Bioaccumulation and Health Risk Assessment of Heavy Metals in Labeo rohita and Mystus seenghala from Jhelum River, Punjab, Pakistan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling of Fish
2.3. Preparation of Samples
2.4. Heavy Metal Analysis
2.5. Human Health Risk Assessment
2.5.1. Consumption Data
2.5.2. Estimated Daily Intake of Heavy Metals
2.5.3. Target Hazard Quotient (THQ)
2.5.4. Hazard Index (HI)
2.5.5. Daily Metal Intake/Health Risk Index (HRI)
2.5.6. Target Carcinogenic Risk (TR)
2.5.7. Metal Pollution Index (MPI)
2.6. Statistical Analysis
3. Results
3.1. Heavy Metal Concentration
3.2. Comparison of the Health Risks Associated with the Consumption of Labeo rohita and Mystus seenghala
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ali, H.; Khan, E.; Ilahi, I. Environmental chemistry and ecotoxicology of hazardous heavy metals: Environmental persistence, toxicity, and bioaccumulation. J. Chem. 2019, 2019, 6730305. [Google Scholar] [CrossRef]
- Ali, M.M.; Hossain, D.; Al-Imran, A.; Khan, M.; Begum, M.; Osman, M. Environmental pollution with heavy metals: A public health concern. In Heavy Metals-Their Environmental Impacts and Mitigation; IntechOpen: London, UK, 2021; pp. 771–783. [Google Scholar]
- Banaee, M.; Mohammadipour, S.; Madhani, S. Effects of sublethal concentrations of permethrin on bioaccumulation of cadmium in zebra cichlid (Cichlasoma nigrofasciatum). Toxicol. Environ. Chem. 2015, 97, 200–207. [Google Scholar] [CrossRef]
- Gholamhosseini, A.; Banaee, M.; Sinha, R.; Zeidi, A.; Faggio, C. Bio-concentration of heavy metals in marine crustaceans’ hemolymph: Insights from Oman Sea, Iran. Int. J. Environ. Sci. Technol. 2024. [Google Scholar] [CrossRef]
- Kapoor, D.; Singh, M.P. Heavy metal contamination in water and its possible sources. In Heavy Metals in the Environment; Elsevier: Amsterdam, The Netherlands, 2021; pp. 179–189. [Google Scholar]
- Banaee, M.; Di Paola, D.; Cuzzocrea, S.; Cordaro, M.; Faggio, C. Biomarkers in Aquatic Ecotoxicology: Understanding the Effects of Xenobiotics on the Health of Aquatic Organisms. In Biochemical and Physiological Response During Oxidative Stress—From Invertebrates to Vertebrates; Marika, C., Roberta, F., Rosanna, D.P., Eds.; IntechOpen: London, UK, 2024; pp. 1–24. [Google Scholar] [CrossRef]
- Banaee, M.; Zeidi, A.; Mikušková, N.; Faggio, C. Assessing metal toxicity on crustaceans in aquatic ecosystems: A comprehensive review. Biol. Trace Elem. Res. 2024. [Google Scholar] [CrossRef]
- Impellitteri, F.; Curpăn, A.-S.; Plăvan, G.; Ciobica, A.; Faggio, C. Hemocytes: A useful tool for assessing the toxicity of microplastics, heavy metals, and pesticides on aquatic invertebrates. Int. J. Environ. Res. Public Health 2022, 19, 16830. [Google Scholar] [CrossRef] [PubMed]
- Hedayatzadeh, F.; Ildoromi, A.; Hassanzadeh, N.; Bahramifar, N.; Banaee, M. Comprehensive monitoring of contamination and ecological-health risk assessment of potentially harmful elements in surface water of Maroon–Jarahi sub-basin of the Persian Gulf, Iran. Environ. Geochem. Health 2024, 46, 411. [Google Scholar] [CrossRef]
- Al Naggar, Y.; Khalil, M.S.; Ghorab, M.A. Environmental pollution by heavy metals in the aquatic ecosystems of Egypt. Open Acc. J. Toxicol 2018, 3, 555603. [Google Scholar]
- Baby, J.; Raj, J.S.; Biby, E.T.; Sankarganesh, P.; Jeevitha, M.; Ajisha, S.; Rajan, S.S. Toxic effect of heavy metals on aquatic environment. Int. J. Biol. Chem. Sci. 2010, 4, 939–952. [Google Scholar] [CrossRef]
