Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (10,983)

Search Parameters:
Keywords = active layer

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
44 pages, 9938 KB  
Article
Repurposing 1,4-Dihydropyridine Scaffold: 4-Imidazo[2,1-b]thiazole-Derivatives from Calcium Entry Blockers to a New Approach for Gut Dysfunctional Motility
by Luca Camarda, Ivan Corazza, Alessandra Locatelli, Alberto Leoni, Maria Frosini, Roberta Budriesi, Emanuele Carosati, Alberto Santini, Marco Montagnani, Carla Marzetti and Laura Beatrice Mattioli
Pharmaceuticals 2025, 18(10), 1476; https://doi.org/10.3390/ph18101476 - 30 Sep 2025
Abstract
Background/Objectives: This study investigates the pharmacological potential of 1,4-dihydropyridine derivatives, functionalized with an imidazo[2,1-b]thiazole scaffold, as selective modulators of intestinal motility. Given their structural similarity to both L-type calcium channel blockers and spasmolytics such as Otilonium Bromide (OB), [...] Read more.
Background/Objectives: This study investigates the pharmacological potential of 1,4-dihydropyridine derivatives, functionalized with an imidazo[2,1-b]thiazole scaffold, as selective modulators of intestinal motility. Given their structural similarity to both L-type calcium channel blockers and spasmolytics such as Otilonium Bromide (OB), we explored their repurposing for the treatment of gut motility disorders. Methods: A focused library of 83 1,4-dihydropyridine derivatives was screened for spasmolytic activity on potassium (80 mM)-induced depolarization in isolated guinea pig ileal and colonic tissues. Compounds showing pharmacodynamic profiles similar to OB and nifedipine were further evaluated for their effects on the spontaneous contractility of longitudinal and circular smooth muscle layers. Additional functional assays assessed intestinal transit, visceral nociception, and mixing/fragmentation efficiency. Microbiota safety was preliminarily tested on mixed cultures of Bifidobacterium and Lactobacillus species. Results: Compounds 62 and 65 selectively relaxed intestinal smooth muscle, primarily targeting the longitudinal layer without affecting vascular contractility. Ex vivo testing highlights that compounds 62 and 65 could both modulate gut transit and mixing without causing functional constipation or pain. Microbiota analyses showed no detrimental effects on “good” bacterial species Bifidobacterium and Lactobacillus spp. Conclusions: The favorable gastrointestinal and microbiological profiles of compounds 62 and 65, combined with their structural versatility, support their potential repurposing for functional bowel disorders. Their selective activity suggests a promising role in therapies targeting intestinal motility while preserving microbiota homeostasis, supporting the need for extended pharmacological characterization. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Figure 1

27 pages, 2749 KB  
Article
Biogenic TiO2–ZnO Nanocoatings: A Sustainable Strategy for Visible-Light Self-Sterilizing Surfaces in Healthcare
by Ali Jabbar Abd Al-Hussain Alkawaz, Maryam Sabah Naser and Ali Jalil Obaid
Micro 2025, 5(4), 45; https://doi.org/10.3390/micro5040045 - 30 Sep 2025
Abstract
Introduction: Hospital-acquired infections remain a significant healthcare concern due to the persistence of pathogens such as Staphylococcus aureus and Escherichia coli on frequently touched surfaces. Conventional TiO2 coatings are limited to UV activation, which restricts their application under normal indoor light. Combining [...] Read more.
Introduction: Hospital-acquired infections remain a significant healthcare concern due to the persistence of pathogens such as Staphylococcus aureus and Escherichia coli on frequently touched surfaces. Conventional TiO2 coatings are limited to UV activation, which restricts their application under normal indoor light. Combining TiO2 with ZnO and employing green synthesis methods may overcome these limitations. Methodology: Biogenic TiO2 and ZnO nanoparticles were synthesized using Bacillus subtilis under mild aqueous conditions. The nanoparticles were characterized by SEM, XRD, UV-Vis, and FTIR, confirming nanoscale size, crystalline phases, and organic capping. A multilayer TiO2/ZnO coating was fabricated on glass substrates through layer-by-layer deposition. Antibacterial activity was tested against S. aureus and E. coli using disk diffusion, direct contact assays, ROS quantification (FOX assay), and scavenger experiments. Statistical significance was evaluated using ANOVA. Results: The TiO2/ZnO multilayer exhibited superior antibacterial activity under visible light, with inhibition zones of ~15 mm (S. aureus) and ~12 mm (E. coli), significantly outperforming single-component coatings. Direct contact assays confirmed strong bactericidal effects, while scavenger tests verified ROS-mediated mechanisms. FOX assays detected elevated H2O2 generation, correlating with antibacterial performance. Discussion: Synergistic effects of band-gap narrowing, Zn2+ release, and ROS generation enhanced visible-light photocatalysis. The multilayer structure improved light absorption and charge separation, providing higher antimicrobial efficacy than individual oxides. Conclusion: Biogenic TiO2/ZnO multilayers represent a sustainable, visible-light-activated antimicrobial strategy with strong potential for reducing nosocomial infections on hospital surfaces and surgical instruments. Future studies should assess long-term durability and clinical safety. Full article
(This article belongs to the Topic Antimicrobial Agents and Nanomaterials—2nd Edition)
Show Figures

