Assessment of Satellite and Reanalysis Precipitation Data Using Statistical and Wavelet Analysis in Semi-Arid, Morocco
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. Characteristics of Rainfall Products and Gauged Stations
3.2. Statistical Metrics
3.3. Classification Metrics and Wavelet Analysis
3.4. Application of Quantile Mapping for Bias Correction
4. Results
4.1. Application of Statistical Continuous Metric for Raw Data (Daily, Monthly, and Annual)
4.2. Evaluation of Bias in Rainfall Products
4.3. Correlation Analysis of Rainfall Product Performance
4.4. Wavelet Approach to Temporal and Extreme Event Analysis
4.4.1. Visualization of the Continuous Wavelet Transform (CWT)
4.4.2. Power Spectrum Analysis
4.4.3. Scalogram Analysis
4.4.4. Global Power Spectrum Analysis
4.5. Analysis of Classification Metrics
4.6. Application of Bias Correction
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barrett, E. The Estimation of Monthly Rainfall from Satellite Data. Mon. Weather Rev. 1970, 98, 322–327. [Google Scholar] [CrossRef]
- Barrett, E.; Martin, D. The Use of Satellite Data in Rainfall Monitoring; Academic Press: Cambridge, MA, USA, 1981. [Google Scholar]
- Ebert, E.; Manton, M.; Arkin, P.; Allam, R.; Holpin, G.; Gruber, A. Results from the GPCP Algorithm Intercomparison Program (AIP). Bull. Am. Meteorol. Soc. 1996, 77, 2875–2887. [Google Scholar] [CrossRef]
- Ebert, E.E.; Manton, M.J. Performance of Satellite Rainfall Estimation Algorithms during TOGA COARE. J. Atmos. Sci. 1998, 55, 1537–1557. [Google Scholar] [CrossRef]
- Xie, P.; Arkin, P. Global Precipitation: A 17-Year Monthly Analysis Based on Gauge Observations, Satellite Estimates, and Numerical Model Outputs. Bull. Am. Meteorol. Soc. 1997, 78, 2539–2558. [Google Scholar] [CrossRef]
- Maphugwi, M.; Blamey, R.; Reason, C. Rainfall Characteristics over the Congo Air Boundary Region in Southern Africa: A Comparison of Station and Gridded Rainfall Products. Atmos. Res. 2024, 311, 107718. [Google Scholar] [CrossRef]
- Roca, R.; Chambon, P.; Jobard, I.; Kirstetter, P.; Gosset, M.; Bergès, J.C. Comparing Satellite and Surface Rainfall Products over West Africa at Meteorologically Relevant Scales during the AMMA Campaign Using Error Estimates. J. Appl. Meteorol. Climatol. 2010, 49, 715–731. [Google Scholar] [CrossRef]
- Romilly, T.; Gebremichael, M. Evaluation of Satellite Rainfall Estimates over Ethiopian River Basins. Hydrol. Earth Syst. Sci. 2011, 15, 1505–1517. [Google Scholar] [CrossRef]
- Khaddor, I.; Achab, M.; Hafidi Alaoui, A. Hydrological Simulation (Rainfall-Runoff) of Kalaya Watershed (Tangier, Morocco) Using Geo-Spatial Tools. JOWSET J. Water Sci. Environ. Technol. 2016, 1, 10–14. [Google Scholar]
- Qadem, A.; Sébastien, L.; Zohair, Q. Contribution to the hydroclimatic study of a semi-arid mountain basin: The case of the Zloul watershed (pleated Middle Atlas). In Proceedings of the CES’19, Béni Mellal, Morocco, 8–11 January 2019. [Google Scholar]
- Lek, S.; Dimopoulos, I.; Derraz, M.; El Ghachtoul, Y. Rainfall-Runoff Modelling Using Artificial Neural Networks. J. Water Sci. 1996, 9, 319–331. [Google Scholar]
