Runoff Prediction in the Xiangxi River Basin Under Climate Change: The Application of the HBV-XGBoost Coupled Model
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. HBV
2.3. XGBoost
2.4. HBV-XGBoost Framework
2.5. SDSM and Future Meteorological Data
3. Results
3.1. Assessment of Hydrological Model Efficiency
3.2. Projections of Future Climate Change via SDSM
3.3. Utilizing SDSM for Simulated Future Climate Downscaling
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sun, A.Y.; Scanlon, B.R. How can Big Data and machine learning benefit environment and water management: A survey of methods, applications, and future directions. Environ. Res. Lett. 2019, 14, 073001. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, H.; Reggiani, P. Climate Variability and Climate Change Impacts on Land Surface, Hydrological Processes and Water Management. Water 2019, 11, 1492. [Google Scholar] [CrossRef]
- Ma, K.; Huang, X.; Liang, C.; Zhao, H.; Zhou, X.; Wei, X. Effect of land use/cover changes on runoff in the Min River watershed. River Res. Appl. 2020, 36, 749–759. [Google Scholar] [CrossRef]
- Nanda, A.; Sen, S. A complex network theory based approach to better understand the infiltration-excess runoff generation thresholds. J. Hydrol. 2021, 603, 127038. [Google Scholar] [CrossRef]
- Li, B.; Zheng, J.; Shi, X.; Chen, Y. Quantifying the impact of mountain precipitation on runoff in Hotan River, northwestern China. Front. Earth Sci. 2020, 14, 568–577. [Google Scholar] [CrossRef]
- Li, Z.; Murshed, M.; Yan, P. Driving force analysis and prediction of ecological footprint in urban agglomeration based on extended STIRPAT model and shared socioeconomic pathways (SSPs). J. Clean. Prod. 2023, 383, 135424. [Google Scholar] [CrossRef]
- Su, J.; Zhang, P.; Deng, X.; Ren, C.; Zhang, J.; Chen, F.; Long, A. Predicting Runoff from the Weigan River under Climate Change. Appl. Sci. 2024, 14, 541. [Google Scholar] [CrossRef]
- Hundecha, Y.; Bárdossy, A. Modeling of the effect of land use changes on the runoff generation of a river basin through parameter regionalization of a watershed model. J. Hydrol. 2004, 292, 281–295. [Google Scholar] [CrossRef]
- Napoli, M.; Massetti, L.; Orlandini, S. Hydrological response to land use and climate changes in a rural hilly basin in Italy. CATENA 2017, 157, 1–11. [Google Scholar] [CrossRef]
- Yuan, X.; Chen, C.; Lei, X.; Yuan, Y.; Adnan, R.M. Monthly runoff forecasting based on LSTM–ALO model. Stoch. Environ. Res. Risk Assess. 2018, 32, 2199–2212. [Google Scholar] [CrossRef]
- Ji, Y.; Dong, H.T.; Xing, Z.X.; Sun, M.X.; Fu, Q.; Liu, D. Application of the decomposition-prediction-reconstruction framework to medium- and long-term runoff forecasting. Water Supply 2021, 21, 696–709. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, Q.; Li, G.; Li, J. Data-driven runoff forecasting for Minjiang River: A case study. Water Supply 2020, 20, 2284–2295. [Google Scholar] [CrossRef]
- Pan, T.; Wang, R. State space neural networks for short term rainfall-runoff forecasting. J. Hydrol. 2004, 297, 34–50. [Google Scholar] [CrossRef]
- Badrzadeh, H.; Sarukkalige, R.; Jayawardena, A.W. Hourly runoff forecasting for flood risk management: Application of various computational intelligence models. J. Hydrol. 2015, 529, 1633–1643. [Google Scholar] [CrossRef]
- Moosavi, V.; Talebi, A.; Hadian, M.R. Development of a Hybrid Wavelet Packet- Group Method of Data Handling (WPGMDH) Model for Runoff Forecasting. Water Resour. Manag. 2017, 31, 43–59. [Google Scholar] [CrossRef]
