Possibility of Implementing Large-Scale Solar Desalination System in the Republic of South Africa
Abstract
:1. Introduction
2. Data Analysis
3. Factors Contributing to Water Scarcity in the Republic of South Africa
4. Desalination Technology in the Republic of South Africa
5. Solar Thermal Desalination Technology
6. Feasibility of Thermal Desalination in South Africa
7. The Proposed Sustainable Desalination Method for the Republic of South Africa
8. Social and Environmental Impacts of Employing Thermal Desalination
9. Conclusions and Future Work Recommendations
Funding
Data Availability Statement
Conflicts of Interest
References
- Spear, D.D.; Haimbili, E.; Baudoin, M.A.D.; Hegga, S.D.; Zaroug, M.D.; Okeyo, A.; Angula, M. Vulnerability and Adaptation to Climate Change in Semi-Arid Areas in South Africa. ASSAR Report. Available online: http://www.assar.uct.ac.za/ (accessed on 10 July 2024).
- South African Government. Geography and Climate. Available online: https://www.gov.za/about-sa/geography-and-climate (accessed on 10 July 2024).
- Thopil, G.A.; Pouris, A. A 20 year forecast of water usage in electricity generation for South Africa amidst water scarce conditions. Renew. Sustain. Energy Rev. 2016, 62, 1106–1121. [Google Scholar] [CrossRef]
- A CSIR Perspective on Water in South Africa. Available online: https://researchspace.csir.co.za (accessed on 10 July 2024).
- Haldenwang, B.B. The State of Water in South Africa—Are We Heading for a Water Crisis. Vol 7. Natural Environment Report. Available online: https://scholar.sun.ac.za (accessed on 10 July 2024).
- Donnenfeld, Z.; Crookes, C.; Hedden, S. A Delicate Balance Water Scarcity in South Africa. Available online: https://media.africaportal.org (accessed on 10 July 2024).
- Kuun, G.F. The Construction of Dams to Ensure Water Security in South Africa. BSc Thesis, University of Pretoria, Pretoria, South Africa, 2009. [Google Scholar]
- Javadi, M.A.; Ghomashi, H. Thermodynamics Analysis and Optimization of Abadan Combined Cycle Power Plant. Indian J. Sci. Technol. 2016, 9, 1–12. [Google Scholar] [CrossRef]
- Zhou, Y.; Tol, R.S.J. Evaluating the costs of desalination and water transport. Water Resour. Res. 2005, 41. [Google Scholar] [CrossRef]
- Kariman, H.; Hoseinzadeh, S.; Heyns, P.S. Energetic and exergetic analysis of evaporation desalination system integrated with mechanical vapor recompression circulation. Case Stud. Therm. Eng. 2019, 16, 100548. [Google Scholar] [CrossRef]
- Hoseinzadeh, S.; Ghasemiasl, R.; Javadi, M.; Heyns, P. Performance evaluation and economic assessment of a gas power plant with solar and desalination integrated systems. Desalination Water Treat. 2020, 174, 11–25. [Google Scholar] [CrossRef]
- Fiorenza, G.; Sharma, V.; Braccio, G. Techno-economic evaluation of a solar powered water desalination plant. Energy Convers. Manag. 2002, 44, 2217–2240. [Google Scholar] [CrossRef]
- Zheng, Y.; Hatzell, K.B. Technoeconomic analysis of solar thermal desalination. Desalination 2020, 474, 114168. [Google Scholar] [CrossRef]
- Yargholi, R.; Kariman, H.; Hoseinzadeh, S.; Bidi, M.; Naseri, A. Modeling and advanced exergy analysis of integrated reverse osmosis desalination with geothermal energy. Water Supply 2020, 20, 984–996. [Google Scholar] [CrossRef]
- Hoseinzadeh, S.; Yargholi, R.; Kariman, H.; Heyns, P.S. Exergoeconomic analysis and optimization of reverse osmosis desalination integrated with geothermal energy. Environ. Prog. Sustain. Energy 2020, 39, e13405. [Google Scholar] [CrossRef]
- Kariman, H.; Hoseinzadeh, S.; Shirkhani, A.; Heyns, P.S.; Wannenburg, J. Energy and economic analysis of evaporative vacuum easy desalination system with brine tank. J. Therm. Anal. Calorim. 2019, 140, 1935–1944. [Google Scholar] [CrossRef]
- Bahadori, M.N. Solar Desalination for Domestic Applications National Research Council. Water Conservation, Reuse, and Recycling: Proceedings of an Iranian-American Workshop; National Academies Press: Washington, DC, USA, 2005; pp. 67–78. [Google Scholar]
- Department of Energy. Forecasts for Electricity Demand in South Africa (2017–2015) Using the CSIR Sectoral Regression Model for the Integrated Resource Plan of South Africa. Available online: http://www.energy.gov.za (accessed on 10 July 2024).