Figure 1

23 pages, 4197 KB  
Article
Position and Attitude Control of Multi-Modal Underwater Robots Using an Improved LADRC Based on Sliding Mode Control
by Luze Wang, Yu Lu, Lei Zhang, Bowei Cui, Fengluo Chen, Bingchen Liang, Liwei Yu and Shimin Yu
Sensors 2025, 25(19), 6010; https://doi.org/10.3390/s25196010 - 30 Sep 2025
Abstract
This paper focuses on the control problems of a multi-modal underwater robot, which is designed mainly for the task of detecting the working environment in deep-sea mining. To tackle model uncertainty and external disturbances, an improved linear active disturbance rejection control scheme based [...] Read more.
This paper focuses on the control problems of a multi-modal underwater robot, which is designed mainly for the task of detecting the working environment in deep-sea mining. To tackle model uncertainty and external disturbances, an improved linear active disturbance rejection control scheme based on sliding mode control is proposed (SM-ADRC). Firstly, to reduce overshoot, a piecewise fhan function is introduced into the tracking differentiator (TD). This design retains the system’s fast nonlinear tracking characteristics outside the boundary layer while leveraging linear damping within it to achieve effective overshoot suppression. Secondly, two key enhancements are made to the SMC: an integral sliding surface is designed to improve steady-state accuracy, and a saturation function replaces the sign function to suppress high-frequency chattering. Furthermore, the SMC integrates the total disturbance estimate from the linear extended state observer (LESO) for feedforward compensation. Finally, the simulation experiment verification is completed. The simulation results show that the SM-ADRC scheme significantly improves the dynamic response and disturbance suppression ability of the system and simultaneously suppresses the chattering problem of SMC. Full article
(This article belongs to the Special Issue Smart Sensing and Control for Autonomous Intelligent Unmanned Systems)
Show Figures

Figure 1

24 pages, 1553 KB  
Article
Year-Round Modeling of Evaporation and Substrate Temperature of Two Distinct Green Roof Systems
by Dominik Gößner
Urban Sci. 2025, 9(10), 396; https://doi.org/10.3390/urbansci9100396 - 30 Sep 2025
Abstract
This paper presents a novel model for the year-round simulation of evapotranspiration (ET) and substrate temperature on two fundamentally different extensive green roof types: a conventional drainage-based “Economy Roof” and a retention-optimized “Retention Roof” featuring capillary water redistribution. The main scope is to [...] Read more.
This paper presents a novel model for the year-round simulation of evapotranspiration (ET) and substrate temperature on two fundamentally different extensive green roof types: a conventional drainage-based “Economy Roof” and a retention-optimized “Retention Roof” featuring capillary water redistribution. The main scope is to bridge the gap in urban climate adaptation by providing a modeling tool that captures both hydrological and thermal functions of green roofs throughout all seasons, notably including periods with dormancy and low vegetation activity. A key novelty is the explicit and empirically validated integration of core physical processes—water storage layer coupling, explicit rainfall interception, and vegetation cover dynamics—with the latter strongly controlled by plant area index (PAI). The PAI, here quantified as the plant surface area per unit ground area using digital image analysis, directly determines interception capacity and vegetative transpiration rates within the model. This process-based representation enables a more realistic simulation of seasonal fluctuations and physiological plant responses, a feature often neglected in previous green roof models. The model, which can be fully executed without high computational power, was validated against comprehensive field measurements from a temperate climate, showing high predictive accuracy (R2 = 0.87 and percentage bias = −1% for ET on the Retention Roof; R2 = 0.91 and percentage bias = −8% for substrate temperature on the Economy Roof). Notably, the layer-specific coupling of vegetation, substrate, and water storage advances ecological realism compared to prior approaches. The results illustrate the model’s practical applicability for urban planners and researchers, offering a user-friendly and transparent tool for integrated assessments of green infrastructure within the context of climate-resilient city design. Full article
Show Figures

