Comparative Assessment Using Different Topographic Change Detection Algorithms for Gravity Erosion Quantification Based on Multi-Source Remote Sensing Data
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Design of Experimental Runoff Plots
2.3. Experimental Procedure
2.4. Point Cloud Data Acquisition and Processing
2.4.1. Point Cloud Data Acquisition
2.4.2. Point Cloud Data Processing
2.5. Data Processing
2.5.1. Sample-Based Gravity Erosion Quantization
2.5.2. Gravity Erosion Quantization Based on Point Cloud Data
- (1)
- C2C Algorithm:
- (2)
- C2M Algorithm:
- (3)
- DoD Algorithm
- (4)
- M3C2 Algorithm
2.5.3. Accuracy Assessment
3. Results
3.1. Spatial Differences of Various Algorithms in Topographic Change Quantification
3.2. Accuracy Comparison of Different Algorithms on Gravity Erosion Quantification
3.3. Accuracy Assessment of Different Gravity Erosion Magnitudes
3.4. Quantification Accuracy of Different Algorithms on Gravity Erosion Under Different Geomorphic Units
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Xu, X.-Z.; Liu, Z.-Y.; Xiao, P.-Q.; Guo, W.-Z.; Zhang, H.-W.; Zhao, C.; Yan, Q. Gravity erosion on the steep loess slope: Behavior, trigger and sensitivity. CATENA 2015, 135, 231–239. [Google Scholar] [CrossRef]
- Xu, X.-Z.; Zhang, H.-W.; Wang, W.-L.; Zhao, C.; Yan, Q. Quantitative monitoring of gravity erosion using a novel 3D surface measuring technique: Validation and case study. Nat. Hazards 2015, 75, 1927–1939. [Google Scholar] [CrossRef]
- Kuhn, C.E.S.; Reis, F.A.G.V.; Zarfl, C.; Grathwohl, P.J.N.H. Ravines and gullies, a review about impact valuation. Nat. Hazards 2023, 117, 597–624. [Google Scholar] [CrossRef]
- Larsen, I.J.; Montgomery, D.R.; Korup, O. Landslide erosion controlled by hillslope material. Nat. Geosci. 2010, 3, 247–251. [Google Scholar] [CrossRef]
- Borrelli, P.; Robinson, D.A.; Panagos, P.; Lugato, E.; Yang, J.E.; Alewell, C.; Wuepper, D.; Montanarella, L.; Ballabio, C. Land use and climate change impacts on global soil erosion by water (2015–2070). Proc. Natl. Acad. Sci. USA 2020, 117, 21994–22001. [Google Scholar] [CrossRef] [PubMed]
- Peñuela, A.; Hayas, A.; Infante-Amate, J.; Ruiz-Montes, P.; Temme, A.; Reimann, T.; Peña-Acevedo, A.; Vanwalleghem, T. A multi-millennial reconstruction of gully erosion in two contrasting Mediterranean catchments. CATENA 2023, 220, 106709. [Google Scholar] [CrossRef]
- Gariano, S.L.; Guzzetti, F. Landslides in a changing climate. Earth-Sci. Rev. 2016, 162, 227–252. [Google Scholar] [CrossRef]
- Li, L.; Nearing, M.A.; Nichols, M.H.; Polyakov, V.O.; Cavanaugh, M.L. Using terrestrial LiDAR to measure water erosion on stony plots under simulated rainfall. Earth Surf. Proc. Land. 2020, 45, 484–495. [Google Scholar] [CrossRef]
- Mouyen, M.; Masson, F.; Hwang, C.; Cheng, C.-C.; Le Moigne, N.; Lee, C.W.; Kao, R.; Hsieh, W.-C. Erosion effects assessed by repeated gravity measurements in southern Taiwan. Geophys. J. Int. 2013, 192, 113–136. [Google Scholar] [CrossRef]
- Slee, A.J.; McIntosh, P.D.; Barrows, T.T. Using 36Cl exposure dating to date mass movement and assess land stability on the Nicholas Range, Tasmania. Landslides 2017, 14, 2147–2154. [Google Scholar] [CrossRef]
- Unkel, I.; Ehret, D.; Rohn, J. Recurrence analysis of the mass movement activity at Stambach (Austria) based on radiocarbon dating. Geomorphology 2013, 190, 103–111. [Google Scholar] [CrossRef]