- Jain, S.; Jain, P. The rise of Renewable Energy implementation in South Africa. Energy Procedia 2017, 143, 721–726. [Google Scholar] [CrossRef]
- Plessis, J.A.D.; Burger, A.J.; Swartz, C.D.; Musee, N. A Desalination Guide for South African Municipal Engineers. WRC Report No. TT 266/06; Water Research Commission: Pretoria, South Africa, 2006; Available online: https://wisa.org.za (accessed on 10 July 2024).
- Malaeb, L.; Ayoub, G.M. Reverse osmosis technology for water treatment: State of the art review. Desalination 2011, 267, 1–8. [Google Scholar] [CrossRef]
- Avlonitis, S. Operational water cost and productivity improvements for small-size RO desalination plants. Desalination 2002, 142, 295–304. [Google Scholar] [CrossRef]
- Baudoin, M.-A.; Vogel, C.; Nortje, K.; Naik, M. Living with drought in South Africa: Lessons learnt from the recent El Niño drought period. Int. J. Disaster Risk Reduct. 2017, 23, 128–137. [Google Scholar] [CrossRef]
- DWAF South Africa. Water for Growth & Development Framework. DWAF Report. Available online: https://www.dws.gov.za/WFGD/documents/WfGDv6Nov21.pdf (accessed on 10 July 2024).
- DWAF South Africa. Quality of Domestic Water Supplies. Volume 4: Treatment Guide. Prepared for WCR. WRC Report No TT 181/02. Available online: https://www.wrc.org.za/wp-content/uploads/mdocs/TT-181-02.pdf (accessed on 10 July 2024).
- Turner, K.N.; Naidoo, K.; Theron, J.G.; Broodryk, J. Investigation into the Cost and Operation of South African Desalination and Water Reuse Plants. Volume 2: Current Status of Desalination and Water Reuse in Southern Africa. Prepared for Water Research Commission. WRC Report No TT 637/15. Available online: https://www.wrc.org.za/wp-content/uploads/mdocs/TT%20636-15.pdf (accessed on 10 July 2024).
- Turner, K.N.; Naidoo, K.; Theron, J.G.; Broodryk, J. Investigation into the Cost and Operation of South African Desalination and Water Reuse Plants” 3: Best Practices on Cost and Operation of Desalination and Water Reuse Plants. Prepared for WRC. WRC Report No TT 638/15. 2015. Available online: https://kh.aquaenergyexpo.com/wp-content/uploads/2023/01/INVESTIGATION-INTO-THE-COST-AND-OPERATION-OF-SOUTHERN-AFRICAN-DESALINATION-AND-WATER-REUSE-PLANTS.pdf (accessed on 10 July 2024).
- Laubscher, L.J. Techno Economic Viability of Desalination Processes in South Africa. Master’s Thesis, North-West University, North-West, South Africa, 2011. [Google Scholar]
- Kitley, D. A Costing Analysis of Reverse Osmosis Desalination Plants Powered by Renewable Energy and Their Potential for South Africa. Master’s Thesis, University of Cape Town, Cape Town, South Africa, 2015. [Google Scholar]
- United Nations. Sustainable Development Goals. Goal 6: Clean Water and Sanitation. UN Report. 2015. Available online: https://www.un.org (accessed on 10 July 2024).
