Non-Darcy Seepage Models of Broken Rock Mass Under Changed Hydraulic and Porous Structure
Abstract
:1. Introduction
2. Tests
2.1. Test Equipment
2.2. Sample Preparations
2.3. Test Procedures
3. Results
3.1. Forchheimer’s Law
3.2. Relationship Between Flow Rate and Hydraulic Gradient
3.3. Results of Coefficients A and B of Forchheimer’s Law
3.4. Nonlinear Seepage Regime Determination with Fo
3.5. Results of Non-Darcy Equivalent Hydraulic Conductivity
4. Modified Non-Darcy Seepage Model
4.1. Modified Forchheimer’s Law
4.2. Modified Darcy’s Law
4.3. Verification and Limitations Remarks
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Xiao-Lei, L.; Xin-Lei, L.; Yue, W.; Wei-Hang, P.; Xuan, F.; Zheng-Zheng, C.; Rui-Fu, L.; Xin, L. The Seepage Evolution Mechanism of Variable Mass of Broken Rock in Karst Collapse Column under the Influence of Mining Stress. Geofluids 2023, 2023, 7256937. [Google Scholar] [CrossRef]
- Xian, M.; Xu, Z.; Chen, B. Numerical investigation of variable-mass seepage mechanism of broken rock mass in faults. Comput. Geotech. 2023, 160, 105527. [Google Scholar] [CrossRef]
- Kan, Z.; Zhang, L.; Li, M.; Yuan, X.; Huang, M.; Sracek, O. Investigation of Seepage Law in Broken Coal and Rock Mass under Different Loading and Unloading Cycles. Geofluids 2021, 2021, 8127250. [Google Scholar] [CrossRef]
- Hao, D.Y.; Tu, S.H.; Zhang, L.; Zhao, H.B.; Xu, S.K. Experimental study on characteristics of gas seepage in broken coal and rock. Energy Sci. Eng. 2024, 12, 4737–4752. [Google Scholar] [CrossRef]
- Wang, L.; Wu, Y.; Zhu, X.; Li, P.; Cao, Z.; Yang, H.; Ma, D. Mechanical Constitutive and Seepage Theoretical Model of Water Storage Media Based on Fractional Derivative. Geofluids 2022, 2022, 8553646. [Google Scholar] [CrossRef]
- Cao, Z.; Xie, Q.; Xu, X.; Sun, W.; Fumagalli, A.; Fu, X. Mass-loss effects on the non-Darcy seepage characteristics of broken rock mass with different clay contents. Geomech. Geophys. Geo-Energy Geo-Resour. 2023, 9, 32. [Google Scholar] [CrossRef]
- Li, Q.; Ma, D.; Zhang, Y.; Liu, Y.; Ma, Y.; Hu, D. Insights into Controlling Factors of Pore Structure and Hydraulic Properties of Broken Rock Mass in a Geothermal Reservoir. Lithosphere 2022, 2021, 3887832. [Google Scholar] [CrossRef]
- Meng, F.; Liu, W.; Pu, H.; Li, M.; Chen, Y. The Influence of Grain Size Gradation on Deformation and the Void Structure Evolution Mechanism of Broken Rock Mass in the Goaf. Appl. Sci. 2024, 14, 6764. [Google Scholar] [CrossRef]
- Zhang, B.; He, Q.; Lin, Z.; Li, Z. Experimental study on the flow behaviour of water-sand mixtures in fractured rock specimens. Int. J. Min. Sci. Technol. 2021, 31, 377–385. [Google Scholar] [CrossRef]
- Cao, C.; Xu, Z.G.; Chai, J.R.; Li, Y.Q. Radial fluid flow regime in a single fracture under high hydraulic pressure during shear process. J. Hydrol. 2019, 579, 124142. [Google Scholar] [CrossRef]
- Feng, S.X.; Chai, J.R.; Xu, Z.G.; Qin, Y.; Li, Y.L. Test Study on the Suffusion Process of Sand-Rock Mixtures by NMR Systems. Geotech. Test. J. 2020, 43, 1286–1299. [Google Scholar] [CrossRef]
- Romano, V.; Bigi, S.; Carnevale, F.; Hyman, J.D.; Karra, S.; Valocchi, A.J.; Tartarello, M.C.; Battaglia, M. Hydraulic characterization of a fault zone from fracture distribution. J. Struct. Geol. 2020, 135, 104036. [Google Scholar] [CrossRef]