Figure 1

22 pages, 3938 KB  
Article
Tree Species Overcome Edaphic Heterogeneity in Shaping the Urban Orchard Soil Microbiome and Metabolome
by Emoke Dalma Kovacs and Melinda Haydee Kovacs
Horticulturae 2025, 11(10), 1163; https://doi.org/10.3390/horticulturae11101163 - 30 Sep 2025
Abstract
Despite the increasing recognition of the role of urban orchard ecosystems in sustainable urban development, the mechanistic understanding of how tree species soil biochemical heterogeneity drives microbial community assembly, the spatial patterns governing microbe-environment interactions, and their collective contributions to ecosystem multifunctionality remain [...] Read more.
Despite the increasing recognition of the role of urban orchard ecosystems in sustainable urban development, the mechanistic understanding of how tree species soil biochemical heterogeneity drives microbial community assembly, the spatial patterns governing microbe-environment interactions, and their collective contributions to ecosystem multifunctionality remain poorly characterized. This study investigated how Prunus species and soil depth affect microbial biodiversity and metabolomic signatures in an urban orchard in Cluj-Napoca, Romania. Soil samples were collected from five fruit tree species (apricot, peach, plum, cherry, and sour cherry) across three depths (0–10, 10–20, and 20–30 cm), resulting in 225 samples. The microbial community structure was analyzed through phospholipid fatty acid (PLFA) profiling, whereas the soil metabolome was analyzed by mass spectrometry techniques, including gas chromatography–mass spectrometry (GC–MS/MS) and MALDI time-of-flight (TOF/TOF) MS, which identified 489 compounds across 18 chemical classes. The results revealed significant tree species-specific effects on soil microbial biodiversity, with bacterial biomarkers dominating and total microbial biomass varying among species. The soils related to apricot trees presented the highest microbial activity, particularly in the surface layers. Metabolomic analysis revealed 247 distinct KEGG-annotated metabolites, with sour cherry exhibiting unique organic acid profiles and cherry showing distinctive quinone accumulation. Depth stratification influenced both microbial communities and metabolite composition, reflecting oxygen gradients and substrate availability. These findings provide mechanistic insights into urban orchard soil biogeochemistry, suggesting that strategic species selection can harness tree species-soil microbe interactions to optimize urban soil ecosystem services and enhance urban biodiversity conservation. Full article
(This article belongs to the Section Fruit Production Systems)
Show Figures