- Zhang, N.; Yang, J.; Xing, W.; Liu, X.; Sheng, F.; Zhao, W.; Zhang, Z.; Tian, Z.; Chen, R. Isotope tracer study of soil erosion in a typical sub-watershed in the eastern Tianshan Mountains, China. J. Environ. Radioact. 2025, 285, 107667. [Google Scholar] [CrossRef]
- Zhu, T. Gully and tunnel erosion in the hilly Loess Plateau region, China. Geomorphology 2012, 153, 144–155. [Google Scholar] [CrossRef]
- Abedini, M.; Said, M.A.M.; Ahmad, F. Effectiveness of check dam to control soil erosion in a tropical catchment (The Ulu Kinta Basin). CATENA 2012, 97, 63–70. [Google Scholar] [CrossRef]
- Rieke-Zapp, D.H.; Nearing, M.A. Digital close range photogrammetry for measurement of soil erosion. Photogramm. Rec. 2005, 20, 69–87. [Google Scholar] [CrossRef]
- Zhu, T.; Xu, X.; Zhu, A. Spatial variation in the frequency and magnitude of mass movement in a semiarid, complex-terrain agricultural watershed on the Loess Plateau of China. Land. Degrad. Dev. 2019, 30, 1095–1106. [Google Scholar] [CrossRef]
- Di Stefano, C.; Ferro, V.; Pampalone, V.; Sanzone, F. Field investigation of rill and ephemeral gully erosion in the Sparacia experimental area, South Italy. CATENA 2013, 101, 226–234. [Google Scholar] [CrossRef]
- Xia, J.; Zhang, L.; Huang, X.; Lu, X.; Ge, P.; Wei, Y.; Cai, C. Photogrammetric Technique-Based Quantitative Measuring of Gravity Erosion on Steep Slopes in Laboratory: Accuracy and Application. Water 2023, 15, 2584. [Google Scholar] [CrossRef]
- Barnes, N.; Luffman, I.; Nandi, A. Gully erosion and freeze-thaw processes in clay-rich soils, northeast Tennessee, USA. GeoResJ 2016, 9, 67–76. [Google Scholar] [CrossRef]
- Vandekerckhove, L.; Poesen, J.; Wijdenes, D.O.; Gyssels, G. Short-term bank gully retreat rates in Mediterranean environments. CATENA 2001, 44, 133–161. [Google Scholar] [CrossRef]
- Gholami, V.; Sahour, H.; Amri, M.A.H. Soil erosion modeling using erosion pins and artificial neural networks. CATENA 2021, 196, 104902. [Google Scholar] [CrossRef]
- Nouwakpo, S.K.; Weltz, M.A.; McGwire, K. Assessing the performance of structure-from-motion photogrammetry and terrestrial LiDAR for reconstructing soil surface microtopography of naturally vegetated plots. Earth Surf. Proc. Land. 2016, 41, 308–322. [Google Scholar] [CrossRef]
- Betts, H.D.; Trustrum, N.A.; Rose, R.C.D. Geomorphic changes in a complex gully system measured from sequential digital elevation models, and implications for management. Earth Surf. Proc. Land. 2003, 28, 1043–1058. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, X.; Xiao, Z.; Qu, F.; Wang, X.; Li, Y.; Aurangzeib, M.; Zhang, X.; Liu, X. Quantitative studies of gully slope erosion and soil physiochemical properties during freeze-thaw cycling in a Mollisol region. Sci. Total Environ. 2020, 707, 136191. [Google Scholar] [CrossRef]
- Chico, G.; Clutterbuck, B.; Midgley, N.; Labadz, J. Application of terrestrial laser scanning to quantify surface changes in restored and degraded blanket bogs. Mires Peat 2019, 24, 14. [Google Scholar]
- Song, W.; Liu, P.; Yang, M.; Xue, Y. Using REE Tracers to Measure Sheet Erosion Changing to Rill Erosion. J. Rare Earth 2003, 21, 587–590. [Google Scholar]
- Webster, C.; Westoby, M.; Rutter, N.; Jonas, T. Three-dimensional thermal characterization of forest canopies using UAV photogrammetry. Remote Sens. Environ. 2018, 209, 835–847. [Google Scholar] [CrossRef]