- Wang, M.; Yang, W.; Zhou, Z.; Yang, J.; Yang, F.; Sheng, S. Experimental study on fractal characteristics of fault filling medium in the tunnel and relationship between fractal dimension and permeability coefficient. Geomech. Geophys. Geo-Energy Geo-Resour. 2021, 8, 6. [Google Scholar] [CrossRef]
- Rutqvist, J.; Rinaldi, A.P.; Cappa, F.; Moridis, G.J. Modeling of fault activation and seismicity by injection directly into a fault zone associated with hydraulic fracturing of shale-gas reservoirs. J. Pet. Sci. Eng. 2015, 127, 377–386. [Google Scholar] [CrossRef]
- Banks, E.W.; Hatch, M.; Smith, S.; Underschultz, J.; Lamontagne, S.; Suckow, A.; Mallants, D. Multi-tracer and hydrogeophysical investigation of the hydraulic connectivity between coal seam gas formations, shallow groundwater and stream network in a faulted sedimentary basin. J. Hydrol. 2019, 578, 124132. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, D.; Fang, Q.; Xiong, L.; Yu, L.; Zhou, M. Analytical solutions of non-Darcy seepage of grouted subsea tunnels. Tunn. Undergr. Space Technol. 2020, 96, 103182. [Google Scholar] [CrossRef]
- Cao, C.; Xu, Z.G.; Chai, J.R.; Qin, Y.; Cao, J. Determination method for influence zone of pumped storage underground cavern and drainage system. J. Hydrol. 2021, 595, 126018. [Google Scholar] [CrossRef]
- Ma, D.; Duan, H.Y.; Zhang, J.X.; Liu, X.W.; Li, Z.H. Numerical Simulation of Water-Silt Inrush Hazard of Fault Rock: A Three-Phase Flow Model. Rock Mech. Rock Eng. 2022, 55, 5163–5182. [Google Scholar] [CrossRef]
- Dejam, M.; Hassanzadeh, H.; Chen, Z. Pre-Darcy flow in porous media. Water Resour. Res. 2017, 53, 8187–8210. [Google Scholar] [CrossRef]
- Darcy, H. Les Fontaines Publiques de la Ville de Dijon; Victor Dalmont: Paris, France, 1856; pp. 304–311. [Google Scholar]
- Bear, J. Dynamics of Fluids in Porous Media; American Elsevier Publishing Company: New York, NY, USA, 1972. [Google Scholar]
- Kececioglu, I.; Jiang, Y. Flow through porous media of packed spheres saturated with water. J. Fluids Eng. 1994, 116, 164–170. [Google Scholar] [CrossRef]
- Dejam, M.; Hassanzadeh, H.; Chen, Z. Shear dispersion in a fracture with porous walls. Adv. Water Resour. 2014, 74, 14–25. [Google Scholar] [CrossRef]
- Kundu, P.; Kumar, V.; Mishra, I.M. Experimental and numerical investigation of fluid flow hydrodynamics in porous media: Characterization of pre-Darcy, Darcy and non-Darcy flow regimes. Powder Technol. 2016, 303, 278–291. [Google Scholar] [CrossRef]
- Arshadi, M.; Khishvand, M.; Aghaei, A.; Piri, M.; Al-Muntasheri, G.A. Pore-scale experimental investigation of two-phase flow through fractured porous media. Water Resour. Res. 2018, 54, 3602–3631. [Google Scholar] [CrossRef]
- Huang, T.; Du, P.; Peng, X.; Wang, P.; Zou, G. Pressure drop and fractal non-Darcy coefficient model for fluid flow through porous media. J. Pet. Sci. Eng. 2020, 184, 106579. [Google Scholar] [CrossRef]
- Muljadi, B.P.; Blunt, M.J.; Raeini, A.Q.; Bijeljic, B. The impact of porous media heterogeneity on non-Darcy flow behaviour from pore-scale simulation. Adv. Water Resour. 2016, 95, 329–340. [Google Scholar] [CrossRef]