Figure 1

30 pages, 1282 KB  
Article
Enhancing IoT-LLN Security with IbiboRPLChain Solution: A Blockchain-Based Authentication Method
by Joshua T. Ibibo, Josiah E. Balota, Tariq Alwada’n and Olugbenga O. Akinade
Appl. Sci. 2025, 15(19), 10557; https://doi.org/10.3390/app151910557 - 29 Sep 2025
Abstract
The security of Internet of Things (IoT)–Low-Power and Lossy Networks (LLNs) is crucial for their widespread adoption in various applications. The standard routing protocol for IoT-LLNs, IPv6 Routing Protocol over Low-Power and Lossy Networks (RPL), is susceptible to insider attacks, such as the [...] Read more.
The security of Internet of Things (IoT)–Low-Power and Lossy Networks (LLNs) is crucial for their widespread adoption in various applications. The standard routing protocol for IoT-LLNs, IPv6 Routing Protocol over Low-Power and Lossy Networks (RPL), is susceptible to insider attacks, such as the version number attack (VNA), decreased rank attack (DRA), and increased rank attack (IRA). These attacks can significantly impact network performance and resource consumption. To address these security concerns, we propose the IbiboRPLChain Solution, a secure blockchain-based authentication method for RPL nodes. The proposed solution introduces an additional blockchain layer to the RPL architecture, enabling secure authentication of communication links between the routing layer and the sensor layer. The IbiboRPLChain Solution utilises smart contracts to trigger immediate authentication upon detecting routing attacks initiated by malicious nodes in an IoT-LLN environment. The evaluation of the proposed solution demonstrates its superior performance in mitigating insider attacks and enhancing IoT-LLN security compared to existing methods. The proposed solution effectively mitigates insider attacks by employing blockchain technology to authenticate communication links between routing and sensor nodes. This prevents malicious nodes from manipulating routing information and disrupting network operations. Additionally, the solution enhances IoT-LLN security by utilising smart contracts to trigger immediate authentication upon detecting suspicious activity, ensuring prompt action against potential threats. The findings of this research have significant implications for the development and deployment of secure IoT-LLNs. Full article
23 pages, 6372 KB  
Article
Numerical Study on Hydraulic Fracture Propagation in Sand–Coal Interbed Formations
by Xuanyu Liu, Liangwei Xu, Xianglei Guo, Meijia Zhu and Yujie Bai
Processes 2025, 13(10), 3128; https://doi.org/10.3390/pr13103128 - 29 Sep 2025
Abstract
To investigate hydraulic fracture propagation in multi-layered porous media such as sand–coal interbedded formations, we present a new phase-field-based model. In this formulation, a diffuse fracture is activated only when the local element strain exceeds the rock’s critical strain, and the fracture width [...] Read more.
To investigate hydraulic fracture propagation in multi-layered porous media such as sand–coal interbedded formations, we present a new phase-field-based model. In this formulation, a diffuse fracture is activated only when the local element strain exceeds the rock’s critical strain, and the fracture width is represented by orthogonal components in the x and y directions. Unlike common PFM approaches that map the permeability directly from the damage field, our scheme triggers fractures only beyond a critical strain. It then builds anisotropy via a width-to-element-size weighting with parallel mixing along and series mixing across the fracture. At the element scale, the permeability is constructed as a weighted sum of the initial rock permeability and the fracture permeability, with the weighting coefficients defined as functions of the local width and the element size. Using this model, we examined how the in situ stress contrast, interface strength, Young’s modulus, Poisson’s ratio, and injection rate influence the hydraulic fracture growth in sand–coal interbedded formations. The results indicate that a larger stress contrast, stronger interfaces, a greater stiffness, and higher injection rates increase the likelihood that a hydraulic fracture will cross the interface and penetrate the barrier layer. When propagation is constrained to the interface, the width within the interface segment is markedly smaller than that within the coal-seam segment, and interface-guided growth elevates the fluid pressure inside the fracture. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

