Evaluation of the Use of Limestones for the Removal of Arsenic from Groundwater
Abstract
:1. Introduction
2. Methodology
2.1. Sampling and Analysis
2.2. Experiments
2.2.1. Batch Tests
2.2.2. Column Tests
3. Results and Discussion
3.1. Mineralogy
3.2. Rock Chemistry
3.3. Groundwater Hydrogeochemistry
3.4. Removal Experiments
3.5. General Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
As | Arsenic |
BET | Brunauer-Emmett-Teller |
EXAFS | Extended X-ray absorption fine structure |
PZC | Point of Zero Charge |
PV03 | Praderas de la Venta |
SJMer | San José de Merino |
SEM | Scanning Electron Microscopy |
XAS | X-ray absorption spectroscopy |
XANES | X-ray absorption near-edge structure |
XRD | X-ray Diffraction |
XRF | X-ray Fluorescence |
WHO | World Health Organization |
References
- Hong, Y.S.; Song, K.H.; Chung, J.Y. Health effects of chronic arsenic exposure. J. Prev. Med. Public Health 2014, 47, 245. [Google Scholar] [CrossRef] [PubMed]
- Parvez, F.; Akhtar, E.; Khan, L.; Haq, M.A.; Islam, T.; Ahmed, D.; Raqib, R. Exposure to low-dose arsenic in early life alters innate immune function in children. J. Immunotoxicol. 2019, 16, 201–209. [Google Scholar] [CrossRef] [PubMed]
- Torres-Arellano, J.M.; Osorio-Yáñez, C.; Sánchez-Peña, L.C.; Ayllon-Vergara, J.C.; Arreola-Mendoza, L.; Aguilar-Madrid, G.; Del Razo, L.M. Natriuretic peptides and echocardiographic parameters in Mexican children environmentally exposed to arsenic. Toxicol. Appl. Pharmacol. 2020, 403, 115164. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (WHO). Guidelines for Drinking-Water Quality: Fourth Edition Incorporating the First and Second Addenda; WHO: Geneva, Switzerland, 2022. [Google Scholar]
- Podgorski, J.; Berg, M. Global threat of arsenic in groundwater. Science 2020, 368, 845–850. [Google Scholar] [CrossRef]
- Armienta, M.A.; Segovia, N. Arsenic and fluoride in the groundwater of Mexico. Environ. Geochem. Health 2008, 30, 345–353. [Google Scholar] [CrossRef]
- Rahaman, M.S.; Rahman, M.M.; Mise, N.; Sikder, M.T.; Ichihara, G.; Uddin, M.K.; Kurasaki, M.; Ichihara, S. Environmental arsenic exposure and its contribution to human diseases, toxicity mechanism and management. Environ. Pollut. 2021, 289, 117940. [Google Scholar] [CrossRef]
- Litter, M.I.; Alarcón-Herrera, M.T.; Arenas, M.J.; Armienta, M.A.; Avilés, M.; Cáceres, R.E.; Cipriani, H.N.; Cornejo, L.; Dias, L.E.; Cirelli, A.F.; et al. Small-scale and household methods to remove arsenic from water for drinking purposes in Latin America. Sci. Total Environ. 2012, 429, 107–122. [Google Scholar] [CrossRef]
- Baig, S.A.; Sheng, T.; Hu, Y.; Xu, J.; Xu, X. Arsenic removal from natural water using low cost granulated adsorbents: A review. CLEAN Soil Air Water. 2015, 43, 13–26. [Google Scholar] [CrossRef]