- Javadi, M.; Sharifzadeh, M.; Shahriar, K.; Mitani, Y. Critical Reynolds number for nonlinear flow through rough-walled fractures: The role of shear processes. Water Resour. Res. 2014, 50, 1789–1804. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, X.L.; Wang, E.Z. Quantitative Evaluation of the Onset and Evolution for the Non-Darcy Behavior of the Partially Filled Rough Fracture. Water Resour. Res. 2024, 60, 25. [Google Scholar] [CrossRef]
- Macini, P.; Mesini, E.; Viola, R. Laboratory measurements of non-Darcy flow coefficients in natural and artificial unconsolidated porous media. J. Pet. Sci. Eng. 2011, 77, 365–374. [Google Scholar] [CrossRef]
- Sukop, M.C.; Huang, H.; Alvarez, P.; Variano, E.A.; Cunningham, K.J. Evaluation of permeability and non-Darcy flow in vuggy macroporous limestone aquifer samples with lattice Boltzmann methods. Water Resour. Res. 2013, 49, 216–230. [Google Scholar] [CrossRef]
- Zhou, J.Q.; Chen, Y.F.; Wang, L.; Cardenas, M.B. Universal relationship between viscous and inertial permeability of geologic porous media. Geophys. Res. Lett. 2019, 46, 1441–1448. [Google Scholar] [CrossRef]
- Chen, Y.F.; Hu, S.H.; Hu, R.; Zhou, C.B. Estimating hydraulic conductivity of fractured rocks from high-pressure packer tests with an Izbash’s law-based empirical model. Water Resour. Res. 2015, 51, 2096–2118. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Indraratna, B. The role of particle shape on hydraulic conductivity of granular soils captured through Kozeny-Carman approach. Géotech. Lett. 2020, 10, 398–403. [Google Scholar] [CrossRef]
- Rehman, M.; Hafeez, M.B.; Krawczuk, M. A Comprehensive Review: Applications of the Kozeny–Carman Model in Engineering with Permeability Dynamics. Arch. Comput. Methods Eng. 2024, 31, 3843–3855. [Google Scholar] [CrossRef]
- Skjetne, E.; Auriault, J.L. New insights on steady, non-linear flow in porous media. Eur. J. Mech. B-Fluids. 1999, 18, 131–145. [Google Scholar] [CrossRef]
- Liu, M.M.; Chen, Y.F.; Hong, J.M.; Zhou, C.B. A generalized non-Darcian radial flow model for constant rate test. Water Resour. Res. 2016, 52, 9325–9343. [Google Scholar] [CrossRef]
- Zhou, H.W.; Yang, S. Fractional derivative approach to non-Darcian flow in porous media. J. Hydrol. 2018, 566, 910–918. [Google Scholar] [CrossRef]
- Zimmerman, R.W.; AL-Yaarubi, A.; Pain, C.C.; Grattoni, C.A. Non-linear regimes of fluid flow in rock fractures. Int. J. Rock Mech. Min. Sci. 2004, 41, 163–169. [Google Scholar] [CrossRef]
- Xiong, X.; Li, B.; Jiang, Y.; Koyama, T.; Zhang, C. Experimental and numerical study of the geometrical and hydraulic characteristics of a single rock fracture during shear. Int. J. Rock Mech. Min. Sci. 2011, 48, 1292–1302. [Google Scholar] [CrossRef]
- Li, B.; Liu, R.; Jiang, Y. Influences of hydraulic gradient, surface roughness, intersecting angle, and scale effect on nonlinear flow behavior at single fracture intersections. J. Hydrol. 2016, 538, 440–453. [Google Scholar] [CrossRef]
- Zhang, Y.; Chai, J.R.; Cao, C.; Shang, T. Combined influences of shear displacement, roughness, and pressure gradient on nonlinear flow in self-affine fractures. J. Pet. Sci. Eng. 2021, 198, 108229. [Google Scholar] [CrossRef]
- ASTM Standard C192/C192M-13a; Standard Practice for Making and Curing Concrete Test Specimens in the Lab. ASTM International: West Conshohocken, PA, USA, 2013.