- World Health Organization. Guide for Drinking Water Quality. WHO Report. 2017. Available online: https://www.who.int (accessed on 10 July 2024).
- Centre for Environmental Rights. National Water Resource Strategy for South Africa. 2013. Available online: https://cer.org.za (accessed on 10 July 2024).
- Youssef, P.; AL-Dadah, R.; Mahmoud, S. Comparative Analysis of Desalination Technologies. Energy Procedia 2014, 61, 2604–2607. [Google Scholar] [CrossRef]
- Al-Subaie, K.Z. Precise way to select a desalination technology. Desalination 2007, 206, 29–35. [Google Scholar] [CrossRef]
- Bohulu, E.; Ntombela, N.; Low, M.; Ming, D.; Harding, K. Drinking seawater: Investigations into desalination. Procedia Manuf. 2019, 35, 743–748. [Google Scholar] [CrossRef]
- Darwish, M.; Hassabou, A.H.; Shomar, B. Using Seawater Reverse Osmosis (SWRO) desalting system for less environmental impacts in Qatar. Desalination 2013, 309, 113–124. [Google Scholar] [CrossRef]
- Altmann, T.; Robert, J.; Bouma, A.; Swaminathan, J.; Lienhard, J.H. Primary energy and exergy of desalination technologies in a power-water cogeneration scheme. Appl. Energy 2019, 252, 113319. [Google Scholar] [CrossRef]
- Doornbusch, G.J.; Tedesco, M.; Post, W.J.; Borneman, Z.; Nijmeijer, K. Experimental investigation of multistage electrodialysis for seawater desalination. Desalination 2019, 464, 105–114. [Google Scholar] [CrossRef]
- Ghahari, M.; Rashid-Nadimi, S.; Bemana, H. Metal-air desalination battery: Concurrent energy generation and water desalination. J. Power Sources 2019, 412, 197–203. [Google Scholar] [CrossRef]
- Department of Water Affairs. Water Management Areas. South Africa. DWA Report; 2016. Available online: https://www.dws.gov.za (accessed on 10 July 2024).
- Amatola Water. Desalination an Alternative Solution to SA’s Water Supply Challenges. Talking Water Report. Available online: https://www.amatolawater.co.za (accessed on 10 July 2024).
- Patel, M. Desalination in South Africa: Panacea or Peril for Industrial Development? Trade & Industrial Policy Strategies (TIPS) Report. 2018. Available online: https://www.tips.org.za (accessed on 10 July 2024).
- Scheba, S.; Scheba, A. Desalination as Emergency Fix: Tracing the Drought–Desalination Assemblage in South Africa. In Tapping the Oceans Seawater Desalination and the Political Ecology of Water; Williams, J., Swyngedouw, E., Eds.; Edward Elgar Publishing Limited: Cheltenham, UK, 2018; p. 98. Available online: https://www.elgaronline.com/view/edcoll/9781788113809/9781788113809.00011.xml (accessed on 10 July 2024).
- Blersch, C.L.; Plessis, J.A.D. Planning for desalination in the context of the Western Cape water supply system. J. S. Afr. Inst. Civ. Eng. 2017, 59, 11–21. [Google Scholar] [CrossRef]
- van Tonder, D.; Fourie, C.J.S.; Maree, J.M. Development of a Solar Desalination Plant. S. Afr. J. Geol. 2016, 119, 39–46. [Google Scholar] [CrossRef]
- Ylänen, M. Wave Powered Desalination by Reverse Osmosis—A Feasibility Study. Master’s Thesis, Aalto University, Helsinki, Finland, 2012. [Google Scholar]
- Randall, D.; Nathoo, J.; Lewis, A. A case study for treating a reverse osmosis brine using Eutectic Freeze Crystallization—Approaching a zero waste process. Desalination 2011, 266, 256–262. [Google Scholar] [CrossRef]
- Goga, T.; Friedrich, E.; Buckley, C. A LCA (Life Cycle Assessment) Comparison of Wastewater Reclamation and Desalination for the eThekwini Municipality—A Theoretical Study. 2016. Available online: https://t4t9c2n6.stackpathcdn.com/wp-content/uploads/2020/11/wisa_2016-lca-paper_taahira.pdf (accessed on 10 July 2024).