- Kabir, F.; Chowdhury, S. Arsenic removal methods for drinking water in the developing countries: Technological developments and research needs. Environ. Sci. Pollut. Res. 2017, 24, 24102–24120. [Google Scholar] [CrossRef]
- Sadee, B.A.; Zebari, M.S.; Galali, Y.; Saleem, M.A. A review on arsenic contamination in drinking water: Sources, health impacts, and remediation approaches. RSC Adv. 2025, 15, 2684–2703. [Google Scholar] [CrossRef]
- Ghosh, S.; Igwegbe, C.A.; Malloum, A.; Elmakki, M.A.E.; Onyeaka, H.; Fahmy, A.H.; Osim, N.; Ahmadi, S.; Alameri, B.M.; Ghosh, S.; et al. Sustainable technologies for removal of arsenic from water and wastewater: A comprehensive review. J. Mol. Liq. 2025, 427, 127412. [Google Scholar] [CrossRef]
- Kumar, R.; Patel, M.; Singh, P.; Bundschuh, J.; Pittman, C.U.; Trakal, L.; Mohan, D. Emerging technologies for arsenic removal from drinking water in rural and peri-urban areas: Methods, experience from, and options for Latin America. Sci. Total Environ. 2019, 694, 133427. [Google Scholar] [CrossRef]
- Pryadko, A.; Mukhortova, Y.R.; Botvin, V.V.; Grubova, I.Y.; Galstenkova, M.R.; Wagner, D.V.; Gerasimov, E.Y.; Sukhinina, E.V.; Pershina, A.G.; Kholkin, A.L.; et al. A comprehensive study on in situ synthesis of a magnetic nanocomposite of magnetite and reduced graphene oxide and its effectiveness at removing arsenic from water. Nano-Struct. Nano-Objects 2023, 36, 101028. [Google Scholar] [CrossRef]
- Gimenez, J.; Martinez, M.; de Pablo, J.; Rovira, M.; Duro, L. Arsenic sorption onto natural hematite, magnetite, and goethite. J. Hazard. Mater. 2007, 141, 575–580. [Google Scholar] [CrossRef] [PubMed]
- Yeo, K.F.H.; Li, C.; Zhang, H.; Chen, J.; Wang, W.; Dong, Y. Arsenic removal from contaminated water using natural adsorbents: A review. Coatings 2021, 11, 1407. [Google Scholar] [CrossRef]
- Cruz, G.J.; Mondal, D.; Rimaycuna, J.; Soukup, K.; Gómez, M.M.; Solis, J.L.; Lang, J. Agrowaste derived biochars impregnated with ZnO for removal of arsenic and lead in water. J. Environ. Chem. Eng. 2020, 8, 103800. [Google Scholar] [CrossRef]
- Gupta, A.; Yunus, M.; Sankararamakrishnan, N. Zerovalent iron encapsulated chitosan nanospheres—A novel adsorbent for the removal of total inorganic Arsenic from aqueous systems. Chemosphere 2012, 86, 150–155. [Google Scholar] [CrossRef]
- Alarcón-Herrera, M.T.; Martin-Alarcon, D.A.; Gutiérrez, M.; Reynoso-Cuevas, L.; Martín-Domínguez, A.; Olmos-Márquez, M.A.; Bundschuh, J. Co-occurrence, possible origin, and health-risk assessment of arsenic and fluoride in drinking water sources in Mexico: Geographical data visualization. Sci. Total Environ. 2020, 698, 134168. [Google Scholar] [CrossRef]
- Morales, I.; Villanueva-Estrada, R.E.; Rodríguez, R.; Armienta, M.A. Geological, hydrogeological and geothermal factors associated to the origin of arsenic, fluoride and groundwater temperature in a volcanic environment “El Bajío Guanajuatense”, Mexico. Environ. Earth Sci. 2015, 74, 5403–5415. [Google Scholar] [CrossRef]