- Gholamhosseini, A.; Shiry, N.; Soltanian, S.; Banaee, M. Bioaccumulation of metals in marine fish species captured from the northern shores of the Gulf of Oman, Iran. Reg. Stud. Mar. Sci. 2021, 41, 101599. [Google Scholar] [CrossRef]
- Merola, C.; Bisegna, A.; Angelozzi, G.; Conte, A.; Abete, M.C.; Stella, C.; Pederiva, S.; Faggio, C.; Riganelli, N.; Perugini, M. Study of heavy metals pollution and vitellogenin levels in brown trout (Salmo trutta trutta) wild fish populations. Appl. Sci. 2021, 11, 4965. [Google Scholar] [CrossRef]
- Shahjahan, M.; Taslima, K.; Rahman, M.S.; Al-Emran, M.; Alam, S.I.; Faggio, C. Effects of heavy metals on fish physiology—A review. Chemosphere 2022, 300, 134519. [Google Scholar] [CrossRef] [PubMed]
- Shiry, N.; Derakhshesh, N.; Gholamhosseini, A.; Pouladi, M.; Faggio, C. Heavy metal concentrations in Cynoglossus arel (Bloch & Schneider, 1801) and sediment in the Chabahar Bay, Iran. Int. J. Environ. Res. 2021, 15, 773–784. [Google Scholar]
- Obiero, K.; Meulenbroek, P.; Drexler, S.; Dagne, A.; Akoll, P.; Odong, R.; Kaunda-Arara, B.; Waidbacher, H. The contribution of fish to food and nutrition security in Eastern Africa: Emerging trends and future outlooks. Sustainability 2019, 11, 1636. [Google Scholar] [CrossRef]
- Kwaansa-Ansah, E.E.; Nti, S.O.; Opoku, F. Heavy metals concentration and human health risk assessment in seven commercial fish species from Asafo Market, Ghana. Food Sci. Biotechnol. 2019, 28, 569–579. [Google Scholar] [CrossRef]
- Tuzen, M. Toxic and essential trace elemental contents in fish species from the Black Sea, Turkey. Food Chem. Toxicol. 2009, 47, 1785–1790. [Google Scholar] [CrossRef]
- Prabakaran, K.; Sompongchaiyakul, P.; Bureekul, S.; Wang, X.; Charoenpong, C. Heavy metal bioaccumulation and risk assessment in fishery resources from the Gulf of Thailand. Mar. Pollut. Bull. 2024, 198, 115864. [Google Scholar] [CrossRef] [PubMed]
- Blankson, E.R.; Ohene-Obeng, N.K.; Awuah, B.A.; Oduro, D.; Ewool, J.; Gbogbo, F. Heavy metal bioaccumulation in highly consumed pelagic and benthic fish and associated health risk. Biol. Trace Elem. Res. 2024, 202, 3781–3788. [Google Scholar] [CrossRef]
- Ali, M.M.; Kubra, K.; Alam, E.; Mondol, A.H.; Akhtar, S.; Islam, M.S.; Karim, E.; Ahmed, A.S.; Siddique, M.A.B.; Malafaia, G. Bioaccumulation and sources of metal (loid) s in fish species from a subtropical river in Bangladesh: A public health concern. Environ. Sci. Pollut. Res. 2024, 31, 2343–2359. [Google Scholar] [CrossRef]
- Rani, V.; Vilvest, J.; Yagoo, A. Bioaccumulation of heavy metals in commercial fishes from Adyar estuary (Mugil cephalus and Megalops cyprinoides). Reg. Stud. Mar. Sci. 2024, 74, 103512. [Google Scholar] [CrossRef]
- Hashim, T.; Masood, Z.; Alvi, S.; Gul, J.; Khan, W.; Ahmed, D.; Jamil, J.; Ali, W.; Swelum, A.A. Assessment and bioaccumulation of heavy metal contaminants in Golden Mahseer (Tor putitora Hamilton, 1822). Sci. Total Environ. 2024, 951, 175719. [Google Scholar] [CrossRef]
- Köse, E. The Bioaccumulation of Heavy Metals in the Water and Tissues of Invasive Fish Carassius gibelio (Bloch, 1782) and Non-carcinogenic Health Risk Assessment from Meriç Delta Wetland, Türkiye. Biological Trace Element Research 2024. [Google Scholar] [CrossRef] [PubMed]
- Ray, S.; Vashishth, R. From Water to Plate: Reviewing the Bioaccumulation of Heavy Metals in Fish and Unraveling Human Health Risks in the Food Chain. Emerg. Contam. 2024, 10, 100358. [Google Scholar] [CrossRef]