- Soufiane, T. Modeling of Hydrology and Erosion in the Oued Beht Watershed (Northwest Morocco). Master’s Thesis, University Ibn Tofail, Kenitra, Morocco, 2015. [Google Scholar]
- Satish Kumar, K.; AnandRaj, P.; Sreelatha, K.; Bisht, D.S.; Sridhar, V. Monthly and Seasonal Drought Characterization Using GRACE-Based Groundwater Drought Index and Its Link to Teleconnections across South Indian River Basins. Climate 2021, 9, 56. [Google Scholar] [CrossRef]
- Sridhar, V.; Anderson, K.A. Human-induced modifications to land surface fluxes and their implications on water management under past and future climate change conditions. Agric. For. Meteorol. 2017, 234–235, 66–79. [Google Scholar] [CrossRef]
- Ashouri, H.; Hsu, K.L.; Sorooshian, S.; Braithwaite, D.; Knapp, K.; Cecil, D.; Nelson, B.; Prat, O. PERSIANN-CDR: Daily Precipitation Climate Data Record from Multisatellite Observations for Hydrological and Climate Studies. Bull. Am. Meteorol. Soc. 2015, 96, 69–83. [Google Scholar] [CrossRef]
- Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Shukla, S.; Husak, G.; Rowland, J.; Harrison, L.; Hoell, A.; et al. The Climate Hazards Infrared Precipitation with Stations—A New Environmental Record for Monitoring Extremes. Sci. Data 2015, 2, 150066. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horanyi, A.; Munoz Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 Global Reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Huffman, G.; Stocker, E.; Bolvin, D.; Nelkin, E.; Tan, J. GPM IMERG Final Precipitation L3 Half Hourly 0.1 Degree x 0.1 Degree, Version V06B. 2019. Available online: https://oneclimate.acdguide.cloud.edu.au/records/ex70x-h1j79 (accessed on 25 January 2025).
- Saha, S.; Moorthi, S.; Pan, H.L.; Wu, X.; Wang, J.; Nadiga, S.; Tripp, P.; Kistler, R.; Woollen, J.; Behringer, D.; et al. The NCEP Climate Forecast System Reanalysis. Bull. Am. Meteorol. Soc. 2010, 91, 1015–1057. [Google Scholar] [CrossRef]
- Mahmoud, M.T.; Mohammed, S.A.; Hamouda, M.A.; Mohamed, M.M. Impact of Topography and Rainfall Intensity on the Accuracy of IMERG Precipitation Estimates in an Arid Region. Remote Sens. 2021, 13, 13. [Google Scholar] [CrossRef]
- AghaKouchak, A.; Behrangi, A.; Sorooshian, S.; Hsu, K.-l.; Amitai, E. Evaluation of Satellite-Retrieved Extreme Precipitation Rates across the Central United States. J. Geophys. Res. Atmos. 2011, 116, D02115. [Google Scholar] [CrossRef]
- Setti, S.; Maheswaran, R.; Sridhar, V.; Barik, K.K.; Merz, B.; Agarwal, A. Inter-Comparison of Gauge-Based Gridded Data, Reanalysis and Satellite Precipitation Product with an Emphasis on Hydrological Modeling. Atmosphere 2020, 11, 1252. [Google Scholar] [CrossRef]
- Gharnouki, I.; Aouissi, J.; Benabdallah, S.; Tramblay, Y. Assessing the Variability of Satellite and Reanalysis Rainfall Products Over a Semi-Arid Catchment in Tunisia. Acta Geophys. 2024. [Google Scholar] [CrossRef]
- Singh, T.P.; Kumbhar-Patkar, V.; Das, S.; Deshpande, M.; Dhoka, K. Comparison of TRMM Multi-Satellite Precipitation Analysis (TMPA) Estimation with Ground-Based Precipitation Data over Maharashtra, India. Environ. Dev. Sustain. 2020, 22, 5539–5552. [Google Scholar] [CrossRef]