- Del Razo, L.M.; Ledón, J.M.; Velasco, M.N. Hacia el cumplimiento del Derecho Humano al Agua. In Arsénico y Fluoruro en Agua: Riesgos y Perspectivas Desde la Sociedad Civil y la Academia en México, 1st ed.; UNAM-Instituto de Geofísica: Ciudad de México, México, 2021; p. 200. ISBN 978-607-30-4773-9. [Google Scholar]
- Cebrian, M.E.; Albores, A.; Aguilar, M.; Blakely, E. Chronic arsenic poisoning in the north of Mexico. Hum. Toxicol. 1983, 2, 121–133. [Google Scholar] [CrossRef]
- Del Razo, L.M.; García-Vargas, G.G.; Valenzuela, O.L.; Castellanos, E.H.; Sánchez-Peña, L.C.; Currier, J.M.; Drobná, Z.; Loomis, D.; Stýblo, M. Exposure to arsenic in drinking water is associated with increased prevalence of diabetes: A cross-sectional study in the Zimapán and Lagunera regions in Mexico. Environ. Health 2011, 10, 73. [Google Scholar] [CrossRef] [PubMed]
- Armienta, M.A.; Villaseñor, G.; Rodriguez, R.; Ongley, L.K.; Mango, H. The role of arsenic-bearing rocks in groundwater pollution at Zimapán Valley, México. Environ. Geol. 2001, 40, 571–581. [Google Scholar] [CrossRef]
- Davis, A.D.; Webb, C.J.; Sorensen, J.L.; Dixon, D.J. Thermodynamic constraints on limestone-based arsenic removal from water. Environ. Earth Sci. 2018, 77, 1–7. [Google Scholar] [CrossRef]
- Shan, H.; Ma, T.; Wang, Y.; Zhao, J.; Han, H.; Deng, Y.; He, X.; Dong, Y. A cost-effective system for in-situ geological arsenic adsorption from groundwater. J. Contam. Hydrol. 2013, 154, 33. [Google Scholar] [CrossRef]
- Devi, R.R.; Umlong, I.M.; Das, B.; Borah, K.; Thakur, A.J.; Raul, P.K.; Banerjee, S.; Singh, L. Removal of iron and arsenic (III) from drinking water using iron oxide-coated sand and limestone. Appl. Water Sci. 2014, 4, 175–182. [Google Scholar] [CrossRef]
- Cederkvist, K.; Holm, P.E.; Jensen, M.B. Full-scale removal of arsenate and chromate from water using a limestone and ochreous sludge mixture as a low-cost sorbent material. Water Environ. Res. 2010, 82, 401–408. [Google Scholar] [CrossRef]
- NOM-127-SSA1-2021, Agua Para Uso y Consumo Humano. Límites Permisibles de la Calidad del Agua. DOF 02/05/2022. Available online: https://www.dof.gob.mx/nota_detalle_popup.php?codigo=5650705 (accessed on 2 May 2024).
- Ongley, L.K.; Armienta, M.A.; Heggeman, K.; Lathrop, A.S.; Mango, H.; Miller, W.; Pickelner, S. Arsenic removal from contaminated water by the Soyatal Formation, Zimapán Mining District, Mexico—A potential low-cost low-tech remediation system. Geochem. Explor. Environ. Anal. 2001, 1, 23–31. [Google Scholar] [CrossRef]
- Romero, F.M.; Armienta, M.A.; Carrillo-Chavez, A. Arsenic sorption by carbonate-rich aquifer material, a control on arsenic mobility at Zimapán, México. Arch. Environ. Contam. Toxicol. 2004, 47, 1–13. [Google Scholar] [CrossRef]