21 pages, 5327 KB  
Article
Long-Term Changes in the Structural and Functional Composition of Spruce Forests in the Center of the East European Plain
by Tatiana Chernenkova, Nadezhda Belyaeva, Alexander Maslov, Anastasia Titovets, Alexander Novikov, Ivan Kotlov, Maria Arkhipova and Mikhail Popchenko
Forests 2025, 16(10), 1526; https://doi.org/10.3390/f16101526 - 29 Sep 2025
Abstract
Norway spruce (Picea abies (L.) H. Karst.) is a primary forest-forming species in the European part of Russia, both in terms of its distribution and economic importance. A number of studies indicate that one of the reasons for the disturbance of spruce [...] Read more.
Norway spruce (Picea abies (L.) H. Karst.) is a primary forest-forming species in the European part of Russia, both in terms of its distribution and economic importance. A number of studies indicate that one of the reasons for the disturbance of spruce forests is linked to rising temperatures, particularly the detrimental effects of extreme droughts. The aim of our research is to identify changes in the structural and functional organization of mature spruce forests at the center of the East European Plain. The study was conducted in intact spruce forests using resurveyed vegetation relevés within the Smolensk–Moscow Upland, with relevés repeated after 40 years (in 1985 and 2025). Changes in structural and functional parameters of spruce communities were analyzed. The results showed that significant disturbances of the tree layer led to changes in the vegetation of subordinate layers, as well as the successional dynamics of spruce forests. It was found that following the collapse of old-growth spruce stands, two types of secondary succession developed: (1) with the renewal of spruce and (2) with active development of shrubs (hazel and rowan) and undergrowth of broadleaved species. It was also demonstrated that the typological diversity of the studied communities changed over 40 years not only due to the loss of the tree layer and the formation of new “non-forest” types but also because several mixed spruce-broadleaved communities transitioned into broadleaved ones, and pine–spruce communities of boreal origin shifted to nemoral types. An analysis of the complete species composition of spruce forests based on Ellenberg’s scales scoring revealed changes in habitat conditions over the 40-year period. A noticeable trend was an increase in the proportion of thermophilic and alkaliphilic species, indicating a shift toward a nemoral vegetation spectrum. It is expected that under the current forest management regime, the next 40 to 60 years will see a decline in the proportion of spruce within mixed stands, potentially culminating in the complete collapse of monospecific spruce forests in the center of the East European Plain. Full article
(This article belongs to the Special Issue Features of Forest Stand Structure Under Changing Conditions)
Show Figures

Figure 1

36 pages, 6811 KB  
Article
A Hierarchical Two-Layer MPC-Supervised Strategy for Efficient Inverter-Based Small Microgrid Operation
by Salima Meziane, Toufouti Ryad, Yasser O. Assolami and Tawfiq M. Aljohani
Sustainability 2025, 17(19), 8729; https://doi.org/10.3390/su17198729 - 28 Sep 2025
Abstract
This study proposes a hierarchical two-layer control framework aimed at advancing the sustainability of renewable-integrated microgrids. The framework combines droop-based primary control, PI-based voltage and current regulation, and a supervisory Model Predictive Control (MPC) layer to enhance dynamic power sharing and system stability [...] Read more.
This study proposes a hierarchical two-layer control framework aimed at advancing the sustainability of renewable-integrated microgrids. The framework combines droop-based primary control, PI-based voltage and current regulation, and a supervisory Model Predictive Control (MPC) layer to enhance dynamic power sharing and system stability in renewable-integrated microgrids. The proposed method addresses the limitations of conventional control techniques by coordinating real and reactive power flow through an adaptive droop formulation and refining voltage/current regulation with inner-loop PI controllers. A discrete-time MPC algorithm is introduced to optimize power setpoints under future disturbance forecasts, accounting for state-of-charge limits, DC-link voltage constraints, and renewable generation variability. The effectiveness of the proposed strategy is demonstrated on a small hybrid microgrid system that serve a small community of buildings with a solar PV, wind generation, and a battery storage system under variable load and environmental profiles. Initial uncontrolled scenarios reveal significant imbalances in resource coordination and voltage deviation. Upon applying the proposed control, active and reactive power are equitably shared among DG units, while voltage and frequency remain tightly regulated, even during abrupt load transitions. The proposed control approach enhances renewable energy integration, leading to reduced reliance on fossil-fuel-based resources. This contributes to environmental sustainability by lowering greenhouse gas emissions and supporting the transition to a cleaner energy future. Simulation results confirm the superiority of the proposed control strategy in maintaining grid stability, minimizing overcharging/overdischarging of batteries, and ensuring waveform quality. Full article
(This article belongs to the Special Issue Smart Grid Technologies and Energy Sustainability)
Show Figures