- Darand, M.; Amanollahi, J.; Zandkarimi, S. Evaluation of the Performance of TRMM Multi-Satellite Precipitation Analysis (TMPA) Estimation over Iran. Atmos. Res. 2017, 190, 121–127. [Google Scholar] [CrossRef]
- Jarlan, L.; Khabba, S.; Er Raki, S.; Le Page, M.; Hanich, L.; Fakir, Y.; Merlin, O.; Mangiarotti, S.; Gascoin, S.; Ezzahar, J.; et al. Remote Sensing of Water Resources in Semi-Arid Mediterranean Areas: The Joint International Laboratory TREMA. Int. J. Remote Sens. 2015, 36, 4879–4917. [Google Scholar] [CrossRef]
- Habib, E.; Haile, A.; Tian, Y.; Joyce, R. Evaluation of the High-Resolution CMORPH Satellite Rainfall Product Using Dense Rain Gauge Observations and Radar-Based Estimates. J. Hydrometeorol. 2012, 13, 1784–1798. [Google Scholar] [CrossRef]
- Ebert, E.; Janowiak, J.; Kidd, C. Comparison of Near-Real-Time Precipitation Estimates from Satellite Observations and Numerical Models. Bull. Am. Meteorol. Soc. 2007, 88, 47–64. [Google Scholar] [CrossRef]
- Wei, C.C.; Roan, J. Retrievals for the Rainfall Rate over Land Using Special Sensor Microwave Imager Data during Tropical Cyclones: Comparisons of Scattering Index, Regression, and Support Vector Regression. J. Hydrometeorol. 2012, 13, 1567–1578. [Google Scholar] [CrossRef]
- Sapiano, M.; Arkin, P. An Intercomparison and Validation of High-Resolution Satellite Precipitation Estimates with 3-Hourly Gauge Data. J. Hydrometeorol. 2009, 10, 149–166. [Google Scholar] [CrossRef]
- Yamamoto, M.; Ueno, K.; Nakamura, K. Comparison of Satellite Precipitation Products with Rain Gauge Data for the Khumb Region, Nepal Himalayas. J. Meteorol. Soc. Jpn. Ser. II 2011, 89, 597–610. [Google Scholar] [CrossRef]
- Veerakachen, W.; Raksapatcharawong, M.; Seto, S. Performance Evaluation of Global Satellite Mapping of Precipitation (GSMaP) Products over the Chaophraya River Basin, Thailand. Hydrol. Res. Lett. 2014, 8, 39–44. [Google Scholar] [CrossRef]
- Palharini, R.; Vila, D.; Rodrigues, D.; Palharini, R.; Mattos, E.; Pedra, G. Assessment of Extreme Rainfall Estimates from Satellite-Based: Regional Analysis. Remote Sens. Appl. Soc. Environ. 2021, 23, 100603. [Google Scholar] [CrossRef]
- Li, J.; Heap, A. A Review of Comparative Studies of Spatial Interpolation Methods in Environmental Sciences: Performance and Impact Factors. Ecol. Inform. 2011, 6, 228–241. [Google Scholar] [CrossRef]
- Guo, H.; Chen, S.; Bao, A.; Hu, J.; Gebregiorgis, A.; Xue, X.; Zhang, X. Inter-Comparison of High-Resolution Satellite Precipitation Products over Central Asia. Remote Sens. 2015, 7, 7181–7211. [Google Scholar] [CrossRef]
- Geelani, S.; Abbas, S.; Umar, M.; Usman, M.; Yousfani, I. Validation of Satellite-Based Gridded Rainfall Products with Station Data over Major Cities in Punjab. Int. J. Innov. Sci. Technol. 2024, 6, 305–318. [Google Scholar]
- Tsuzuki, K.; Nakamura, S.; Tebakari, T.; Yoshimi, K. Proposal of a New Rainfall Product Using Modified Weather Radar Data Published by the Thai Meteorological Department and Its Application: A Case Study in Thailand. Hydrol. Res. Lett. 2025, 19, 30–35. [Google Scholar] [CrossRef]
