 1.1 | 1.0 | 1.0 | 1.1 |
1999 | 1.4 | 1.4 | 1.3 | 1.6 | 1.5 | 2.6 | 1.4 | 2.8 |
2000 | 1.8 | 1.5 | 1.4 | 1.9 | 3.8 | 1.8 | 1.7 | 4.2 |
2002 | 3.2 | 4.0 | 2.7 | 5.4 | 2.4 | 5.4 | 2.2 | 6.3 |
2003 | 2.6 | 1.7 | 1.6 | 2.8 | 1.4 | 1.3 | 1.2 | 1.5 |
2004 | 35.6 | 584.8 | 34.7 | 994.8 | 5.3 | 89.1 | 5.2 | 109.2 |
2005 | 1.1 | 1.2 | 1.1 | 1.2 | 1.6 | 1.3 | 1.3 | 1.7 |
2006 | 2.1 | 1.8 | 1.6 | 2.4 | 4.7 | 3.8 | 3.0 | 7.2 |
2007 | 1.4 | 2.2 | 1.3 | 2.3 | 1.1 | 1.1 | 1.1 | 1.2 |
2008 | 4.2 | 2.4 | 2.2 | 4.8 | 48.9 | 6.2 | 6.0 | 65.8 |
2009 | 4.8 | 1.6 | 1.6 | 4.9 | 5.3 | 30.2 | 5.1 | 40.3 |
2010 | 1.4 | 1.7 | 1.3 | 1.8 | 1.1 | 1.2 | 1.1 | 1.2 |
2011 | 3.6 | 2.2 | 2.0 | 4.2 | 3.4 | 6.6 | 3.0 | 8.9 |
2012 | 2.0 | 1.4 | 1.3 | 2.1 | 1.1 | 1.1 | 1.1 | 1.1 |
2013 | 1.1 | 1.1 | 1.1 | 1.1 | 1.2 | 1.0 | 1.0 | 1.2 |
2014 | 1.8 | 1.7 | 1.5 | 2.1 | 1.3 | 1.9 | 1.3 | 2.0 |
2015 | 1.1 | 2.9 | 1.1 | 2.9 | 1.1 | 1.3 | 1.0 | 1.3 |
2016 | 1.4 | 3.3 | 1.4 | 3.3 | 1.3 | 1.5 | 1.2 | 1.6 |
2017 | 1.2 | 2.1 | 1.2 | 2.2 | 1.1 | 1.1 | 1.0 | 1.1 |
2018 | 1.3 | 2.0 | 1.3 | 2.1 | 2.0 | 2.4 | 1.7 | 2.9 |
2019 | 1.4 | 1.7 | 1.3 | 1.8 | 1.4 | 1.9 | 1.4 | 2.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Studart, T.M.C.; Pontes Filho, J.D.; Gomez, G.R.; Portela, M.M.; Sousa Filho, F.A. A Bivariate Return Period Copula Application of Flood Peaks and Volumes for Climate Adaptation in Semi-Arid Regions. Water 2025, 17, 2963. https://doi.org/10.3390/w17202963
Studart TMC, Pontes Filho JD, Gomez GR, Portela MM, Sousa Filho FA. A Bivariate Return Period Copula Application of Flood Peaks and Volumes for Climate Adaptation in Semi-Arid Regions. Water. 2025; 17(20):2963. https://doi.org/10.3390/w17202963
Chicago/Turabian StyleStudart, T. M. C., J. D. Pontes Filho, G. R. Gomez, M. M. Portela, and F. A. Sousa Filho. 2025. "A Bivariate Return Period Copula Application of Flood Peaks and Volumes for Climate Adaptation in Semi-Arid Regions" Water 17, no. 20: 2963. https://doi.org/10.3390/w17202963
APA StyleStudart, T. M. C., Pontes Filho, J. D., Gomez, G. R., Portela, M. M., & Sousa Filho, F. A. (2025). A Bivariate Return Period Copula Application of Flood Peaks and Volumes for Climate Adaptation in Semi-Arid Regions. Water, 17(20), 2963. https://doi.org/10.3390/w17202963