- Moorcroft, M. Richards Bay Desalination Plant Officially Up and Running. Zululand Observer. 2017. Available online: https://zululandobserver.co.za/ (accessed on 10 July 2024).
- Ngobese, H. Desalination Plant Relieves KZN Drought. Vuk’uzenzele; 2017. Available online: https://www.vukuzenzele.gov.za/ (accessed on 10 July 2024).
- Guo, P.; Li, T.; Li, P.; Zhai, Y.; Li, J. Study on a novel spray-evaporation multi-effect distillation desalination system. Desalination 2020, 473, 114195. [Google Scholar] [CrossRef]
- Donato, L.; Garofalo, A.; Drioli, E.; Alharbi, O.; Aljlil, S.A.; Criscuoli, A.; Algieri, C. Improved performance of vacuum membrane distillation in desalination with zeolite membranes. Sep. Purif. Technol. 2020, 237, 116376. [Google Scholar] [CrossRef]
- Sahu, P.; Krishnaswamy, S.; Pande, N. Process intensification using a novel continuous U-shaped crystallizer for freeze desalination. Chem. Eng. Process.—Process Intensif. 2020, 153, 107970. [Google Scholar] [CrossRef]
- Leyland, D.; Chivavava, J.; Lewis, A.E. Investigations into ice scaling during eutectic freeze crystallization of brine streams at low scraper speeds and high supersaturation. Sep. Purif. Technol. 2019, 220, 33–41. [Google Scholar] [CrossRef]
- Aboagye, B.; Gyamfi, S.; Ofosu, E.A.; Djordjevic, S. Status of renewable energy resources for electricity supply in Ghana. Sci. Afr. 2021, 11, e00660. [Google Scholar] [CrossRef]
- Antwi, S.H.; Ley, D. Renewable energy project implementation in Africa: Ensuring sustainability through community acceptability. Sci. Afr. 2021, 11, e00679. [Google Scholar] [CrossRef]
- Azouzoute, A.; El Ydrissi, M.; Elmaazouzi, Z.; Benhaddou, M.; Salihi, M.; Hajjaj, C.; Garoum, M. Thermal production and heat cost analysis of the potential of solar concentrators for industrial process applications: A case study in six sites in Morocco. Sci. Afr. 2021, 12, e00765. [Google Scholar] [CrossRef]
- Takyi, G.; Laryea, O.G. Comparative study of the performance of solar photovoltaic module technologies installed in Kumasi, Ghana, in Sub-Saharan Africa. Sci. Afr. 2021, 13, e008772021. [Google Scholar] [CrossRef]
- Javadi, M.A.; Ahmadi, M.H.; Khalaji, M. Exergetic, economic, and environmental analyses of combined cooling and power plants with parabolic solar collector. Environ. Prog. Sustain. Energy 2019, 39, e13322. [Google Scholar] [CrossRef]
- Andrés-Mañas, J.; Roca, L.; Ruiz-Aguirre, A.; Acién, F.; Gil, J.; Zaragoza, G. Application of solar energy to seawater desalination in a pilot system based on vacuum multi-effect membrane distillation. Appl. Energy 2020, 258, 114068. [Google Scholar] [CrossRef]
- Sarbatly, R.; Chiam, C. Evaluation of geothermal energy in desalination by vacuum membrane distillation. Appl. Energy 2013, 112, 737–746. [Google Scholar] [CrossRef]
- Mohammadi, K.; Saghafifar, M.; Ellingwood, K.; Powell, K. Hybrid concentrated solar power (CSP)-desalination systems: A review. Desalination 2019, 468, 114083. [Google Scholar] [CrossRef]