- Micete-Flores, S. Diseño de una planta piloto basada en adsorción en rocas calizas para el tratamiento del agua contaminada con arsénico del pozo Zimapán V en el municipio de Zimapán, Hidalgo. Master’s Thesis, Universidad Autónoma Metropolitana: Azcapotzalco, Mexico City, México, 31 March 2005. [Google Scholar]
- Manzo-Garrido, M. Remoción de Arsénico y Fluoruro de Aguas Subterráneas Naturalmente Contaminadas en Zimapán, Hidalgo Mediante Rocas Calizas. Bachelor’s Thesis, Facultad de Ingeniería, UNAM, Mexico City, México, 2 September 2019. [Google Scholar]
- Juárez-Aparicio, F.; Morales-Arredondo, J.I.; Armienta-Hernández, M.A. Simultaneous removal of fluoride and arsenic from drinking groundwater using limestones from Bajío Guanajuatense, Mexico. Arab. J. Geosci. 2024, 17, 109. [Google Scholar] [CrossRef]
- Solórzano-Ramos, D.E. Influencia de la Matriz Acuosa en la Remoción de Arsénico y Fluoruro. Bachelor’s Thesis, Facultad de Ciencias, UNAM, Mexico City, México, 17 November 2023. [Google Scholar]
- Sosa, A.; Armienta, M.A.; Aguayo, A.; Cruz, O. Evaluation of the influence of main groundwater ions on arsenic removal by limestones through column experiments. Sci. Total Environ. 2020, 727, 138459. [Google Scholar] [CrossRef]
- APHA; AWWA; WWF. Standard Methods for the Examination of Water and Wastewater; American Public Health Association, American Water Works Association, Association Water Environment Federation: Washington, DC, USA, 2025. [Google Scholar]
- Mamindy-Pajany, Y.; Hurel, C.; Marmier, N.; Roméo, M. Arsenic (V) adsorption from aqueous solution onto goethite, hematite, magnetite and zero-valent iron: Effects of pH, concentration and reversibility. Desalination 2011, 281, 93–99. [Google Scholar] [CrossRef]
- Fakhreddine, S.; Fendorf, S. The effect of porewater ionic composition on arsenate adsorption to clay minerals. Sci. Total Environ. 2021, 785, 147096. [Google Scholar] [CrossRef] [PubMed]
- Bharadwaj, K.; Isgor, O.B.; Weiss, W.J. Predicting sorption Isotherms from thermodynamic calculations. Cement 2025, 19, 100131. [Google Scholar] [CrossRef]
- Sosa-Islas, A.S.; Armienta-Hernández, M.A.; Loredo-Portales, R.; Aguayo, A.; Cruz, O. An identification of arsenic retention mechanisms in column filtration systems packed with limestone. Appl. Geochem. 2023, 156, 105762. [Google Scholar] [CrossRef]
- Alexandratos, V.G.; Elzinga, E.J.; Reeder, R.J. Arsenate Uptake by Calcite: Macroscopic and Spectroscopic Characterization of Adsorption and Incorporation Mechanisms. Geochim. Cosmochim. Acta 2007, 71, 4172–4187. [Google Scholar] [CrossRef]
- Pignatelli, I.; Kumar, A.; Field, K.G.; Wang, B.; Yu, Y.; Pape, Y.L.; Bauchy, M.; Sant, G. Direct Experimental Evidence for Differing Reactivity Alterations of Minerals following Irradiation: The Case of Calcite and Quartz. Sci. Rep. 2016, 6, 20155. [Google Scholar] [CrossRef]