- Habib, S.S.; Naz, S.; Fazio, F.; Cravana, C.; Ullah, M.; Rind, K.H.; Attaullah, S.; Filiciotto, F.; Khayyam, K. Assessment and bioaccumulation of heavy metals in water, fish (wild and farmed) and associated human health risk. Biol. Trace Elem. Res. 2024, 202, 725–735. [Google Scholar] [CrossRef] [PubMed]
- Bagheri, S.; Gholamhosseini, A.; Hoseinifar, S.H.; Banaee, M. Investigation of the effects of heavy metals (copper, cobalt, manganese, selenium, and zinc) on fish immune systems: An overview. Ann. Anim. Sci. 2024. [Google Scholar] [CrossRef]
- Ibrahim, A.T.A.; Banaee, M.; Sureda, A. Selenium protection against mercury toxicity on the male reproductive system of Clarias gariepinus. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2019, 225, 108583. [Google Scholar] [CrossRef]
- Ibrahim, A.T.A.; Banaee, M.; Sureda, A. Genotoxicity, oxidative stress, and biochemical biomarkers of exposure to green synthesized cadmium nanoparticles in Oreochromis niloticus (L.). Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2021, 242, 108942. [Google Scholar] [CrossRef]
- Ali, H.; Khan, E. Assessment of potentially toxic heavy metals and health risk in water, sediments, and different fish species of River Kabul, Pakistan. Hum. Ecol. Risk Assess. 2018, 24, 2101–2118. [Google Scholar] [CrossRef]
- Shafi, J.; Mirza, Z.S.; Kosour, N.; Zafarullah, M. Assessment of water quality and heavy metals contamination of River Ravi in Pakistan. Pak. J. Anal. Environ. Chem. 2018, 19, 169–180. [Google Scholar] [CrossRef]
- Garai, P.; Banerjee, P.; Mondal, P.; Saha, N. Effect of heavy metals on fishes: Toxicity and bioaccumulation. J. Clin. Toxicol. 2021, 18, 1–10. [Google Scholar] [CrossRef]
- Isangedighi, I.A.; David, G.S. Heavy metals contamination in fish: Effects on human health. J. Aquat. Sci. Mar. Biol. Res. 2019, 2, 7–12. [Google Scholar] [CrossRef]
- Inayat, I.; Batool, A.I.; Rehman, M.F.U.; Ahmad, K.R.; Kanwal, M.A.; Ali, R.; Khalid, R.; Habib, S.S. Seasonal variation and association of heavy metals in the vital organs of edible fishes from the River Jhelum in Punjab, Pakistan. Biol. Trace Elem. Res. 2024, 202, 1203–1211. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, T.; Muhammad, S.; Umar, M.; Azhar, M.U.; Ahmed, A.; Ahmad, A.; Ullah, R. Spatial distribution of physicochemical parameters and drinking and irrigation water quality indices in the Jhelum River. Health Environ. Geochem. 2024, 46, 263. [Google Scholar] [CrossRef] [PubMed]
- Gull, S.; Shah, S.R.; Dar, A.M. Assessment and interpretation of surface water quality in Jhelum River and its tributaries using multivariate statistical methods. Environ. Monit. Assess. 2023, 195, 746. [Google Scholar] [CrossRef] [PubMed]
- Qayoom, U.; Islam, S.T.; Sabha, I.; Bhat, S.U.; Dar, S.A. Coliform pollution mapping in major watersheds along Jhelum River Basin of Kashmir Himalaya. Environ. Sci. Pollut. Res. 2023, 30, 7930–7941. [Google Scholar] [CrossRef]
- Javed, M.; Usmani, N. Assessment of heavy metals (Cu, Ni, Fe, Co, Mn, Cr, Zn) in rivulet water, their accumulations and alterations in hematology of fish Channa punctatus. Afr. J. Biotechnol. 2014, 13, 492. [Google Scholar]
- Javed, M.; Usmani, N. Accumulation of heavy metals in fishes: A human health concern. Int. J. Environ. Sci. 2011, 2, 659–670. [Google Scholar]
- Javed, M.; Usmani, N. Accumulation of heavy metals and human health risk assessment via the consumption of freshwater fish Mastacembelus armatus inhabiting, thermal power plant effluent loaded canal. SpringerPlus 2016, 5, 776. [Google Scholar] [CrossRef]