- Cinkus, G.; Mazzilli, N.; Jourde, H.; Wunsch, A.; Liesch, T.; Ravbar, N.; Chen, Z.; Goldscheider, N. When best is the enemy of good—Critical evaluation of performance criteria in hydrological models. Hydrol. Earth Syst. Sci. 2023, 27, 2397–2411. [Google Scholar] [CrossRef]
- Duc, L.; Sawada, Y. A signal-processing-based interpretation of the Nash–Sutcliffe efficiency. Hydrol. Earth Syst. Sci. 2023, 27, 1827–1839. [Google Scholar] [CrossRef]
- Pushpalatha, R.; Perrin, C.; Le Moine, N.; Andreassian, V. A review of efficiency criteria suitable for evaluating low-flow simulations. J. Hydrol. 2012, 420, 171–182. [Google Scholar] [CrossRef]
- Todini, E.; Biondi, D. Calibration, parameter estimation, uncertainty, data assimilation, sensitivity analysis, and validation. In Handbook of Applied Hydrology; McGraw-Hill Education: New York, NY, USA, 2017; pp. 22-1–22-19. [Google Scholar]
- Wehbe, Y.; Ghebreyesus, D.; Temimi, M.; Milewski, A.; Mandous, A. Assessment of the consistency among global precipitation products over the United Arab Emirates. J. Hydrol. Reg. Stud. 2017, 12, 122–135. [Google Scholar] [CrossRef]
- Willmott, C.; Matsuura, K. On the use of dimensioned measures of error to evaluate the performance of spatial interpolators. Int. J. Geogr. Inf. Sci. 2006, 20, 89–102. [Google Scholar] [CrossRef]
- Willmott, C.; Matsuura, K. Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Clim. Res. 2005, 30, 79–82. [Google Scholar] [CrossRef]
- AghaKouchak, A.; Farahmand, A.; Melton, F.S.; Teixeira, J.; Anderson, M.C.; Wardlow, B.D.; Hain, C.R. Remote Sensing of Drought: Progress, Challenges and Opportunities. Rev. Geophys. 2015, 53, 452–480. [Google Scholar] [CrossRef]
- Beck, H.E.; Vergopolan, N.; Pan, M.; Levizzani, V.; van Dijk, A.I.J.M.; Weedon, G.P.; Brocca, L.; Pappenberger, F.; Huffman, G.J.; Wood, E.F. Global-Scale Evaluation of 22 Precipitation Datasets Using Gauge Observations and Hydrological Modeling. Hydrol. Earth Syst. Sci. 2017, 21, 6201–6217. [Google Scholar] [CrossRef]
- Chai, T.; Draxler, R.R. Root Mean Square Error (RMSE) or Mean Absolute Error (MAE)?—Arguments Against Avoiding RMSE in the Literature. Geosci. Model Dev. 2014, 7, 1247–1250. [Google Scholar] [CrossRef]
- Huffman, G.J.; Bolvin, D.T.; Nelkin, E.J.; Wolff, D.B.; Adler, R.F.; Gu, G.; Hong, Y.; Bowman, K.P.; Stocker, E.F. The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-Global, Multiyear, Combined-Sensor Precipitation Estimates at Fine Scales. J. Hydrometeorol. 2007, 8, 38–55. [Google Scholar] [CrossRef]
- Nguyen Duc, P.; Nguyen, H.; Nguyen, Q.H.; Phan Van, T.; Pham Thanh, H. Application of Long Short-Term Memory (LSTM) Network for Seasonal Prediction of Monthly Rainfall across Vietnam. Earth Sci. Inform. 2024, 17, 3925–3944. [Google Scholar] [CrossRef]
- Babiker, W.; Tan, G.; Alriah, M.; Elameen, A. Evaluation and Correction Analysis of the Regional Rainfall Simulation by CMIP6 over Sudan. Geogr. Pannonica 2024, 28, 53–70. [Google Scholar] [CrossRef]
- Benkirane, M.; Amazirh, A.; Laftouhi, N.E.; Khabba, S.; Chehbouni, A. Assessment of GPM Satellite Precipitation Performance after Bias Correction, for Hydrological Modeling in a Semi-Arid Watershed (High Atlas Mountain, Morocco). Atmosphere 2023, 14, 794. [Google Scholar] [CrossRef]