- Chung, H.; Kim, W.; Jeongwon, P.; Cho, J.; Jeong, T.; Pyung-Kyu, P. Application of Langmuir and Freundlich Isotherms to Predict Adsorbate Removal Efficiency or Required Amount of Adsorbent. J. Ind. Eng. Chem. 2015, 28, 241–246. [Google Scholar] [CrossRef]
- Sosa, A.S. Aplicación de Rocas Calizas Para la Remediación de Acuíferos Contaminados. Master’s Thesis, Universidad Nacional Autónoma de México (UNAM), Mexico City, México, 2019. [Google Scholar]
- Sø, H.; Postma, D.; Jakobsen, R.; Larsen, F. Sorption and Desorption of Arsenate and Arsenite on Calcite. Geochim. Cosmochim. Acta 2008, 72, 5871–5884. [Google Scholar] [CrossRef]
- Yolcubal, I.; Akyol, N.H. Adsorption and Transport of Arsenate in Carbonate-Rich Soils: Coupled Effects of Nonlinear and Rate-Limited Sorption. Chemosphere 2008, 73, 1300–1307. [Google Scholar] [CrossRef]
- Juárez-Aparicio, F. Evaluación de Rocas Calizas del Bajío Guanajuatense en la Remoción de arsénico y Fluoruro en el Agua Subterránea. Master’s Thesis, Posgrado en Ciencias de la Tierra, UNAM, Mexico City, México, 2019. [Google Scholar]
- Goldberg, S. Competitive adsorption of arsenate and arsenite on oxides and clay minerals. Soil Sci. Soc. Am. J. 2002, 66, 413–421. [Google Scholar] [CrossRef]
- Labastida, I.; Armienta, M.A.; Lara, R.H.; Briones, R.; González, I.; Romero, F. Kinetic approach for the appropriate selection of indigenous limestones for acid mine drainage treatment with passive systems. Sci. Total Environ. 2019, 677, 404–417. [Google Scholar] [CrossRef] [PubMed]
- Juárez-Aguayo, A.D. Filtros Basados en Roca Caliza Proveniente de la región del Bajío, Gto., para la Remoción de Elementos Contaminantes como arsénico y Fluoruro en el Agua. Bachelor’s Thesis, Faculty of Chemistry, UNAM, Mexico City, México, 2024. [Google Scholar]
- Moreno-Rojo, L.R. Escalamiento Teórico de Filtros Basados en Roca Caliza para Arsénico a Planta Piloto. Bachelor’s Thesis, Faculty of Chemistry, UNAM, Mexico City, México, 2023. [Google Scholar]
Adsorbent: Inorganic Materials | As Concentration in the Solution (mg/L) | Adsorption Capacity (mg/g) | % of Removal |
---|---|---|---|
Iron oxide sulfate-modified sand | 0.5–3.5 | 0.13 | - |
Iron oxide-coated cement | 0.5–10.0 | 6.43 | - |
Mesoporous silica media | 0.13–1.33 mmol/L | 8.99 | - |
Activated alumina | 0.100–5.000 | 8 | |
Granular ferric hydroxide | 1.4 | - | |
Activated bauxsol-coated sand | 100 | 3.32 | 87 |
Clay sepiolite | 0.930–1.870 | 5.39 | |
Gibbsite | 10–1000 | 4.6 | |
Goethite | 10–1000 | 12.4 | |
Natural zeolites | - | 75 | |
Clinoptilolite, zeolites washed with 2 M HCl | - | 98 | |
Synthetic hydrotalcite | 400 | 105 | |
Acid mine drainage sludge (AMDS) | - | 19.7 | - |
Natural red earth | - | 12.2 | - |