- Löwe, R.; Mikkelsen, P.S.; Madsen, H. Stochastic rainfall-runoff forecasting: Parameter estimation, multi-step prediction, and evaluation of overflow risk. Stoch. Environ. Res. Risk Assess. 2014, 28, 505–516. [Google Scholar] [CrossRef]
- Guo, T.; Song, S.; Yan, Y. A time-varying autoregressive model for groundwater depth prediction. J. Hydrol. 2022, 613, 128394. [Google Scholar] [CrossRef]
- Pérez-Alarcón, A.; Garcia-Cortes, D.; Fernández-Alvarez, J.C.; Martínez-González, Y. Improving Monthly Rainfall Forecast in a Watershed by Combining Neural Networks and Autoregressive Models. Environ. Process. 2022, 9, 53. [Google Scholar] [CrossRef]
- Mohammadi, K.; Eslami, H.R.; Kahawita, R. Parameter estimation of an ARMA model for river flow forecasting using goal programming. J. Hydrol. 2006, 331, 293–299. [Google Scholar] [CrossRef]
- Liu, S.; Qin, H.; Liu, G.; Xu, Y.; Zhu, X.; Qi, X. Runoff Forecasting of Machine Learning Model Based on Selective Ensemble. Water Resour. Manag. 2023, 37, 4459–4473. [Google Scholar] [CrossRef]
- Sudheer, K.P.; Gosain, A.K.; Ramasastri, K.S. A data-driven algorithm for constructing artificial neural network rainfall-runoff models. Hydrol. Process. 2002, 16, 1325–1330. [Google Scholar] [CrossRef]
- Sivapragasam, C.; Vincent, P.; Vasudevan, G. Genetic programming model for forecast of short and noisy data. Hydrol. Process. 2007, 21, 266–272. [Google Scholar] [CrossRef]
- Shiri, J.; Kisi, O. Short-term and long-term streamflow forecasting using a wavelet and neuro-fuzzy conjunction model. J. Hydrol. 2010, 394, 486–493. [Google Scholar] [CrossRef]
- Humphrey, G.B.; Gibbs, M.S.; Dandy, G.C.; Maier, H.R. A hybrid approach to monthly streamflow forecasting: Integrating hydrological model outputs into a Bayesian artificial neural network. J. Hydrol. 2016, 540, 623–640. [Google Scholar] [CrossRef]
- Nayak, P.C.; Sudheer, K.P.; Rangan, D.M.; Ramasastri, K.S. A neuro-fuzzy computing technique for modeling hydrological time series. J. Hydrol. 2004, 291, 52–66. [Google Scholar] [CrossRef]
- Ashrafi, M.; Chua, L.H.C.; Quek, C.; Qin, X. A fully-online Neuro-Fuzzy model for flow forecasting in basins with limited data. J. Hydrol. 2017, 545, 424–435. [Google Scholar] [CrossRef]
- Kisi, O.; Cimen, M. A wavelet-support vector machine conjunction model for monthly streamflow forecasting. J. Hydrol. 2011, 399, 132–140. [Google Scholar] [CrossRef]
- Danandeh Mehr, A.; Kahya, E.; Olyaie, E. Streamflow prediction using linear genetic programming in comparison with a neuro-wavelet technique. J. Hydrol. 2013, 505, 240–249. [Google Scholar] [CrossRef]
- Ravansalar, M.; Rajaee, T.; Kisi, O. Wavelet-linear genetic programming: A new approach for modeling monthly streamflow. J. Hydrol. 2017, 549, 461–475. [Google Scholar] [CrossRef]
- Asefa, T.; Kemblowski, M.; McKee, M.; Khalil, A. Multi - time scale stream flow predictions: The support vector machines approach. J. Hydrol. 2006, 318, 7–16. [Google Scholar] [CrossRef]
- Huang, S.; Chang, J.; Huang, Q.; Chen, Y. Monthly streamflow prediction using modified EMD-based support vector machine. J. Hydrol. 2014, 511, 764–775. [Google Scholar] [CrossRef]