- Ahmed, K.F.; Wang, G.; Silander, J.; Wilson, A.M.; Allen, J.M.; Horton, R.; Anyah, R. Statistical Downscaling and Bias Correction of Climate Model Outputs for Climate Change Impact Assessment in the U.S. Northeast. Glob. Planet. Change 2013, 100, 320–332. [Google Scholar] [CrossRef]
- Panofsky, H.; Brier, G. Some Applications of Statistics to Meteorology; Pennsylvania State University Press: University Park, PA, USA, 1968. [Google Scholar]
- Themebl, M.; Gobiet, A.; Leuprecht, A. Empirical-Statistical Downscaling and Error Correction of Daily Precipitation from Regional Climate Models. Int. J. Climatol. 2011, 31, 1530–1544. [Google Scholar] [CrossRef]
- Elair, C.; Rkha Chaham, K.; Hadri, A. Assessment of Drought Variability in the Marrakech-Safi Region (Morocco) at Different Time Scales Using GIS and Remote Sensing. Water Supply 2023, 23, 4592–4624. [Google Scholar] [CrossRef]
- Bouaida, J.; Witam, O.; Ibnoussina, M.; Delmaki, A.; Benkirane, M. Contribution of Remote Sensing and GIS to Analysis of the Risk of Flooding in the Zat Basin (High Atlas-Morocco). Nat. Hazards 2021, 108, 1835–1851. [Google Scholar] [CrossRef]
- Ouaba, M.; El Khalki, E.; Saidi, M.; Alam, J. Estimation of Flood Discharge in Ungauged Basin Using GPM-IMERG Satellite-Based Precipitation Dataset in a Moroccan Arid Zone. Earth Syst. Environ. 2022, 6, 541–556. [Google Scholar] [CrossRef]
- Eini, M.; Rahmati, A.; Piniewski, M. Hydrological Application and Accuracy Evaluation of PERSIANN Satellite-Based Precipitation Estimates over a Humid Continental Climate Catchment. J. Hydrol. Reg. Stud. 2022, 41, 101109. [Google Scholar] [CrossRef]
- Rachdane, M.; El Khalki, E.; Saidi, M.; Tramblay, Y. Evaluation of GPM IMERG Products and ERA5 Reanalysis for Flood Modeling in a Semi-Arid Watershed. In Proceedings of the IAHS-AISH Scientific Assembly 2022, Montpellier, France, 29 May–3 June 2022. [Google Scholar] [CrossRef]
- Zhang, Z.; Tian, J.; Huang, Y.; Chen, X.; Chen, S.; Duan, Z. Hydrologic Evaluation of TRMM and GPM IMERG Satellite-Based Precipitation in a Humid Basin of China. Remote Sens. 2019, 11, 431. [Google Scholar] [CrossRef]
- Zhu, Q.; Xuan, W.; Liu, L.; Xu, Y.-P. Evaluation and Hydrological Application of Precipitation Estimates Derived from PERSIANN-CDR, TRMM 3B42V7, and NCEP-CFSR over Humid Regions in China. Hydrol. Process. 2016, 30, 3061–3083. [Google Scholar] [CrossRef]
- Abera, W.; Brocca, L.; Rigon, R. Comparative Evaluation of Different Satellite Rainfall Estimation Products and Bias Correction in the Upper Blue Nile (UBN) Basin. Atmos. Res. 2016, 178–179, 471–483. [Google Scholar] [CrossRef]
- Gebremicael, T.; Deitch, M.; Gancel, H.; Croteau, A.; Haile, G.; Beyene, A.; Kumar, L. Satellite-Based Rainfall Estimates Evaluation Using a Parsimonious Hydrological Model in the Complex Climate and Topography of the Nile River Catchments. Atmos. Res. 2022, 266, 105939. [Google Scholar] [CrossRef]
- Vu, T.; Li, L.; Jun, K. Evaluation of Multi-Satellite Precipitation Products for Streamflow Simulations: A Case Study for the Han River Basin in the Korean Peninsula, East Asia. Water 2018, 10, 642. [Google Scholar] [CrossRef]