Adsorbent: Organic Materials and Biochar | |||
Cellulose (bead) with Fe oxyhydroxide | 0.7–13.5 | 33.2 | |
Dried plant | 100–1000 | 3.64 | 91 |
Wheat straw | 1–28 | 3.8/8.0 | - |
Rice waste polish | 100 | 0.067/0.079 | - |
Bone char | 1.5 | 0.022 | 99.18 |
Pinewood biochar | 20 | 0.265 | |
Hematite modified biochar | 20 | 0.429 | |
Activated carbon from citrus lemon tree leaves | 52.91 | ||
Adsorbent: Nanomaterials | |||
Superparamagnetic ascorbic acid-coated Fe3O4 nanoparticles | 0.1 | 46/16 | |
Novel chitosan/PVA/zerovalent iron biopolymeric nanofibers | 200 | ||
Magnetite nanoparticles | 2 | 3.7 | |
Iron oxide-multiwalled carbon nanotube (Fe-MWCNT) | 13.5 | 0.097 | |
Ce supported on carbon nanotubes (CeO2-CNTs) | 65 | ||
Polymeric nanocomposites of iron oxide nanoparticles | 25 | 28.57 | 99 |
Sample | Calcite (CaCO3) | Quartz (SiO2) | Fluorite (CaF2) | Clays | Phyllosilicates | Hematite (Fe2O3) | Kaolinite | Smectite/Chlorite | Feldspars |
---|---|---|---|---|---|---|---|---|---|
KSS | 89% | 4% | 1% | - | 4% (micas) | - | - | - | 2% (traces) |
RC1701 | 66% | 29% | - | - | 5% (smectite/ chlorite) | - | - | - | - |
DD1706 | 38% | 36% | - | 16% (micas) | 8% (chlorite) | 2% (hematite) | - | - | - |
DD1705 | 58% | 26% | - | 8% (micas) | 4% (kaolinite) | - | 4% | 4% | - |
M1 | Non identified | Predominant | - | - | - | Identified (goethite) | - | - | - |
M2 | Predominant | Uncertain | - | - | - | Non identified | - | - | - |
M3 | Abundant | Abundant | - | - | - | Non identified | - | - | - |
Sample | SiO2 (%) | TiO2 (%) | Al2O3 (%) | Fe2O3 (%) | MnO (%) | MgO (%) | CaO (%) | Na2O (%) | K2O (%) | P2O5 (%) | LOI (%) |
---|---|---|---|---|---|---|---|---|---|---|---|
RC1701 | 16.147 | 0.094 | 1.751 | 0.882 | 0.050 | 0.449 | 44.721 | 0.044 | 0.263 | 0.078 | - |
DD1705 | 22.009 | 0.174 | 4.269 | 1.779 | 0.072 | 0.728 | 38.502 | 0.051 | 1.150 | 0.105 | - |
DD1706 | 35.392 | 0.208 | 4.693 | 2.515 | 0.133 | 0.793 | 30.192 | 0.043 | 0.918 | 0.158 | - |
KSS | 7.814 | 0.091 | 1.672 | 0.650 | 0.015 | 0.473 | 48.671 | 0.168 | 0.292 | 0.053 | - |
M1 | 46.560 | 0.650 | 14.590 | 17.520 | 0.100 | 1.760 | 8.470 | 0.450 | 8.570 | 0.189 | 6.7 |
M2 | 6.910 | 0.091 | 1.680 | 0.570 | 0.014 | 0.340 | 50.890 | 0.204 | 0.200 | 0.038 | 39.9 |
M3 | 28.210 | 0.305 | 6.390 | 1.850 | 0.013 | 0.890 | 33.220 | 0.184 | 1.400 | 0.088 | 28.4 |
Sample | Rb | Sr | Ba | Y | Zr | Nb | V | Cr | Co | Ni | Cu | Zn | Th | Pb |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RC1701 | 10 | 430 | 200 | 14 | 14 | 2 | 34 | 62 | 4 | 16 | 27 | 37 | <2 | 6 |
DD1705 | 30 | 264 | 438 | 23 | 30 | 5 | 68 | 52 | 9 | 24 | 27 | 45 | 4 | 7 |
DD1706 | 29 | 195 | 373 | 28 | 36 | 5 | 115 | 69 | 13 | 41 | 35 | 159 | 4 | 7 |
KSS | 12 | 543 | 220 | 6 | 15 | <1 | 29 | <3 | 5 | 9 | 10 | 19 | 3 | 9 |
M1 | 269 | 395 | 2111 | 34 | 187 | 4 | 261 | <2 | 7 | <2 | 59 | 775 | 212 | 212 |