Figure 1

55 pages, 5543 KB  
Review
A Review of Linear Motor Electromagnetic Energy Regenerative Suspension and Key Technologies
by Dong Sun, Renkai Ding and Rijing Dong
Energies 2025, 18(19), 5158; https://doi.org/10.3390/en18195158 - 28 Sep 2025
Abstract
Linear motor electromagnetic energy regenerative suspension (LMEERS), integrating dual functionalities of energy regeneration and active control, possesses the potential to overcome the performance limitations inherent in existing suspension architectures. Research on key technologies for LMEERS aligns with the contemporary automotive development theme of [...] Read more.
Linear motor electromagnetic energy regenerative suspension (LMEERS), integrating dual functionalities of energy regeneration and active control, possesses the potential to overcome the performance limitations inherent in existing suspension architectures. Research on key technologies for LMEERS aligns with the contemporary automotive development theme of “enhanced comfort, improved safety, and optimized energy efficiency”. This paper reviews the research progress of the configuration design, performance optimization, functionality switching criterion identification, and top-layer control strategies of LMEERS. Regarding configuration design, a systematic summary is provided for the design schemes of fundamental configuration and the technical features of three composite configurations. In the aspect of performance optimization, the specific approaches and their effectiveness in enhancing LMEERS comprehensive characteristics are analyzed. Concerning functionality switching criterion identification, the operating principles and performance differences among various estimation methods in identifying road surface information are discussed. For top-layer control strategies, the characteristics and applicability of various control methods in exploiting the dual functionalities of LMEERS are summarized. Future developments in LMEERS are anticipated to trend towards integration, lightweighting, standardization, intellectualization, and multi-mode operation. This review provides a theoretical reference for the design optimization and technological innovation of LMEERS, contributing to the advancement of automotive chassis systems in terms of electrification, intellectualization, and energy conservation. Full article
(This article belongs to the Special Issue Vibration Energy Harvesting)
Show Figures

Figure 1

18 pages, 5624 KB  
Article
Effects of Girdling Treatment on Community Structure and Soil Properties in Tropical Plantations of Hainan, China
by Xiaoyan Wang, Ru Wang, Liguo Liao, Bijia Zhang, Jia Yang, Wencheng Peng, Fangneng Lin, Xin Li, Shiqin Mo, Tengmin Li and Jinrui Lei
Forests 2025, 16(10), 1522; https://doi.org/10.3390/f16101522 - 28 Sep 2025
Abstract
In tropical regions, the establishment of large-scale exotic plantations has addressed the demand for timber resources but has also disrupted the structural stability of native vegetation and altered soil nutrient cycling, thereby impairing ecosystem functions. Identifying effective restoration strategies for these plantations is [...] Read more.
In tropical regions, the establishment of large-scale exotic plantations has addressed the demand for timber resources but has also disrupted the structural stability of native vegetation and altered soil nutrient cycling, thereby impairing ecosystem functions. Identifying effective restoration strategies for these plantations is crucial for sustainable forest management and ecological security. This study examined Acacia mangium Willd., Cunninghamia lanceolata (Lamb.) Hook., and Pinus caribaea Morelet. plantations in Hainan Tropical Rainforest National Park under three treatments: plantation control, girdling, and natural secondary forest. Vegetation surveys and soil analyses were conducted to explore the relationships between community structure, soil physicochemical properties, and enzyme activities. Diversity indices, Pearson correlations, and redundancy analysis were used to assess plant–soil relationships. The results showed that girdling significantly accelerated succession in C. lanceolata and P. caribaea plantations, increased species diversity, and enhanced the dominance of native species. Shrub-layer diversity indices (Hshrub, Dshrub, Eshrub) were the main drivers of soil properties and enzyme activities, while tree-layer effects were weaker. Girdling regulated soil nutrients and biological activity primarily via changes in community structure. These findings highlight the importance of optimizing shrub-layer structure and enhancing diversity for tropical plantation restoration. Combining forest type conversion with moderate interventions can promote coordinated plant–soil development over time. Full article
(This article belongs to the Section Forest Soil)
Show Figures