- Aboelmaaref, M.M.; Zayed, M.E.; Zhao, J.; Li, W.; Askalany, A.A.; Ahmed, M.S.; Ali, E.S. Hybrid solar desalination systems driven by parabolic trough and parabolic dish CSP technologies: Technology categorization, thermodynamic performance and economical assessment. Energy Convers. Manag. 2020, 220, 113103. [Google Scholar] [CrossRef]
- Omara, Z.M.; Eltawil, M.A. Hybrid of solar dish concentrator, new boiler and simple solar collector for brackish water desalination. Desalination 2013, 326, 62–68. [Google Scholar] [CrossRef]
- Chaibi, M.T. An overview of solar desalination for domestic and agriculture water needs in remote arid areas. Desalination 2000, 127, 119–133. [Google Scholar] [CrossRef]
- Bouchekima, B. A small solar desalination plant for the production of drinking water in remote arid areas of southern Algeria. Desalination 2003, 159, 197–204. [Google Scholar] [CrossRef]
- Bhattacharyya, A. Solar Stills for Desalination of Water in Rural Households. Int. J. Environ. Sustain. 2013, 2, 2. [Google Scholar] [CrossRef]
- Panchal, H.; Sadasivuni, K.K.; Prajapati, C.; Khalid, M.; Essa, F.A.; Shanmugan, S.; Pandya, N.; Suresh, M.; Israr, M.; Dharaskar, S.; et al. Productivity enhancement of solar still with thermoelectric modules from groundwater to produce potable water: A review. Groundw. Sustain. Dev. 2020, 11, 100429. [Google Scholar] [CrossRef]
- Varun, A.K. Solar stills: A review. Renew. Sustain. Energy Rev. 2010, 14, 446–453. [Google Scholar]
- McCracken, H.; Gordes, J. Understanding Solar Stills, VITA Publications. Available online: https://pdf.usaid.gov/pdf_docs/pnabc961.pdf (accessed on 10 July 2024).
- Arunkumar, T.; Vinothkumar, K.; Ahsan, A.; Jayaprakash, R.; Kumar, S. Experimental Study on Various Solar Still Designs. ISRN Renew. Energy 2012, 2012, 1–10. [Google Scholar] [CrossRef]
- Kabeel, A.E.; Abdelgaied, M. Performance enhancement of modified solar still using multi-groups of two coaxial pipes in basin. Appl. Therm. Eng. 2017, 118, 23–32. [Google Scholar] [CrossRef]
- Alwan, N.T.; Shcheklein, S.E.; Ali, O.M. Experimental investigation of modified solar still integrated with solar collector. Case Stud. Therm. Eng. 2020, 19, 100614. [Google Scholar] [CrossRef]
- Narayanan, S.; Yadav, A.; Khaled, M. A concise review on performance improvement of solar stills. SN Appl. Sci. 2020, 2, 511. [Google Scholar] [CrossRef]
- Maliani, O.D.; Bekkaoui, A.; Baali, E.H.; Guissi, K.; El Fellah, Y.E.I.; Errais, R. Investigation on novel design of solar still coupled with two axis solar tracking system. Appl. Therm. Eng. 2020, 172, 115144. [Google Scholar] [CrossRef]
- Doyle, A. First Solar-Powered Desalination Plant for South Africa, The Chemical Engineer. Available online: https://www.thechemicalengineer.com/news/ (accessed on 10 July 2024).
- Creamer Media’s Engineering News. Africa’s First Solar-Powered Desalination Plant Passes 10 000 kl Mark. Available online: https://m.engineeringnews.co.za (accessed on 10 July 2024).