M2 | 12 | 257 | 86 | 2 | 30 | 1 | 18 | <2 | 6 | <2 | <3 | 13 | 8 | 8 |
M3 | 36 | 337 | 366 | 7 | 88 | 1 | 103 | 23 | 10 | 14 | <3 | 336 | 8 | 8 |
Sample | Grain Size (mm) | Specific Surface Area (m2/g) | Average Pore Size (Å) |
---|---|---|---|
RC1701 | 0.5–1.4 | 0.73 | 261.4 |
RC1701 | <0.05 | 2.34 | 306.0 |
DD1706 | <0.05 | 4.99 | 233.0 |
DD1705 | <0.05 | 4.73 | 263.3 |
KSS01 | <0.062 | 10.79 | 351.2 |
KSS02 | 0.062–0.125 | 10.21 | 362.7 |
KSS03 | 0.125–0.292 | 9.93 | 344.4 |
KSS04 | 0.292–0.500 | 10.52 | 345.6 |
Site | Ehcal (mV) | pH | EC (μS/cm) | T (°C) | HCO3− (mg/L) | SO42− (mg/L) | SiO2 (mg/L) | Cl− (mg/L) | Na+ (mg/L) | K+ (mg/L) | Ca2+ (mg/L) | Mg2+ (mg/L) | As (mg/L) | F− (mg/L) | CO32− (mg/L) | Fe (mg/L) | IS x10−3 | IB (%) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Axocopan | nm | 5.57 | 661 | 21.3 | 409.0 | 39.0 | 95.3 | 18.3 | 52.6 | 5.3 | 33.0 | 44.0 | <0.002 | 0.50 | 0 | nd | 10.30 | −2.34 |
Atlimeyaya | nm | 6.09 | 184 | 16.6 | 98.0 | 7.0 | 64.2 | 3.2 | 15.3 | 2.2 | 10.0 | 10.0 | <0.002 | 0.55 | 0 | nd | 2.64 | 4.78 |
Zimapán V | 107.0 | 7.26 | 495 | 28.9 | 256.2 | 51.7 | 15.4 | 4.8 | 12.4 | 1.5 | 79.4 | 16.2 | 0.456 | 0.68 | 0 | nd | 8.19 | 4.32 |
ZIM1801 (MUHI) | 142.0 | 7.41 | 585 | 27.2 | 290.0 | 66.5 | 15.8 | 6.4 | 49.3 | 4.4 | 55.2 | 19.1 | 1.297 | 2.26 | 0 | 0.43 | 8.67 | 2.02 |
ZIM1804 (Pb-18) | 135.0 | 6.81 | 522 | 24.4 | 267.6 | 62.2 | 14.7 | 9.0 | 10.6 | 1.6 | 84.3 | 16.2 | 0.400 | 0.65 | 0 | 0.29 | 8.69 | 1.03 |
Praderas de la Venta (PV03) | 128.7 | 8.18 | 621 | 39.5 | 247.0 | 27.1 | 136.3 | 30.9 | 129.8 | 10.0 | 4.6 | 1.4 | 0.073 | 7.20 | 25.7 | nm | 6.29 | 6.50 |
San José de Merino (SJMer) | 88.8 | 7.76 | 473 | 45.7 | 254.7 | 20.0 | 74.2 | 10.6 | 94.5 | 9.9 | 10.6 | 5.5 | 0.039 | 2.8 | 9.80 | nm | 5.69 | 4.56 |
LOD | - | - | - | - | 0.3 | 4.0 | - | 0.04 | 1.0 | 0.5 | 0.8 | 0.8 | 0.001 | 0.1 | - | 0.05 |
1 g of Rock | 5 g of Rock | 10 g of Rock | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Time (h) | As (mg/L) | SD | Removal (%) | Time (h) | As (mg/L) | SD | Removal (%) | Time (h) | As (mg/L) | SD | Removal (%) |
0 | 0.456 | 0.0009 | - | 0 | 0.456 | 0.0009 | - | 0 | 0.456 | 0.0009 | - |
1 | 0.0452 | 0.0054 | 90.0 | 1 | 0.026 | 0.0042 | 94.3 | 1 | 0.016 | 0.0028 | 96.5 |
3 | 0.052 | 0.0007 | 88.6 | 3 | 0.0246 | 0.0011 | 94.6 | 3 | 0.015 | 0.0006 | 96.71 |
5 | 0.0481 | 0.0098 | 89.4 | 5 | 0.0183 | 0.003 | 96.0 | 5 | 0.014 | 0.0004 | 97.0 |
Synthetic Solutions | Groundwater | ||||||
---|---|---|---|---|---|---|---|
Sample Rock Used | Grain Size (mm) | Initial Concentrations (mg/L) | Highest Removal Efficiency (%) | Sample Rock Used | Grain Size (mm) | Initial Concentrations (mg/L) | Highest Removal Efficiency (%) |
RC1701 | <0.05 | 0.074 | 95.39 | RC1701 | <0.05 | 0.076 | 50.27 |