Figure 1

16 pages, 2916 KB  
Article
Synergistic Regulation of Solvation Shell and Anode Interface by Bifunctional Additives for Stable Aqueous Zinc-Ion Batteries
by Luo Zhang, Die Chen, Chenxia Zhao, Haibo Tian, Gaoda Li, Xiaohong He, Gengpei Xia, Yafan Luo and Dingyu Yang
Nanomaterials 2025, 15(19), 1482; https://doi.org/10.3390/nano15191482 - 28 Sep 2025
Abstract
Aqueous zinc-ion batteries (AZIBs) have attracted significant attention for large-scale energy storage owing to their high safety, low cost, and environmental friendliness. However, issues such as dendrite growth, hydrogen evolution, and corrosion at the zinc anode severely limit their cycling stability. In this [...] Read more.
Aqueous zinc-ion batteries (AZIBs) have attracted significant attention for large-scale energy storage owing to their high safety, low cost, and environmental friendliness. However, issues such as dendrite growth, hydrogen evolution, and corrosion at the zinc anode severely limit their cycling stability. In this study, a “synergistic solvation shell–interfacial adsorption regulation” strategy is proposed, employing potassium gluconate (KG) and dimethyl sulfoxide (DMSO) as composite additives to achieve highly reversible zinc anodes. DMSO integrates into the Zn2+ solvation shell, weakening Zn2+-H2O interactions and suppressing the activity of free water, while gluconate anions preferentially adsorb onto the zinc anode surface, inducing the formation of a robust solid electrolyte interphase (SEI) enriched in Zn(OH)2 and ZnCO3. Nuclear magnetic resonance(NMR), Raman, and Fourier transform infrared spectroscopy(FTIR) analyses confirm the reconstruction of the solvation structure and reduction in water activity, and X-ray photoelectron spectroscopy(XPS) verifies the formation of the SEI layer. Benefiting from this strategy, Zn||Zn symmetric cells exhibit stable cycling for over 1800 h at 1 mA cm−2 and 1 mAh cm−2, and Zn||Cu cells achieve an average coulombic efficiency of 96.39%, along with pronounced suppression of the hydrogen evolution reaction. This work provides a new paradigm for the design of low-cost and high-performance electrolyte additives. Full article
(This article belongs to the Topic Advanced Energy Storage in Aqueous Zinc Batteries)
Show Figures

Figure 1

24 pages, 1263 KB  
Review
Shared and Context-Specific Mechanisms of EMT and Cellular Plasticity in Cancer and Fibrotic Diseases
by Victor Alexandre F. Bastos, Aline Gomes de Souza, Virginia C. Silvestrini Guedes and Thúlio M. Cunha
Int. J. Mol. Sci. 2025, 26(19), 9476; https://doi.org/10.3390/ijms26199476 - 27 Sep 2025
Abstract
Cellular plasticity enables cells to dynamically adapt their phenotype in response to environmental cues, a process central to development, tissue repair, and disease. Among the most studied plasticity programs is epithelial–mesenchymal transition (EMT), a transcriptionally controlled process by which epithelial cells acquire mesenchymal [...] Read more.
Cellular plasticity enables cells to dynamically adapt their phenotype in response to environmental cues, a process central to development, tissue repair, and disease. Among the most studied plasticity programs is epithelial–mesenchymal transition (EMT), a transcriptionally controlled process by which epithelial cells acquire mesenchymal traits. Originally described in embryogenesis, EMT is now recognized as a key driver in both tumor progression and fibrotic remodeling. In cancer, EMT and hybrid epithelial/mesenchymal (E/M) states promote invasion, metastasis, stemness, therapy resistance, and immune evasion. In fibrotic diseases, partial EMT (pEMT) contributes to fibroblast activation and excessive extracellular matrix deposition, sustaining organ dysfunction mainly in the kidney, liver, lung, and heart. This review integrates recent findings on the molecular regulation of EMT, including signaling pathways (TGF-β, WNT, NOTCH, HIPPO), transcription factors (SNAIL, ZEB, TWIST), and regulatory layers involving microRNAs and epigenetic modifications. Moreover, we discuss the emergence of pEMT states as drivers of phenotypic plasticity, functional heterogeneity, and poor prognosis. By comparing EMT in cancer and fibrosis, we reveal shared mechanisms and disease-specific features, emphasizing the translational relevance of targeting EMT plasticity. Finally, we explore how cutting-edge technologies, such as single-cell transcriptomics and lineage tracing, are reshaping our understanding of EMT across pathological contexts. Full article
(This article belongs to the Special Issue Cellular Plasticity and EMT in Cancer and Fibrotic Diseases)
Show Figures