- Banaee, M.; Beitsayah, A.; Prokić, M.D.; Petrović, T.G.; Zeidi, A.; Faggio, C. Effects of cadmium chloride and biofertilizer (Bacilar) on biochemical parameters of freshwater fish, Alburnus mossulensis. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2023, 268, 109614. [Google Scholar] [CrossRef] [PubMed]
- Banaee, M.; Impellitteri, F.; Evaz-Zadeh Samani, H.; Piccione, G.; Faggio, C. Dietary arthrospira platensis in rainbow trout (Oncorhynchus mykiss): A means to reduce threats caused by CdCl2 exposure? Toxics 2022, 10, 731. [Google Scholar] [CrossRef]
- Squadrone, S.; Prearo, M.; Brizio, P.; Gavinelli, S.; Pellegrino, M.; Scanzio, T.; Guarise, S.; Benedetto, A.; Abete, M. Heavy metals distribution in muscle, liver, kidney and gill of European catfish (Silurus glanis) from Italian Rivers. Chemosphere 2013, 90, 358–365. [Google Scholar] [CrossRef]
- Torre, A.; Trischitta, F.; Faggio, C. Effect of CdCl2 on regulatory volume decrease (RVD) in Mytilus galloprovincialis digestive cells. Toxicology 2013, 27, 1260–1266. [Google Scholar] [CrossRef] [PubMed]
- Omar, W.A.; Zaghloul, K.H.; Abdel-Khalek, A.A.; Abo-Hegab, S. Risk assessment and toxic effects of metal pollution in two cultured and wild fish species from highly degraded aquatic habitats. Arch. Environ. Contam. Toxicol. 2013, 65, 753–764. [Google Scholar] [CrossRef] [PubMed]
- Agbugui, M.; Abe, G. Heavy metals in fish: Bioaccumulation and health. Br. J. Earth Sci. Res. 2022, 10, 47–66. [Google Scholar]
- Selvam, S.; Venkatramanan, S.; Hossain, M.; Chung, S.; Khatibi, R.; Nadiri, A. A study of health risk from accumulation of metals in commercial edible fish species at Tuticorin coasts of southern India. Estuar. Coast. Shelf Sci. 2020, 245, 106929. [Google Scholar] [CrossRef]
- Idera, F.; Omotola, O.; Adedayo, A.; Paul, U.J. Comparison of acid mixtures using conventional wet digestion methods for determination of heavy metals in fish tissues. J. Sci. Res. Rep. 2015, 8, 1–9. [Google Scholar] [CrossRef]
- ASTM D1976-20; Standard Test Method for Elements in Water by Inductively-Coupled Plasma Atomic Emission Spectroscopy. ASTM: West Conshohocken, PA, USA, 2020. [CrossRef]
- Pokorska-Niewiada, K.; Witczak, A.; Protasowicki, M.; Cybulski, J. Estimation of target hazard quotients and potential health risks for toxic metals and other trace elements by consumption of female fish gonads and testicles. Int. J. Environ. Res. Public Health 2022, 19, 2762. [Google Scholar] [CrossRef]
- Islam, M.S.; Ahmed, M.K.; Habibullah-Al-Mamun, M.; Raknuzzaman, M.; Ali, M.M.; Eaton, D.W. Health risk assessment due to heavy metal exposure from commonly consumed fish and vegetables. Environ. Syst. Decis. 2016, 36, 253–265. [Google Scholar] [CrossRef]
- Iqbal, A.; Tabinda, A.B.; Ahmad, F.; Yasar, A.; Siddique, S. Temporal Metal Bioaccumulation in Tissues of Labeo rohita and Cyprinus carpio from Indus River, Pakistan. Asian J. Chem. 2016, 28, 1069. [Google Scholar] [CrossRef]
- Iqbal, J.; Shah, M.H. Study of seasonal variations and health risk assessment of heavy metals in Cyprinus carpio from Rawal Lake, Pakistan. Environ. Monit. Assess. 2014, 186, 2025–2037. [Google Scholar] [CrossRef]
- Ullah, A.A.; Maksud, M.; Khan, S.; Lutfa, L.; Quraishi, S.B. Dietary intake of heavy metals from eight highly consumed species of cultured fish and possible human health risk implications in Bangladesh. Toxicol. Rep. 2017, 4, 574–579. [Google Scholar] [CrossRef]
- Bahreini Esfahani, N.; Jafari, M.; Moravejolahkami, A.R. Heavy metals concentration and target hazard quotients assessment through the consumption of fish muscle Ctenopharyngodon idella (Cyprinidae) from markets in Ahvaz province, Iran. Nutr. Food Sci. 2020, 50, 529–537. [Google Scholar] [CrossRef]