- Wu, J.; Feng, M.; Mao, X.; Xu, J.; Zhang, W.; Ni, X.; Han, G. Particle size distribution of aggregate effects on mechanical and structural properties of cemented rockfill: Experiments and modeling. Constr. Build. Mater. 2018, 193, 295–311. [Google Scholar] [CrossRef]
- Feng, M.; Wu, J.; Ma, D.; Ni, X.; Yu, B.; Chen, Z. Experimental investigation on seepage property of saturated broken red sandstone of continuous gradation. Bull. Eng. Geol. Environ. 2018, 77, 1167–1178. [Google Scholar] [CrossRef]
- Talbot, A.N.; Richart, F.E. The Strength of Concrete, Its Relation to the Cement Aggregates and Water. University of Illinois at Urbana Champaign, College of Engineering: Champaign, IL, USA, 1923; pp. 25–30. [Google Scholar]
- Ma, H.; Ruth, D. The microscopic analysis of high Forchheimer number flow in porous media. Transp. Porous Media 1993, 13, 139–160. [Google Scholar] [CrossRef]
- Moutsopoulos, K.N.; Papaspyros, J.; Tsihrintzis, V.A. Experimental investigation of inertial flow processes in porous media. J. Hydrol. 2009, 374, 242–254. [Google Scholar] [CrossRef]
- Mohammad, S.; Salehi, S. Non-darcy flow of water through a packed column test. Transp. Porous Media. 2014, 101, 215–227. [Google Scholar] [CrossRef]
- Xu, Z.; Cao, C.; Chai, J.; Li, Y.; Li, L. Study on non-Darcy seepage characteristic and model of the broken rock mass of fault zone. Chin. J. Rock Mech. Eng. 2023, 42, 4099–4108. [Google Scholar] [CrossRef]
η | Masses of Sandstone Particles with Different Size Intervals (g) | Particle Standard Deviation | Particle Variation Coefficient | ||||||
---|---|---|---|---|---|---|---|---|---|
2.5 mm~5 mm | 5 mm~8 mm | 8 mm~10 mm | 10 mm~12 mm | 12 mm~15 mm | 15 mm~20 mm | Total | |||
0.2 | 909 | 90 | 46 | 39 | 49 | 67 | 1200 | 6.47 | 1.16 |
0.4 | 689 | 143 | 78 | 69 | 91 | 130 | 1200 | 5.49 | 0.78 |
0.6 | 522 | 170 | 99 | 92 | 127 | 190 | 1200 | 4.87 | 0.58 |
0.8 | 369 | 181 | 113 | 108 | 156 | 246 | 1200 | 4.59 | 0.49 |
1 | 300 | 180 | 120 | 120 | 180 | 300 | 1200 | 4.50 | 0.44 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, C.; Zhang, Z.; Xu, Z.; Chai, J.; Shi, Y.; Li, N. Non-Darcy Seepage Models of Broken Rock Mass Under Changed Hydraulic and Porous Structure. Water 2025, 17, 1676. https://doi.org/10.3390/w17111676
Cao C, Zhang Z, Xu Z, Chai J, Shi Y, Li N. Non-Darcy Seepage Models of Broken Rock Mass Under Changed Hydraulic and Porous Structure. Water. 2025; 17(11):1676. https://doi.org/10.3390/w17111676
Chicago/Turabian StyleCao, Cheng, Zhihua Zhang, Zengguang Xu, Junrui Chai, Yuan Shi, and Ning Li. 2025. "Non-Darcy Seepage Models of Broken Rock Mass Under Changed Hydraulic and Porous Structure" Water 17, no. 11: 1676. https://doi.org/10.3390/w17111676
APA StyleCao, C., Zhang, Z., Xu, Z., Chai, J., Shi, Y., & Li, N. (2025). Non-Darcy Seepage Models of Broken Rock Mass Under Changed Hydraulic and Porous Structure. Water, 17(11), 1676. https://doi.org/10.3390/w17111676