- Jin, Z.; Yang, Y.; Liu, Y. Stock closing price prediction based on sentiment analysis and LSTM. Neural Comput. Appl. 2020, 32, 9713–9729. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, L.; Luo, H.; He, J.; Cheung, R.W.M. AI-powered landslide susceptibility assessment in Hong Kong. Eng. Geol. 2021, 288, 106103. [Google Scholar] [CrossRef]
- Okkan, U.; Serbes, Z.A. Rainfall–runoff modeling using least squares support vector machines. Environmetrics 2012, 23, 549–564. [Google Scholar] [CrossRef]
- Khosravi, K.; Shahabi, H.; Pham, B.T.; Adamowski, J.; Shirzadi, A.; Pradhan, B.; Dou, J.; Ly, H.B.; Gróf, G.; Ho, H.L.; et al. A comparative assessment of flood susceptibility modeling using Multi-Criteria Decision-Making Analysis and Machine Learning Methods. J. Hydrol. 2019, 573, 311–323. [Google Scholar] [CrossRef]
- Fei, K.; Du, H.; Gao, L. Accurate water level predictions in a tidal reach: Integration of Physics-based and Machine learning approaches. J. Hydrol. 2023, 622, 129705. [Google Scholar] [CrossRef]
- Leng, Z.; Chen, L.; Yang, B.; Li, S.; Yi, B. An extreme forecast index-driven runoff prediction approach using stacking ensemble learning. Geomat. Nat. Hazards Risk 2024, 15, 2353144. [Google Scholar] [CrossRef]
- Reichstein, M.; Camps-Valls, G.; Stevens, B.; Jung, M.; Denzler, J.; Carvalhais, N.; Prabhat. Deep learning and process understanding for data-driven Earth system science. Nature 2019, 566, 195–204. [Google Scholar] [CrossRef] [PubMed]
- Cheng, G.; Huang, G.; Dong, C.; Zhu, J.; Zhou, X.; Yao, Y. High-resolution projections of 21st century climate over the Athabasca River Basin through an integrated evaluation-classification-downscaling-based climate projection framework. J. Geophys. Res. Atmos. 2017, 122, 2595–2615. [Google Scholar] [CrossRef]
- Li, K.; Huang, G.; Wang, S.; Baetz, B.; Xu, W. A stepwise clustered hydrological model for addressing the temporal autocorrelation of daily streamflows in irrigated watersheds. Water Resour. Res. 2022, 58, e2021WR031065. [Google Scholar] [CrossRef]
- Wang, W.C.; Du, Y.J.; Chau, K.W.; Xu, D.M.; Liu, C.J.; Ma, Q. An ensemble hybrid forecasting model for annual runoff based on sample entropy, secondary decomposition, and long short-term memory neural network. Water Resour. Manag. 2021, 35, 4695–4726. [Google Scholar] [CrossRef]
- Wang, S.; Peng, H. Multiple spatio-temporal scale runoff forecasting and driving mechanism exploration by K-means optimized XGBoost and SHAP. J. Hydrol. 2024, 630, 130650. [Google Scholar] [CrossRef]
- Wang, H.; Qin, H.; Liu, G.; Liu, S.; Qu, Y.; Wang, K.; Zhou, J. A novel feature attention mechanism for improving the accuracy and robustness of runoff forecasting. J. Hydrol. 2023, 618, 129200. [Google Scholar] [CrossRef]
- Dams, J.; Nossent, J.; Senbeta, T.B.; Willems, P.; Batelaan, O. Multi-model approach to assess the impact of climate change on runoff. J. Hydrol. 2015, 529, 1601–1616. [Google Scholar] [CrossRef]
- IPCC. AR6 Synthesis Report: Climate Change 2023; Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2023. [Google Scholar]
- Li, G.; Liu, Z.; Zhang, J.; Han, H.; Shu, Z. Bayesian model averaging by combining deep learning models to improve lake water level prediction. Sci. Total Environ. 2024, 906, 167718. [Google Scholar] [CrossRef]
- Dash, S.S.; Sahoo, B.; Raghuwanshi, N.S. SWAT model calibration approaches in an integrated paddy-dominated catchment-command. Agric. Water Manag. 2023, 278, 108138. [Google Scholar] [CrossRef]