- Tarek, M.; Brissette, F.; Arsenault, R. Evaluation of the ERA5 Reanalysis as a Potential Reference Dataset for Hydrological Modelling over North America. Hydrol. Earth Syst. Sci. 2020, 24, 2527–2544. [Google Scholar] [CrossRef]
- Trejo, F.; Barbosa, H.; Penaloza Murillo, M.; Moreno, M.; Farias, A. Intercomparison of Improved Satellite Rainfall Estimation with CHIRPS Gridded Product and Rain Gauge Data over Venezuela. Atmosfera 2016, 29, 323–342. [Google Scholar] [CrossRef]
- El Khalki, E.; Tramblay, Y.; Saidi, M.; Ahmed, M.; Chehbouni, A. Hydrological Assessment of Different Satellite Precipitation Products in Semi-Arid Basins in Morocco. Front. Water 2023, 5, 1243251. [Google Scholar] [CrossRef]
- Najmi, A.; Igmoullan, B.; Namous, M.; El Bouazzaoui, I.; Ait Brahim, Y.; El Khalki, E.; Saidi, M. Evaluation of PERSIANN-CCS-CDR, ERA5, and SM2RAIN-ASCAT Rainfall Products for Rainfall and Drought Assessment in a Semi-Arid Watershed, Morocco. J. Water Clim. Change 2023, 14, 1569–1584. [Google Scholar] [CrossRef]
- El Alaoui El Fels, A.; Saidi, M.E.; Alam, M.J.B. Rainfall Frequency Analysis Using Assessed and Corrected Satellite Precipitation Products in Moroccan Arid Areas. The Case of Tensift Watershed. Earth Syst. Environ. 2022, 6, 391–404. [Google Scholar] [CrossRef]
- Salih, W.; Epule, T.; Chehbouni, A.; El Khalki, E. Assessment of Satellite Precipitation Products during Extreme Events in a Semiarid Region. In Proceedings of the EMS Annual Meeting 2023, Bratislava, Slovakia, 4–8 September 2023; p. EMS2023-122. [Google Scholar] [CrossRef]
- Jaffar, O.; Hadri, A.; El Khalki, E.; Ait Naceur, K.; Saidi, M.; Tramblay, Y.; Chehbouni, A. Assessment of Hydrological Model Performance in Morocco in Relation to Model Structure and Catchment Characteristics. J. Hydrol. Reg. Stud. 2024, 54, 101899. [Google Scholar] [CrossRef]
- Saouabe, T.; Ait Naceur, K.; El Khalki, E.; Hadri, A.; Saidi, M. GPM-IMERG Product: A New Way to Assess the Climate Change Impact on Water Resources in a Moroccan Semi-Arid Basin. J. Water Clim. Change 2022, 13, 2559–2576. [Google Scholar] [CrossRef]
- Lilly, J.M. Element Analysis: A Wavelet-Based Method for Analysing Time-Localized Events in Noisy Time Series. Proc. R. Soc. A Math. Phys. Eng. Sci. 2017, 473, 20160776. [Google Scholar] [CrossRef]
- Nobach, H.; Tropea, C.; Cordier, L.; Bonnet, J.; Delville, J.; Lewalle, J.; Farge, M.; Schneider, K.; Adrian, R. Review of Some Fundamentals of Data Processing. In Springer Handbook of Experimental Fluid Mechanics; Tropea, C., Yarin, A., Foss, J., Eds.; Springer: Berlin, Heidelberg, 2007; pp. 1337–1398. [Google Scholar]
- Torrence, C.; Compo, G.P. A Practical Guide to Wavelet Analysis. Bull. Am. Meteorol. Soc. 1998, 79, 61–78. [Google Scholar] [CrossRef]
- Zamrane, Z.; Turki, I.; Laignel, B.; Mahe, G.; Laftouhi, N.E. Characterization of the Interannual Variability of Precipitation and Streamflow in Tensift and Ksob Basins (Morocco) and Links with the NAO. Atmosphere 2016, 7, 84. [Google Scholar] [CrossRef]
- Sridhar, V.; Jaksa, W.T.A.; Fang, B.; Lakshmi, V.; Hubbard, K.G.; Jin, X. Evaluating Bias-Corrected AMSR-E Soil Moisture using in situ Observations and Model Estimates. Vadose Zone J. 2013, 12, vzj2013.05.0093. [Google Scholar] [CrossRef]