- Fathabad, A.E.; Tajik, H.; Najafi, M.L.; Jafari, K.; Khaneghah, A.M.; Fakhri, Y.; Conti, G.O.; Miri, M. The concentration of the potentially toxic elements (PTEs) in the muscle of fishes collected from Caspian Sea: A health risk assessment study. Food Chem. Toxicol. 2021, 154, 112349. [Google Scholar] [CrossRef] [PubMed]
- Yin, J.; Wang, L.; Liu, Q.; Li, S.; Li, J.; Zhang, X. Metal concentrations in fish from nine lakes of Anhui Province and the health risk assessment. Environ. Sci. Pollut. Res. 2020, 27, 20117–20124. [Google Scholar] [CrossRef] [PubMed]
- Resma, N.S.; Meaze, A.M.H.; Hossain, S.; Khandaker, M.U.; Kamal, M.; Deb, N. The presence of toxic metals in popular farmed fish species and estimation of health risks through their consumption. Phys. Open 2020, 5, 100052. [Google Scholar] [CrossRef]
- Rakib, M.R.J.; Jolly, Y.; Enyoh, C.E.; Khandaker, M.U.; Hossain, M.B.; Akther, S.; Alsubaie, A.; Almalki, A.S.; Bradley, D. Levels and health risk assessment of heavy metals in dried fish consumed in Bangladesh. Sci. Rep. 2021, 11, 14642. [Google Scholar] [CrossRef]
- Ghosh, P.; Ahmed, Z.; Alam, R.; Begum, B.A.; Akter, S.; Jolly, Y.N. Bioaccumulation of metals in selected cultured fish species and human health risk assessment: A study in Mymensingh Sadar Upazila, Bangladesh. Stoch. Environ. Res. Risk Assess. 2021, 35, 2287–2301. [Google Scholar] [CrossRef]
- Yin, X.; Martineau, C.; Demers, I.; Basiliko, N.; Fenton, N.J. The potential environmental risks associated with the development of rare earth element production in Canada. Environ. Rev. 2021, 29, 354–377. [Google Scholar] [CrossRef]
- Yu, B.; Wang, X.; Dong, K.F.; Xiao, G.; Ma, D. Heavy metal concentrations in aquatic organisms (fishes, shrimp and crabs) and health risk assessment in China. Mar. Pollut. Bull. 2020, 159, 111505. [Google Scholar] [CrossRef]
- Alam, I.; Khattak, M.N.K.; Mulk, S.; Dawar, F.U.; Shahi, L.; Ihsanullah, I. Heavy metals assessment in water, sediments, algae and two fish species from river swat, Pakistan. Bull. Environ. Contam. Toxicol. 2020, 105, 546–552. [Google Scholar] [CrossRef]
- Alam, M.; Rohani, M.F.; Hossain, M.S. Heavy metals accumulation in some important fish species cultured in commercial fish farm of Natore, Bangladesh and possible health risk evaluation. Emerg. Contam. 2023, 9, 100254. [Google Scholar] [CrossRef]
- Bazarsadueva, S.V.; Shiretorova, V.G.; Nikitina, E.P.; Zhigzhitzhapova, S.V.; Taraskin, V.V.; Bazarzhapov, T.Z.; Dong, S.; Radnaeva, L.D. Heavy Metal Content in Fish of the Barguzin River (Eastern Cisbaikalia) and Assessment of Potential Risks to Human Health. Water 2023, 15, 3710. [Google Scholar] [CrossRef]
- Abdel-Kader, H.; Mourad, M. Estimation of tilapia fish quality in Lake Edku through physiological analyses regarding trace element accumulation, antioxidant enzymes, proximate composition, and human health risk assessment as the ultimate consumer. Egypt. J. Aquat. Biol. Fish. 2021, 25, 447–463. [Google Scholar] [CrossRef]
- Varol, M.; Sünbül, M.R. Multiple approaches to assess human health risks from carcinogenic and non-carcinogenic metals via consumption of five fish species from a large reservoir in Turkey. Sci. Total Environ. 2018, 633, 684–694. [Google Scholar] [CrossRef]
- Weber, P.; Behr, E.R.; Knorr, C.D.L.; Vendruscolo, D.S.; Flores, E.M.; Dressler, V.L.; Baldisserotto, B. Metals in the water, sediment, and tissues of two fish species from different trophic levels in a subtropical Brazilian river. Microchem. J. 2013, 106, 61–66. [Google Scholar] [CrossRef]