- Roy, A.; Kasiviswanathan, K.S.; Patidar, S.; Adeloye, A.J.; Soundharajan, B.S.; Ojha, C.S.P. A Physics-Aware Machine Learning-Based Framework for Minimizing Prediction Uncertainty of Hydrological Models. Water Resour. Res. 2023, 59, 034630. [Google Scholar] [CrossRef]
- Breuer, L.; Huisman, J.A.; Willems, P.; Bormann, H.; Bronstert, A.; Croke, B.F.W.; Frede, H.G.; Gräff, T.; Hubrechts, L.; Jakeman, A.J.; et al. Assessing the impact of land use change on hydrology by ensemble modeling (LUCHEM). I: Model intercomparison with current land use. Adv. Water Resour. 2008, 32, 129–146. [Google Scholar] [CrossRef]
- Seibert, J.; Vis, M.J.P.; Lewis, E.; Meerveld, H.J.V. Upper and lower benchmarks in hydrological modelling. Hydrol. Process. 2018, 32, 1120–1125. [Google Scholar] [CrossRef]
- Ma, M.; Zhao, G.; He, B.; Li, Q.; Dong, H.; Wang, S.; Wang, Z. XGBoost-based method for flash flood risk assessment. J. Hydrol. 2021, 598, 126382. [Google Scholar] [CrossRef]
- Wang, S.; Peng, H.; Hu, Q.; Jiang, M. Analysis of runoff generation driving factors based on hydrological model and interpretable machine learning method. J. Hydrol. Reg. Stud. 2022, 42, 101139. [Google Scholar] [CrossRef]
- Zhou, S.; Liu, Z.; Wang, M.; Gan, W.; Zhao, Z.; Wu, Z. Impacts of building configurations on urban stormwater management at a block scale using XGBoost. Sustain. Cities Soc. 2022, 87, 104235. [Google Scholar] [CrossRef]
- Torlay, L.; Perrone-Bertolotti, M.; Thomas, E.; Baciu, M. Machine learning–XGBoost analysis of language networks to classify patients with epilepsy. Brain Inform. 2017, 4, 159–169. [Google Scholar] [CrossRef]
- Li, W.; Liu, H.; Gao, P.; Yang, A.; Fei, Y.; Wen, Y.; Su, Y.; Yuan, X. Development of an MPE-BMA Ensemble Model for Runoff Prediction Under Future Climate Change Scenarios: A Case Study of the Xiangxi River Basin. Sustainability 2025, 17, 4714. [Google Scholar] [CrossRef]
- Yang, S.; Cui, X. Building Regional Sustainable Development Scenarios with the SSP Framework. Sustainability 2019, 11, 5712. [Google Scholar] [CrossRef]
- Sadayappan, K.; Keen, R.; Jarecke, K.M.; Moreno, V.; Nippert, J.B.; Kirk, M.F.; Sullivan, P.L.; Li, L. Drier streams despite a wetter climate in woody-encroached grasslands. J. Hydrol. 2023, 627, 130388. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar] [CrossRef]
- Ding, B.; Yu, X.; Jia, G. Exploring the controlling factors of watershed streamflow variability using hydrological and machine learning models. Water Resour. Res. 2025, 61, e2024WR039734. [Google Scholar] [CrossRef]
- Karami, M.; Abedi Koupai, J.; Gohari, S.A. Integration of SWAT, SDSM, AHP, and TOPSIS to Detect Flood-Prone Areas. Nat. Hazards 2024, 120, 6307–6325. [Google Scholar] [CrossRef]
- Rahman, A.U.; Dawood, M. Spatio-statistical analysis of temperature fluctuation using Mann–Kendall and Sen’s slope approach. Clim. Dyn. 2017, 48, 783–797. [Google Scholar] [CrossRef]
- Khalil, A. Combined use of graphical and statistical approaches for rainfall trend analysis in the Mae Klong River Basin, Thailand. J. Water Clim. Change 2023, 14, 4642–4668. [Google Scholar] [CrossRef]
Data Type | Sources | Processing Method |
---|---|---|
2000 National Land Use/Cover Change Data (LUCC) | Chinese Academy of Sciences, Institute of Geographic Sciences and Natural Resources Research (http://www.resdc.cn, accessed on 27 June 2025) | Reclassification |
30m x 30m Resolution DEM Data | CAS Geographical Spatial Data Cloud Website (http://www.gscloud.cn, accessed on 27 June 2025) | Hydrological Model Analysis |