- Atiah, W.; Johnson, R.; Muthoni, F.; Mengistu, G.; Amekudzi, L.; Kwabena, O.; Kizito, F. Bias Correction and Spatial Disaggregation of Satellite-Based Data for the Detection of Rainfall Seasonality Indices. Heliyon 2023, 9, e17604. [Google Scholar] [CrossRef]
- Bisht, D.; Kumar, D.; Amarjyothi, K.; Saha, U. Bias Correction of Satellite Precipitation Estimates Using Mumbai-MESONET Observations: A Random Forest Approach. Atmos. Res. 2025, 315, 107858. [Google Scholar] [CrossRef]
- El Bouazzaoui, I.; Ait Brahim, Y.; Amazirh, A.; Bougadir, B. Projections of Future Droughts in Morocco: Key Insights from Bias-Corrected Med-CORDEX Simulations in the Haouz Region. Earth Syst. Environ. 2025. [Google Scholar] [CrossRef]
- Habitou, N.; Morabbi, A.; Ouazar, D.; Bouziane, A.; Hasnaoui, M.D.; Sabri, H. CHIRPS Precipitation Open Data for Drought Monitoring: Application to the Tensift Basin, Morocco. J. Appl. Remote Sens. 2020, 14, 034526. [Google Scholar] [CrossRef]
Station | X | Y | Altitude (m) | First Start-Up Date | Frequency |
---|---|---|---|---|---|
Agafay | −8.24378 | 31.49711 | 479 | 2003–Present | 30 min |
Agdal | −7.98143 | 31.59856 | 506 | 2004–Present | 30 min |
Graoua | −7.91641 | 31.58444 | 523 | 2003–Present | 30 min |
Ghmate | −7.80290 | 31.42273 | 761 | 2019–Present | 30 min |
Laraba | −7.67748 | 31.66089 | 782 | 2017–Present | 30 min |
Saada | −8.15673 | 31.62859 | 415 | 2022–Present | 30 min |
Tameslouht | −8.09430 | 31.49745 | 554 | 2018–Present | 30 min |
Product | Spatial Resolution | Temporal Resolution | Time Span | Data Source | Coverage | Access Link |
---|---|---|---|---|---|---|
CHIRPS | 0.05° (∼5 km) | Daily, Monthly | 1981–present | Infrared satellite + gauge-based corrections | Global (50° S–50° N) | https://www.chc.ucsb.edu/data/chirps (accessed on 12 January 2025) |
ERA5-Ag | 0.08° (∼9 km) | Hourly, Daily | 1950–present | ECMWF reanalysis | Global | https://cds.climate.copernicus.eu (accessed on 25 January 2025) |
GPM | 0.1° (∼10 km) | Half-hourly, Daily | 2000–present | Multi-satellite + gauge correction | Global (60° S–60° N) | https://gpm.nasa.gov/data/directory (accessed on 25 January 2025) |
PERSIANN-CDR | 0.25° (∼25 km) | Daily | 1983–present | Infrared-based with machine learning corrections | Global (60° S–60° N) | https://www.ncei.noaa.gov/products/climate-data-records/precipitation-persiann (accessed on 18 January 2025) |
CFSR | 0.2° (∼20 km) | Hourly, Daily | 1979–2010 (Replaced by CFSv2) | NOAA NCEP Reanalysis | Global | https://rda.ucar.edu/datasets/ds093.0/ (accessed on 20 December 2024) |
Metrics | Formulas | Interpretation |
---|---|---|
RMSE | Lower RMSE values indicate better model performance, while higher values indicate larger errors. | |
MAE | A lower MAE indicates a better fit, while a higher MAE suggests a less accurate model. | |
NSE | An NSE of 1 indicates perfect prediction. | |
Bias | A bias close to 0 is ideal. | |
Pearson Correlation | A value of 1 indicates perfect correlation. |
Estimated: Rainy | Estimated: Not Rainy | |
---|---|---|
Observed: Rainy | True Positives (TP) | False Negatives (FN) |