- Griboff, J.; Wunderlin, D.A.; Horacek, M.; Monferrán, M.V. Seasonal variations on trace element bioaccumulation and trophic transfer along a freshwater food chain in Argentina. Environ. Sci. Pollut. Res. 2020, 27, 40664–40678. [Google Scholar] [CrossRef]
- Badoni, P.; Nazir, I.; Aier, M.; Maity, P.B.; Samanta, S.; Das, A. Significant Role of Fish Nutrients with Special Emphasis to Essential Fatty Acid in Human Nutrition. Int. J. Curr. Microbiol. Appl. Sci 2021, 10, 2034–2046. [Google Scholar]
- Barry, A.R.; Dixon, D.L. Omega-3 fatty acids for the prevention of atherosclerotic cardiovascular disease. Pharmacotherapy 2021, 41, 1056–1065. [Google Scholar] [CrossRef]
- Ai, L.; Ma, B.; Shao, S.; Zhang, L. Heavy metals in Chinese freshwater fish: Levels, regional distribution, sources and health risk assessment. Sci. Total Environ. 2022, 853, 158455. [Google Scholar] [CrossRef]
- FAO Joint; World Health Organization; WHO Expert Committee on Food Additives. Evaluation of Certain Contaminants in Food: Seventy-Second [72nd] Report of the Joint FAO/WHO Expert Committee on Food Additives; World Health Organization: Geneva, Switzerland, 2011. [Google Scholar]
- World Health Organization. Guidelines for Drinking-Water Quality; World Health Organization: Geneva, Switzerland, 2002. [Google Scholar]
- World Health Organization. Guidelines for Drinking-Water Quality: Incorporating the First and Second Addenda; World Health Organization: Geneva, Switzerland, 2022. [Google Scholar]
- Rahman, M.M.; Haque, T.; Mahmud, A.; Al Amin, M.; Hossain, M.S.; Hasan, M.Y.; Shaibur, M.R.; Hossain, S.; Hossain, M.A.; Bai, L. Drinking water quality assessment based on index values incorporating WHO guidelines and Bangladesh standards. Phys. Chem. Earth Parts A/B/C 2023, 129, 103353. [Google Scholar] [CrossRef]
- Wasana, H.M.; Perera, G.D.; Gunawardena, P.D.S.; Fernando, P.S.; Bandara, J. WHO water quality standards vs Synergic effect(s) of fluoride, heavy metals and hardness in drinking water on kidney tissues. Sci. Rep. 2017, 7, 42516. [Google Scholar] [CrossRef]
- Jia, Y.; Wang, L.; Qu, Z.; Wang, C.; Yang, Z. Effects on heavy metal accumulation in freshwater fishes: Species, tissues, and sizes. Environ. Sci. Pollut. Res. 2017, 24, 9379–9386. [Google Scholar] [CrossRef] [PubMed]
- Lall, S.P.; Kaushik, S.J. Nutrition and metabolism of minerals in fish. Animals 2021, 11, 2711. [Google Scholar] [CrossRef] [PubMed]
- Łuczyńska, J.; Paszczyk, B. Health risk assessment of heavy metals and lipid quality indexes in freshwater fish from lakes of Warmia and Mazury region, Poland. Int. J. Environ. Res. Public Health 2019, 16, 3780. [Google Scholar] [CrossRef]
- Łuczyńska, J.; Pietrzak-Fiećko, R.; Purkiewicz, A.; Łuczyński, M.J. Assessment of fish quality based on the content of heavy metals. Int. J. Environ. Res. Public Health 2022, 19, 2307. [Google Scholar] [CrossRef]
- Zaghloul, G.Y.; Eissa, H.A.; Zaghloul, A.Y.; Kelany, M.S.; Hamed, M.A.; Moselhy, K.M.E. Impact of some heavy metal accumulation in different organs on fish quality from Bardawil Lake and human health risks assessment. Geochem. Trans. 2024, 25, 1. [Google Scholar] [CrossRef]
- Jabeen, G.; Javed, M.; Azmat, H. Assessment of heavy metals in the fish collected from the river Ravi, Pakistan. Pak. Vet. J. 2012, 32, 107–111. [Google Scholar]
- Kumar, A.; Kumar, A.; Jha, S.K. Distribution and bioaccumulation of heavy metal in water, sediment and fish tissue from the River Mahananda in Seemanchal zone, North Bihar, India. Int. J. Aquat. Biol. 2020, 8, 109–125. [Google Scholar]