- Jiang, Y.; Shi, H.; Wen, Z.; Guo, M.; Zhao, J.; Cao, X.; Fan, Y.; Zheng, C. The dynamic process of slope rill erosion analyzed with a digital close range photogrammetry observation system under laboratory conditions. Geomorphology 2020, 350, 106893. [Google Scholar] [CrossRef]
- Iglhaut, J.; Cabo, C.; Puliti, S.; Piermattei, L.; O’Connor, J.; Rosette, J. Structure from motion photogrammetry in forestry: A review. Curr. For. Rep. 2019, 5, 155–168. [Google Scholar] [CrossRef]
- Chen, G.; Ozelkan, E.; Singh, K.K.; Zhou, J.; Brown, M.R.; Meentemeyer, R.K. Uncertainties in mapping forest carbon in urban ecosystems. J. Environ. Manag. 2017, 187, 229–238. [Google Scholar] [CrossRef] [PubMed]
- Okyay, U.; Telling, J.; Glennie, C.L.; Dietrich, W.E. Airborne lidar change detection: An overview of Earth sciences applications. Earth-Sci. Rev. 2019, 198, 102929. [Google Scholar] [CrossRef]
- Pfeiffer, J.; Zieher, T.; Rutzinger, M.; Bremer, M.; Wichmann, V. Comparison and time series analysis of landslide displacement mapped by airborne, terrestrial and unmanned aerial vehicle based platforms. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, 4, 421–428. [Google Scholar] [CrossRef]
- Kenner, R.; Bühler, Y.; Delaloye, R.; Ginzler, C.; Phillips, M. Monitoring of high alpine mass movements combining laser scanning with digital airborne photogrammetry. Geomorphology 2014, 206, 492–504. [Google Scholar] [CrossRef]
- Bitelli, G.; Dubbini, M.; Zanutta, A. Terrestrial laser scanning and digital photogrammetry techniques to monitor landslide bodies. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2004, 35, 246–251. [Google Scholar]
- Salvini, R.; Francioni, M.; Riccucci, S.; Bonciani, F.; Callegari, I. Photogrammetry and laser scanning for analyzing slope stability and rock fall runout along the Domodossola–Iselle railway, the Italian Alps. Geomorphology 2013, 185, 110–122. [Google Scholar] [CrossRef]
- Sestras, P.; Bilașco, Ș.; Roșca, S.; Veres, I.; Ilies, N.; Hysa, A.; Spalević, V.; Cîmpeanu, S.M. Multi-instrumental approach to slope failure monitoring in a landslide susceptible newly built-up area: Topo-Geodetic survey, UAV 3D modelling and ground-penetrating radar. Remote Sens. 2022, 14, 5822. [Google Scholar] [CrossRef]
- Stumpf, A.; Malet, J.-P.; Allemand, P.; Pierrot-Deseilligny, M.; Skupinski, G. Ground-based multi-view photogrammetry for the monitoring of landslide deformation and erosion. Geomorphology 2015, 231, 130–145. [Google Scholar] [CrossRef]
- Girardeau-Montaut, D.; Roux, M.; Marc, R.; Thibault, G. Change detection on points cloud data acquired with a ground laser scanner. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2005, 36, W19. [Google Scholar]
- Martínez-Espejo Zaragoza, I.; Caroti, G.; Piemonte, A.; Riedel, B.; Tengen, D.; Niemeier, W. Structure from motion (SfM) processing of UAV images and combination with terrestrial laser scanning, applied for a 3D-documentation in a hazardous situation. Geomat. Nat. Haz. Risk 2017, 8, 1492–1504. [Google Scholar] [CrossRef]
- Williams, R. DEMs of difference. Geomorphol. Tech. 2012, 2, 1–17. [Google Scholar]
- Abdelazeem, M.; Elamin, A.; Afifi, A.; El-Rabbany, A. Multi-sensor point cloud data fusion for precise 3D mapping. Egypt. J. Remote Sens. Space Sci. 2021, 24, 835–844. [Google Scholar] [CrossRef]