RC1701 | <0.05 | 0.039 | 94.71 | RC1701 | <0.05 | 0.039 | 56.67 |
RC1701 | 0.50–1.41 | 0.074 | 85.16 | RC1701 | 0.50–1.41 | 0.076 | 35.62 |
RC1701 | 0.50–1.41 | 0.039 | 88.17 | RC1701 | 0.50–1.41 | 0.039 | 41.67 |
DD1706 | <0.05 | 0.074 | 97.06 | DD1706 | <0.05 | 0.076 | 46.58 |
DD1706 | <0.05 | 0.039 | 97.80 | DD1706 | <0.05 | 0.039 | 52.08 |
DD1706 | 0.50–1.41 | 0.074 | 93.08 | DD1706 | 0.50–1.41 | 0.076 | 19.18 |
DD1706 | 0.50–1.41 | 0.039 | 93.29 | DD1706 | 0.50–1.41 | 0.039 | 25.00 |
Sample | Asinitial (mg/L) | Asfinal (mg/L) | As Removal (mg/L) | Particle Size | Removal (%) |
---|---|---|---|---|---|
Axocopan | 1.500 | 0.366 | 1.134 | <0.5 mm | 75.6 |
Atlimeyaya | 1.399 | 0.241 | 1.158 | <0.5 mm | 82.8 |
ZIM1801 (MUHI) | 1.267 | 0.261 | 1.006 | <0.125 mm | 79.4 |
ZIM1804 (Pb-18) | 0.611 | 0.078 | 0.533 | <0.125 mm | 87.2 |
Rock | Particle Size (mm) | Maximum Removal (%) Synthetic Solutions | Maximum Removal (%) Groundwater | Mineralogy CaCO3 (%) | Mineralogy Fe2O3 (%) | Surface Area (m2/g) | Average Pore Volume (Å) |
---|---|---|---|---|---|---|---|
RC1701 | <0.05 | 95.39 (0.074 mg/L As) | 50.27 (0.076 mg/L As) | 79.83 | 0.882 | 2.34 | 306.0 |
RC1701 | 0.5–1.41 | 85.16 (0.074 mg/L As) | 35.6 (0.076 mg/L As) | ||||
DD1706 | <0.05 | 97.80 (0.074 mg/L As) | 45.58 (0.076 mg/L As) | 53.9 | 2.515 | 4.99 | 233.0 |
DD1706 | 0.5–1.41 | 83.29 (0.074 mg/L As) | 19.18 (0.076 mg/L As) | ||||
KSS | <0.5 | 87.7 (0.40 mg/L As) | 86.9 | 0.650 | 10.79 | 351.2 | |
KSS | <0.125 | 93.29 (0.5 mg/L As) | 87.2 (0.611 mg/L As) | 10.50 | 357.0 | ||
KSS | 0.125–0.5 | 91.61 (0.5 mg/L As) | 81.4 (0.611 mg/L AS) | 10.23 | 345.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Armienta-Hernández, M.A.; Sosa-Islas, A.S.; Morales-Arredondo, J.I.; Manzo-Garrido, M.; Solórzano, D.E.; Aguayo, A.; Cruz, O.; Neri, O. Evaluation of the Use of Limestones for the Removal of Arsenic from Groundwater. Water 2025, 17, 1687. https://doi.org/10.3390/w17111687
Armienta-Hernández MA, Sosa-Islas AS, Morales-Arredondo JI, Manzo-Garrido M, Solórzano DE, Aguayo A, Cruz O, Neri O. Evaluation of the Use of Limestones for the Removal of Arsenic from Groundwater. Water. 2025; 17(11):1687. https://doi.org/10.3390/w17111687
Chicago/Turabian StyleArmienta-Hernández, Ma. Aurora, A. Salvador Sosa-Islas, J. Iván Morales-Arredondo, Maribel Manzo-Garrido, D. Ernesto Solórzano, Alejandra Aguayo, Olivia Cruz, and Omar Neri. 2025. "Evaluation of the Use of Limestones for the Removal of Arsenic from Groundwater" Water 17, no. 11: 1687. https://doi.org/10.3390/w17111687
APA StyleArmienta-Hernández, M. A., Sosa-Islas, A. S., Morales-Arredondo, J. I., Manzo-Garrido, M., Solórzano, D. E., Aguayo, A., Cruz, O., & Neri, O. (2025). Evaluation of the Use of Limestones for the Removal of Arsenic from Groundwater. Water, 17(11), 1687. https://doi.org/10.3390/w17111687