Observed: not rainy | False Positives (FP) | True Negatives (TN) |
Metrics | Formule |
---|---|
Accuracy | |
Precision | |
Recall | |
F1-Score | |
Cohen’s Kappa |
Parameter | Value Used | Description |
---|---|---|
Wavelet type | Cmor1-2.5 | Complex Morlet wavelet with parameters 1, 2.5 |
Sampling period | Time step set to 1 year (data is annual). | |
Wavelet scales | np.arange(1, 50) | Range of scales used for the Continuous Wavelet Transform (CWT). |
Associated frequencies | Freqs (computed by PyWavelets) | Frequencies corresponding to the scales. |
Detrending | Detrend(data) | Removal of the linear trend from the time series. |
Gauged Station | CFSR | CHIRPS | ERA5_Ag | GPM | PERSIANN_CDR | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
M | A | M | A | M | A | M | A | M | A | |||||
Agafay | −2.25 | −26.93 | −3.59 | −42.95 | 5.98 | 71.48 | −2.28 | −27.27 | −1.28 | −15.42 | ||||
Agdal | −5.92 | −71.06 | 2.12 | 25.42 | 21.98 | 263.77 | 5.83 | 69.97 | 6.66 | 80.03 | ||||
Ghmate | 16.89 | 168.91 | 13.04 | 130.49 | 9.79 | 97.91 | 10.04 | 100.40 | −7.13 | −71.33 | ||||
Laraba | −3.54 | −41.99 | 3.16 | 37.52 | 8.25 | 97.84 | 1.76 | 20.88 | −0.70 | −8.36 | ||||
Tameslouht | 12.97 | 136.25 | 5.49 | 57.72 | 10.63 | 111.71 | 5.19 | 54.54 | −0.70 | −7.38 |
Station | CFSR | CHIRPS | ERA5_Ag | GPM | PERSIANN_CDR | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
D | M | Y | D | M | Y | D | M | Y | D | M | Y | D | M | Y | |||||
Agafay | 0.58 | 0.73 | 0.59 | 0.38 | 0.75 | 0.50 | 0.64 | 0.70 | 0.64 | 0.63 | 0.75 | 0.51 | 0.38 | 0.74 | 0.55 | ||||
Agdal | 0.58 | 0.67 | 0.42 | 0.01 | 0.20 | 0.74 | 0.66 | 0.80 | 0.86 | 0.57 | 0.78 | 0.52 | 0.36 | 0.76 | 0.67 | ||||
Ghmate | 0.49 | 0.44 | 0.93 | −0.01 | −0.08 | 0.37 | 0.67 | 0.81 | 0.99 | 0.25 | 0.29 | −0.64 | 0.25 | 0.70 | 0.92 | ||||
Laraba | 0.55 | 0.62 | 0.83 | 0.01 | 0.35 | 0.98 | 0.72 | 0.85 | 0.97 | 0.63 | 0.69 | 0.87 | 0.27 | 0.55 | 0.40 | ||||
Tameslouht | 0.48 | 0.37 | −0.74 | −0.02 | −0.32 | 0.46 | 0.62 | 0.72 | −0.98 | 0.50 | 0.59 | 0.95 | 0.25 | 0.69 | 0.51 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chakri, A.; Laftouhi, N.-E.; Zouhri, L.; Ibouh, H.; Ibnoussina, M. Assessment of Satellite and Reanalysis Precipitation Data Using Statistical and Wavelet Analysis in Semi-Arid, Morocco. Water 2025, 17, 1714. https://doi.org/10.3390/w17111714
Chakri A, Laftouhi N-E, Zouhri L, Ibouh H, Ibnoussina M. Assessment of Satellite and Reanalysis Precipitation Data Using Statistical and Wavelet Analysis in Semi-Arid, Morocco. Water. 2025; 17(11):1714. https://doi.org/10.3390/w17111714
Chicago/Turabian StyleChakri, Achraf, Nour-Eddine Laftouhi, Lahcen Zouhri, Hassan Ibouh, and Mounsif Ibnoussina. 2025. "Assessment of Satellite and Reanalysis Precipitation Data Using Statistical and Wavelet Analysis in Semi-Arid, Morocco" Water 17, no. 11: 1714. https://doi.org/10.3390/w17111714
APA StyleChakri, A., Laftouhi, N.-E., Zouhri, L., Ibouh, H., & Ibnoussina, M. (2025). Assessment of Satellite and Reanalysis Precipitation Data Using Statistical and Wavelet Analysis in Semi-Arid, Morocco. Water, 17(11), 1714. https://doi.org/10.3390/w17111714