- Mastan, S. Heavy metals concentration in various tissues of two freshwater fishes, Labeo rohita and Channa striatus. Afr. J. Environ. Sci. Technol. 2014, 8, 166–170. [Google Scholar]
- Maurya, P.K.; Malik, D. Bioaccumulation of heavy metals in tissues of selected fish species from Ganga river, India, and risk assessment for human health. Hum. Ecol. Risk Assess. 2019, 25, 905–923. [Google Scholar] [CrossRef]
- Sofia, S.; Teresa, M. Seasonal variations in the biochemical composition and bio accumulation of metals in selected fishes of Chirackal, Ernakulam district, Kerala. J. Pharmacogn. Phytochem. 2019, 8, 2839–2849. [Google Scholar]
- Kumar, M.; Gupta, N.; Ratn, A.; Awasthi, Y.; Prasad, R.; Trivedi, A.; Trivedi, S.P. Biomonitoring of heavy metals in river ganga water, sediments, plant, and fishes of different trophic levels. Biol. Trace Elem. Res. 2020, 193, 536–547. [Google Scholar] [CrossRef] [PubMed]
- Abbas, S.; Javed, M.; Khan, H.; Khalil-ur-Rahman, K. Toxicity and bioaccumulation of metals (Al and Co) in three economically important carnivorous fish species of Pakistan. Int. J. Agric. Biol. 2018, 20, 1123–1128. [Google Scholar]
- Ashraf, M.; Zafar, A.; Naeem, M. Comparative Studies on the Seasonal Variations in the Nutritional Values of Three Carnivorous Fish Species. Int. J. Agric. Biol. 2011, 13, 701–706. [Google Scholar]
- Rind, K.H.; Aslam, S.; Memon, N.H.; Raza, A.; Saeed, M.Q.; Mushtaq, A.; Ujan, J.A.; Habib, S.F.; Al-Rejaie, S.S.; Mohany, M. Heavy metal concentrations in water, sediment, and fish species in Chashma Barrage, Indus River: A comprehensive health risk assessment. Biol. Trace Elem. Res. 2024. [Google Scholar] [CrossRef]
Heavy Metals | Zn | Cd | Pb | Cr | Co | Ni | Mn | Cu | As | Fe | Mg | Ca |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Zn | 1 | |||||||||||
Cd | 0.6732 | 1 | ||||||||||
Pb | −0.9983 | −0.7145 | 1 | |||||||||
Cr | −0.6776 | −0.9998 | 0.7187 | 1 | ||||||||
Co | 0.9752 | 0.8201 | −0.9863 | −0.8235 | 1 | |||||||
Ni | 0.7545 | 0.9932 | −0.7910 | −0.9939 | 0.8810 | 1 | ||||||
Mn | 0.1470 | −0.6325 | −0.0899 | 0.6278 | −0.0755 | −0.5382 | 1 | |||||
Cu | 0.9991 | 0.6412 | −0.9950 | −0.6459 | 0.9650 | 0.7261 | 0.1888 | 1 | ||||
As | −0.0232 | −0.7549 | 0.0806 | 0.7509 | −0.2437 | −0.6736 | 0.9855 | 0.0192 | 1 | |||
Fe | 0.1666 | 0.8413 | −0.2230 | −0.8380 | 0.3806 | 0.7728 | −0.9508 | 0.1247 | −0.9896 | 1 | ||
Mg | −0.1145 | −0.8117 | 0.1714 | 0.8082 | −0.3314 | −0.7383 | 0.9658 | −0.0723 | 0.9958 | −0.9986 | 1 | |
Ca | 0.7385 | −0.0014 | −0.6986 | −0.0046 | 0.5711 | 0.1148 | 0.7754 | 0.7664 | 0.6569 | −0.5418 | 0.5852 | 1 |
Heavy Metals | Zn | Cd | Pb | Cr | Co | Ni | Mn | Cu | As | Fe | Mg | Ca |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Zn | 1 | |||||||||||
Cd | −0.3770 | 1 | ||||||||||
Pb | 0.9450 | −0.6592 | 1 | |||||||||
Cr | 0.9744 | −0.1592 | 0.8473 | 1 | ||||||||
Co | 0.9280 | −0.6950 | 0.9988 | 0.8205 | 1 | |||||||
Ni | −0.7950 | 0.8616 | −0.9497 | −0.6383 | −0.9638 | 1 | ||||||
Mn | −0.1623 | 0.9751 | −0.4762 | 0.0636 | −0.5184 | 0.7276 | 1 | |||||
Cu | −0.1996 | 0.9828 | −0.5091 | 0.0258 | −0.5504 | 0.7531 | 0.9993 | 1 | ||||
As | −0.1968 | 0.9823 | −0.5066 | 0.0286 | −0.5480 | 0.7512 | 0.9994 | 0.999996 | 1 | |||
Fe | −0.6508 | −0.4578 | −0.3667 | −0.8048 | −0.3210 | 0.0568 | −0.6435 | −0.6141 | −0.6163 | 1 | ||
Mg | −0.2786 | 0.9946 | −0.5774 | −0.0556 | −0.6164 | 0.8041 | 0.9929 | 0.9967 | 0.9965 | −0.5478 | 1 | |