Daily Meteorological Data (1991–2008) | Xingshan Meteorological Station | - |
Daily Runoff Data (1993–2008) | Xingshan Hydrological Station | - |
Parameters | Definition | Range | Best Value |
---|---|---|---|
BETA | Parameter that determines the relative contribution to runoff from rain or snowmelt | [0, 5] | 0.61 |
CFMAX | ) | [0, 50] | 24.55 |
CFR | Refreezing coefficient | [0, 50] | 39.21 |
FC | Maximum soil moisture storage (mm) | [100, 300] | 215.28 |
K0 | Storage (or recession) coefficient | [0, 0.8] | 0.19 |
LP | Soil moisture value above which AET reaches PET | [0, 1] | 0.43 |
MAXBAS | Length of triangular weighting function | [1, 50] | 1.28 |
SFCF | Snowfall correction factor | [0, 50] | 15.11 |
SP | factor | [0, 1] | 0.29 |
TT | Threshold temperature | [0, 50] | 13.01 |
UZL | Threshold parameter (mm) | [0, 100] | 27.02 |
Time Frame | Climate Model | Scenario | Sen Slope (m3/s) | Z-Value | Trend Characteristics |
---|---|---|---|---|---|
2040s | ACCESS-CM2 | SSP126 | −0.0005 | −0.17 | Not significant decrease |
SSP245 | 0.0041 | 0.91 | Not significant increase | ||
SSP585 | 0.0025 | 1.33 | Significant increase | ||
ACCESS-ESM1-5 | SSP126 | 0.0082 | 2.64 | Significant increase | |
SSP245 | 0.0078 | 1.70 | Not significant increase | ||
SSP585 | 0.0036 | 1.11 | Not significant increase | ||
EC-Earth3-Veg-LR | SSP126 | 0.0012 | 0.31 | Not significant increase | |
SSP245 | −0.0030 | −0.65 | Not significant decrease | ||
SSP585 | 0.0014 | 0.40 | Not significant increase | ||
FGOALS-g3 | SSP126 | 0.0046 | 0.97 | Not significant increase | |
SSP245 | 0.0048 | 1.45 | Not significant increase | ||
SSP585 | 0.0035 | 1.05 | Not significant increase | ||
2080s | ACCESS-CM2 | SSP126 | −0.0017 | −0.64 | Not significant decrease |
SSP245 | 0.0048 | 1.56 | Not significant increase | ||
SSP585 | 0.0098 | 2.35 | Significant increase | ||
ACCESS-ESM1-5 | SSP126 | −0.0023 | −1.04 | Not significant decrease | |
SSP245 | −0.0010 | −0.62 | Not significant decrease | ||
SSP585 | 0.0047 | 2.15 | Significant increase | ||
EC-Earth3-Veg-LR | SSP126 | −0.0021 | −0.44 | Not significant decrease | |
SSP245 | 0.0022 | 0.55 | Not significant increase | ||
SSP585 | 0.0049 | 1.65 | Not significant increase | ||
FGOALS-g3 | SSP126 | −0.0050 | −2.19 | Significant decrease | |
SSP245 | −0.0014 | −0.26 | Not significant decrease | ||
SSP585 | 0.0048 | 1.85 | Not significant increase |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, J.; Zhang, F.; Li, W.; Yang, A.; Fan, Y.; Li, J. Runoff Prediction in the Xiangxi River Basin Under Climate Change: The Application of the HBV-XGBoost Coupled Model. Water 2025, 17, 2420. https://doi.org/10.3390/w17162420
Guo J, Zhang F, Li W, Yang A, Fan Y, Li J. Runoff Prediction in the Xiangxi River Basin Under Climate Change: The Application of the HBV-XGBoost Coupled Model. Water. 2025; 17(16):2420. https://doi.org/10.3390/w17162420
Chicago/Turabian StyleGuo, Jiaona, Fuzhou Zhang, Wenjie Li, Aili Yang, Yurui Fan, and Jianbing Li. 2025. "Runoff Prediction in the Xiangxi River Basin Under Climate Change: The Application of the HBV-XGBoost Coupled Model" Water 17, no. 16: 2420. https://doi.org/10.3390/w17162420
APA StyleGuo, J., Zhang, F., Li, W., Yang, A., Fan, Y., & Li, J. (2025). Runoff Prediction in the Xiangxi River Basin Under Climate Change: The Application of the HBV-XGBoost Coupled Model. Water, 17(16), 2420. https://doi.org/10.3390/w17162420