Figure 1

21 pages, 646 KB  
Article
Exploring a Systems-Based Model of Care for Effective Healthcare Transformation: A Narrative Review in Implementation Science of Saudi Arabia’s Vision 2030 Experience
by Nawfal A. Aljerian, Anas Mohammad Almasud, Abdulrahman AlQahtani, Kholood Khaled Alyanbaawi, Sumayyah Faleh Almutairi, Khalaf Awadh Alharbi, Aisha Awdha Alshahrani, Muayad Saud Albadrani and Mohammed K. Alabdulaali
Healthcare 2025, 13(19), 2453; https://doi.org/10.3390/healthcare13192453 - 27 Sep 2025
Abstract
Background: Healthcare systems globally face complex challenges including rising costs, increasing chronic disease burden, and fragmentation of care. Systems-based models represent promising approaches to healthcare transformation, yet their implementation remains incompletely understood. Objective: To critically analyze the Saudi model of Care (MoC) as [...] Read more.
Background: Healthcare systems globally face complex challenges including rising costs, increasing chronic disease burden, and fragmentation of care. Systems-based models represent promising approaches to healthcare transformation, yet their implementation remains incompletely understood. Objective: To critically analyze the Saudi model of Care (MoC) as a case study of systems-based healthcare transformation, examining its conceptual framework, implementation strategies, and projected health outcomes. Methods: We conducted a narrative review synthesizing publicly available official documents on the Saudi MoC, primarily the 2017 overview and 2025 revision, identified through targeted searches of Ministry of Health websites and grey literature portals (no date restrictions); formal quality appraisal was not applied as sources were official policy documents, with bias mitigated through cross-verification and critical analysis. Results: The Saudi MoC exemplifies systems-based transformation through its multi-layered framework organized around six patient-centered systems of care spanning the lifecycle. Key innovations include: (1) an architectural approach integrating activated individuals, healthy communities, virtual care, and traditional clinical settings; (2) a comprehensive intervention taxonomy with 42 specific initiatives; (3) explicit contextual adaptations for diverse settings; and (4) a phased implementation approach with detailed performance metrics. National indicators improved during the reform period, including life expectancy and maternal and child health. These are national trends observed during the period of health reforms. Causal attribution to the Model of Care requires a counterfactual evaluation. Conclusions: This analysis of the Saudi MoC contributes to the literature on systems-based healthcare transformation by illuminating how theoretical principles can be operationalized at national scale. The model’s patient-centered design, comprehensive intervention taxonomy, and attention to implementation factors offer valuable insights for other healthcare systems pursuing transformation. Further research should examine actual implementation outcomes as the model matures. Full article
Show Figures

Figure 1

21 pages, 5252 KB  
Article
Photoactive TiO2 Nanotubes and SILAR-Synthesized PbS/TiO2 Heterojunctions for Tetracycline Antibiotic Photodegradation
by Safa Jemai, Karim Choubani, Anouar Hajjaji, Syrine Sassi, Mohamed Ben Rabha, Mohammed A. Almeshaal, Bernabé Mari Soucase and Brahim Bessais
Inorganics 2025, 13(10), 320; https://doi.org/10.3390/inorganics13100320 - 27 Sep 2025
Abstract
Titanium dioxide nanotubes (TiO2 NTs) decorated with lead sulfide nanoparticles (PbS NPs) were synthesized using the Successive Ionic Layer Adsorption and Reaction (SILAR) method at different number (n) of cycles (where n = 3, 5, and 8) and evaluated for [...] Read more.
Titanium dioxide nanotubes (TiO2 NTs) decorated with lead sulfide nanoparticles (PbS NPs) were synthesized using the Successive Ionic Layer Adsorption and Reaction (SILAR) method at different number (n) of cycles (where n = 3, 5, and 8) and evaluated for tetracycline (TC) photodegradation under UV light. PbS NPs/TiO2 NTs heterojunctions prepared with 5 SILAR cycles showed optimal photocatalytic activity. Also, under optimized conditions, pure TiO2 NTs achieved complete TC photodegradation (99%) within 5 h under UV irradiation, with a proposed degradation mechanism based on holes (h+) and hydroxyl radicals (•OH) as dominant reactive species. Full article
Show Figures

Figure 1

Back to TopTop