Ca | −0.8371 | 0.8223 | −0.9700 | −0.6927 | −0.9807 | 0.9973 | 0.6757 | 0.7031 | 0.7011 | 0.1294 | 0.7586 | 1 |
Trace Elements and Heavy Metals | PTDI (mg/day/kg) | PTWI (mg/day/kg) | L. rohita | M. seenghala | ||
---|---|---|---|---|---|---|
EDI | EWI | EDI | EWI | |||
Zn | 1 | 7 | 0.4503 | 3.1522 | 0.1234 | 0.8641 |
Cd | 0.001 | 0.007 | 0.6320 | 4.4237 | 0.1814 | 1.2701 |
Pb | 0.004 | 0.025 | 0.3064 | 2.1445 | 0.1118 | 0.7824 |
Cr | 0.003 | 0.021 | 1.1111 | 7.7774 | 2.9396 | 20.5771 |
Co | 0.06 | 0.42 | 0.8114 | 5.6801 | 0.8037 | 5.6261 |
Ni | 0.005 | 0.035 | 1.2724 | 8.9068 | 3.3562 | 23.4933 |
Mn | 0.14 | 0.98 | 1.2747 | 8.9228 | 0.8682 | 6.0775 |
Cu | 0.5 | 3.5 | 0.8930 | 6.2507 | 2.4472 | 17.1307 |
As | 0.002 | 0.015 | 0.7815 | 5.4705 | 2.0483 | 14.3383 |
Fe | 0.8 | 5.6 | 1.8229 | 12.7605 | 2.3732 | 16.6123 |
Mg | 5.833 | 40.83 | 13.8522 | 96.9651 | 50.2078 | 351.4548 |
Ca | 14.19 | 99.33 | 12.3932 | 86.7523 | 29.8192 | 208.7343 |
Trace Elements and Heavy Metals | CPSo | L. rohita | M. seenghala |
---|---|---|---|
Cd | 6.3 | 3.981323 × 10−3 | 1.143088 × 10−3 |
Pb | 0.0085 | 2.60409 × 10−6 | 9.50021 × 10−7 |
Ni | 1.7 | 2.163089 × 10−3 | 5.705512 × 10−3 |
As | 1.5 | 1.172257 × 10−3 | 3.072494 × 10−3 |
Trace Elements and Heavy Metals | L. rohita | M. seenghala | ||
---|---|---|---|---|
THQ | HRI | THQ | HRI | |
Zn | 0.0015 | 1.5011 | 0.0004 | 0.4115 |
Cd | 0.6320 | 631.9560 | 0.1814 | 181.4425 |
Pb | 0.0766 | 76.5910 | 0.0279 | 27.9418 |
Cr | 0.3704 | 370.3526 | 0.9799 | 979.8626 |
Co | 0.0135 | 13.5240 | 0.0134 | 13.3956 |
Ni | 0.0636 | 63.6203 | 0.1678 | 167.8092 |
Mn | 0.0091 | 9.1049 | 0.0062 | 6.2016 |
Cu | 0.0223 | 22.3238 | 0.0612 | 61.1810 |
As | 2.6050 | 2605.0166 | 6.8278 | 6827.7645 |
Fe | 0.0026 | 2.6042 | 0.0034 | 3.3903 |
Mg | 0.0024 | 2.3760 | 0.0086 | 8.6120 |
Ca | 0.0009 | 0.9297 | 0.0022 | 2.2370 |
TTHQ (HI) | 3.800 | 8.28 | ||
MPI | 1796.59 | 8856.41 |
Trace Elements and Heavy Metals | Labeo rohita | Mystus seenghala | MPL (mg/g) | Reference |
---|---|---|---|---|
Zn | 0.808 | 0.221 | 0.03 | [73] |
Cd | 1.133 | 0.325 | 0.0005 | [73] |
Pb | 0.549 | 0.200 | 0.0005 | [73] |
Cr | 1.993 | 5.272 | 0.05 | [73] |
Co | 1.455 | 1.441 | 0.0005 | [73] |
Ni | 2.282 | 6.019 | 0.0005–0.0006 | [74] |
Mn | 2.286 | 1.557 | 0.001 | [75,76,77] |
Cu | 1.602 | 4.389 | 0.03 | [75,76,77] |
As | 1.402 | 3.674 | 0.001 | [75,76,77] |
Fe | 3.269 | 4.256 | 0.1 | [75,76,77] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ejaz, A.; Ullah, S.; Ijaz, S.; Bilal, M.; Banaee, M.; Mosotto, C.; Faggio, C. Bioaccumulation and Health Risk Assessment of Heavy Metals in Labeo rohita and Mystus seenghala from Jhelum River, Punjab, Pakistan. Water 2024, 16, 2994. https://doi.org/10.3390/w16202994
Ejaz A, Ullah S, Ijaz S, Bilal M, Banaee M, Mosotto C, Faggio C. Bioaccumulation and Health Risk Assessment of Heavy Metals in Labeo rohita and Mystus seenghala from Jhelum River, Punjab, Pakistan. Water. 2024; 16(20):2994. https://doi.org/10.3390/w16202994
Chicago/Turabian StyleEjaz, Aansa, Sana Ullah, Sehrish Ijaz, Muhammad Bilal, Mahdi Banaee, Camilla Mosotto, and Caterina Faggio. 2024. "Bioaccumulation and Health Risk Assessment of Heavy Metals in Labeo rohita and Mystus seenghala from Jhelum River, Punjab, Pakistan" Water 16, no. 20: 2994. https://doi.org/10.3390/w16202994
APA StyleEjaz, A., Ullah, S., Ijaz, S., Bilal, M., Banaee, M., Mosotto, C., & Faggio, C. (2024). Bioaccumulation and Health Risk Assessment of Heavy Metals in Labeo rohita and Mystus seenghala from Jhelum River, Punjab, Pakistan. Water, 16(20), 2994. https://doi.org/10.3390/w16202994