- Lague, D.; Brodu, N.; Leroux, J. Accurate 3D comparison of complex topography with terrestrial laser scanner: Application to the Rangitikei canyon (NZ). Isprs J. Photogramm. 2013, 82, 10–26. [Google Scholar] [CrossRef]
- Wheaton, J.M.; Brasington, J.; Darby, S.E.; Sear, D.A. Accounting for uncertainty in DEMs from repeat topographic surveys: Improved sediment budgets. Earth Surf. Proc. Land. 2010, 35, 136–156. [Google Scholar] [CrossRef]
- Nourbakhshbeidokhti, S.; Kinoshita, A.M.; Chin, A.; Florsheim, J.L. A workflow to estimate topographic and volumetric changes and errors in channel sedimentation after disturbance. Remote Sens. 2019, 11, 586. [Google Scholar] [CrossRef]
- Mukupa, W.; Roberts, G.W.; Hancock, C.M.; Al-Manasir, K. A review of the use of terrestrial laser scanning application for change detection and deformation monitoring of structures. Surv. Rev. 2017, 49, 99–116. [Google Scholar] [CrossRef]
- Palmeri, V.; Di Stefano, C.; Guida, G.; Nicosia, A.; Ferro, V. Monitoring the temporal evolution of a Sicilian badland area by unmanned aerial vehicles. Geomorphology 2024, 466, 109443. [Google Scholar] [CrossRef]
- Shi, P.; Zhang, Y.; Zhang, Y.; Yu, Y.; Li, P.; Li, Z.; Xiao, L.; Xu, G.; Zhu, T. Land-use types and slope topography affect the soil labile carbon fractions in the Loess hilly-gully area of Shaanxi, China. Arch. Agron. Soil Sci. 2020, 66, 638–650. [Google Scholar] [CrossRef]
- Zhang, Z. Iterative Closest Point (ICP). In Computer Vision: A Reference Guide; Springer: Berlin/Heidelberg, Germany, 2021; pp. 718–720. [Google Scholar]
- Sui, H.; Asaba, K.; Sakai, K.; Miyanaga, S.; Cui, Y. Assessment of C2C-based point cloud comparison errors based on distribution characteristics of tunnel point clouds. Int. J. Remote Sens. 2025, 46, 2646–2664. [Google Scholar] [CrossRef]
- Cook, K.L. An evaluation of the effectiveness of low-cost UAVs and structure from motion for geomorphic change detection. Geomorphology 2017, 278, 195–208. [Google Scholar] [CrossRef]
- Seo, H.; Zhao, Y.; Chen, C. Displacement estimation error in laser scanning monitoring of retaining structures considering roughness. Sensors 2021, 21, 7370. [Google Scholar] [CrossRef]
- Lane, S.N.; Westaway, R.M.; Murray Hicks, D. Estimation of erosion and deposition volumes in a large, gravel-bed, braided river using synoptic remote sensing. Earth Surf. Proc. Land. 2003, 28, 249–271. [Google Scholar] [CrossRef]
- Su, J.; Bork, E. Influence of vegetation, slope, and lidar sampling angle on DEM accuracy. Photogramm. Eng. Remote Sens. 2006, 72, 1265–1274. [Google Scholar] [CrossRef]
- Zhang, R.; Schneider, D.; Strauß, B. Generation and comparison of TLS and SFM based 3d models of solid shapes in hydromechanic research. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, 41, 925–929. [Google Scholar] [CrossRef]
- Ji, H.; Luo, X. 3D scene reconstruction of landslide topography based on data fusion between laser point cloud and UAV image. Environ. Earth Sci. 2019, 78, 534. [Google Scholar] [CrossRef]
- Yan, L.; Li, P.; Hu, J.; Li, D.; Dan, Y.; Bai, X.; Liu, L.; Gao, J.; Dang, T.; Dang, W. Monitoring small-scale mass movement using unmanned aerial vehicle remote sensing techniques. CATENA 2024, 238, 107885. [Google Scholar] [CrossRef]
- Croke, J.; Todd, P.; Thompson, C.; Watson, F.; Denham, R.; Khanal, G. The use of multi temporal LiDAR to assess basin-scale erosion and deposition following the catastrophic January 2011 Lockyer flood, SE Queensland, Australia. Geomorphology 2013, 184, 111–126. [Google Scholar] [CrossRef]
- Le Mauff, B.; Juigner, M.; Ba, A.; Robin, M.; Launeau, P.; Fattal, P. Coastal monitoring solutions of the geomorphological response of beach-dune systems using multi-temporal LiDAR datasets (Vendée coast, France). Geomorphology 2018, 304, 121–140. [Google Scholar] [CrossRef]
- Yang, X.; Hu, J.; Li, P.; Gao, C.; Latifi, H.; Bai, X.; Gao, J.; Dang, T.; Tang, F. SCCD: A slicing algorithm for detecting geomorphic changes on topographically complex areas based on 3D point clouds. Remote Sens. Environ. 2024, 303, 114022. [Google Scholar] [CrossRef]
- Gao, C.; Li, P.; Hu, J.; Yan, L.; Latifi, H.; Yao, W.; Hao, M.; Gao, J.; Dang, T.; Zhang, S. Development of gully erosion processes: A 3D investigation based on field scouring experiments and laser scanning. Remote Sens. Environ. 2021, 265, 112683. [Google Scholar] [CrossRef]
- Jafari, B.; Khaloo, A.; Lattanzi, D. Deformation tracking in 3D point clouds via statistical sampling of direct cloud-to-cloud distances. J. Nondestruct. Eval. 2017, 36, 65. [Google Scholar] [CrossRef]
- Meinen, B.U.; Robinson, D.T. Mapping erosion and deposition in an agricultural landscape: Optimization of UAV image acquisition schemes for SfM-MVS. Remote Sens. Environ. 2020, 239, 111666. [Google Scholar] [CrossRef]
Algorithm | Data Source | Absolute Error (cm3) | Relative Error (%) | ||||
---|---|---|---|---|---|---|---|
Max | Min | Mean | Max | Min | Mean | ||
C2C | TLS | 18209.35 | 51.96 | 2473.16 | 342.97 | 16.69 | 154.71 |
SfM | 3345.04 | 7.05 | 358.90 | 140.37 | 0.14 | 44.94 | |
TLS and SfM | 2274.66 | 0.67 | 257.67 | 208.36 | 0.52 | 29.44 | |
C2M | TLS | 5621.16 | 1.36 | 666.69 | 272.93 | 0.77 | 69.68 |
SfM | 2778.89 | 1.09 | 328.39 | 103.80 | 0.81 | 27.20 | |
TLS and SfM | 2261.47 | 2.41 | 266.71 | 207.15 | 0.11 | 32.21 | |
DoD | TLS | 1974.61 | 1.36 | 242.80 | 135.07 | 0.61 | 23.02 |
SfM | 1515.84 | 2.53 | 275.38 | 115.75 | 0.90 | 35.30 | |
TLS and SfM | 2881.18 | 6.54 | 263.61 | 133.43 | 0.27 | 31.40 | |
M3C2 | TLS | 5611.00 | 0.20 | 427.81 | 81.09 | 0.01 | 22.91 |
SfM | 4726.90 | 0.40 | 354.54 | 102.78 | 0.16 | 23.85 | |
TLS and SfM | 3306.20 | 1.85 | 273.83 | 65.33 | 0.09 | 14.71 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, J.; Fu, H.; Li, P.; Wang, J.; Yan, L. Comparative Assessment Using Different Topographic Change Detection Algorithms for Gravity Erosion Quantification Based on Multi-Source Remote Sensing Data. Water 2025, 17, 2309. https://doi.org/10.3390/w17152309
Hu J, Fu H, Li P, Wang J, Yan L. Comparative Assessment Using Different Topographic Change Detection Algorithms for Gravity Erosion Quantification Based on Multi-Source Remote Sensing Data. Water. 2025; 17(15):2309. https://doi.org/10.3390/w17152309
Chicago/Turabian StyleHu, Jinfei, Haoyong Fu, Pengfei Li, Jinbo Wang, and Lu Yan. 2025. "Comparative Assessment Using Different Topographic Change Detection Algorithms for Gravity Erosion Quantification Based on Multi-Source Remote Sensing Data" Water 17, no. 15: 2309. https://doi.org/10.3390/w17152309
APA StyleHu, J., Fu, H., Li, P., Wang, J., & Yan, L. (2025). Comparative Assessment Using Different Topographic Change Detection Algorithms for Gravity Erosion Quantification Based on Multi-Source Remote Sensing Data. Water, 17(15), 2309. https://doi.org/10.3390/w17152309