- Siddique, M.; Turkmen, N.; Al-Rabghi, O.M.; Shabana, E.; Albeirutty, M.H. Small-scale low pressure ‘single effect distillation’ and ‘single stage flash’ solar driven barometric desalination units: A comparative analysis. Desalination 2018, 444, 53–62. [Google Scholar] [CrossRef]
- Municipal and industrial sectors drive South African desalination plant markets. Membr. Technol. 2007, 2007, 8–9. [CrossRef]
- Pugsley, A.; Zacharopoulos, A.; Mondol, J.D.; Smyth, M. Global applicability of solar desalination. Renew. Energy 2016, 88, 200–219. [Google Scholar] [CrossRef]
- Pouyfaucon, A.B.; García-Rodríguez, L. Solar thermal-powered desalination: A viable solution for a potential market. Desalination 2018, 435, 60–69. [Google Scholar] [CrossRef]
- Al-Othman, A.; Tawalbeh, M.; El Haj Assad, M.; Alkayyali, T.; Eisa, A. Novel multi-stage flash (MSF) desalination plant driven by parabolic trough collectors and a solar pond: A simulation study in UAE. Desalination 2018, 443, 237–244. [Google Scholar] [CrossRef]
- Alsaman, A.S.; Askalany, A.A.; Harby, K.; Ahmed, M.S. Performance evaluation of a solar-driven adsorption desalination-cooling system. Energy 2017, 128, 196–207. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, Y.; Xu, G.; Ren, J. Sustainable desalination process selection: Decision support framework under hybrid information. Desalination 2019, 465, 44–57. [Google Scholar] [CrossRef]
- Advisian Worley Group. The Cost of Desalination. Available online: https://www.advisian.com (accessed on 10 July 2024).
- Alnajdi, O.; Calautit, J.K.; Wu, Y. Development of a multi-criteria decision making approach for sustainable seawater desalination technologies of medium and large-scale plants: A case study for Saudi Arabia’s vision 2030. Energy Procedia 2019, 158, 4274–4279. [Google Scholar] [CrossRef]
- Eusebio, R.C.P.; Huelgas-Orbecido, A.P.; Promentilla, M.A.B. Optimal Selection of Desalination Systems using Fuzzy AHP and Grey Relational Analysis. Chem. Eng. Trans. 2016, 52, 649–654. [Google Scholar]
- Vivekh, P.; Sudhakar, M.; Srinivas, M.; Vishwanthkumar, V. Desalination technology selection using multi-criteria evaluation: TOPSIS and PROMETHEE. Int. J. Low-Carbon Technol. 2017, 12, 24–35. [Google Scholar] [CrossRef]
- Tsiourtis, N.X. Criteria and procedure for selecting a site for a desalination plant. Desalination 2008, 221, 114–125. [Google Scholar] [CrossRef]
- Ayoub, G.; Malaeb, L. Economic feasibility of a solar still desalination system with enhanced productivity. Desalination 2014, 335, 27–32. [Google Scholar] [CrossRef]
- Ghassemi, S.; Danesh, S. A hybrid fuzzy multi-criteria decision making approach for desalination process selection. Desalination 2013, 313, 44–50. [Google Scholar] [CrossRef]
- Global Solar Atlas. Available online: https://globalsolaratlas.info/map (accessed on 10 July 2024).
- Gorjian, S.; Ghobadian, B. Solar desalination: A sustainable solution to water crisis in Iran. Renew. Sustain. Energy Rev. 2015, 48, 571–584. [Google Scholar] [CrossRef]
- Eke, J.; Yusuf, A.; Giwa, A.; Sodiq, A. The global status of desalination: An assessment of current desalination technologies, plants and capacity. Desalination 2020, 495, 114633. [Google Scholar] [CrossRef]
- Alsadaie, S.M.; Mujtaba, I.M. Dynamic modelling of Heat Exchanger fouling in multistage flash (MSF) desalination. Desalination 2017, 409, 47–65. [Google Scholar] [CrossRef]
- Al-Karaghouli, A.; Kazmerski, L.L. Energy consumption and water production cost of conventional and renewable-energy-powered desalination processes. Renew. Sustain. Energy Rev. 2013, 24, 343–356. [Google Scholar] [CrossRef]
- Aquarius Sea Surface Salinity from Space. Available online: https://aquarius.oceansciences.org/cgi/gal_salinity.htm (accessed on 10 July 2024).
- Rencken, G. Largest sea-water desalination plant in South Africa is supplied in record time. Membr. Technol. 2011, 2011, 9. [Google Scholar] [CrossRef]
- Atab, M.S.; Smallbone, A.J.; Roskilly, A.J. A hybrid reverse osmosis/adsorption desalination plant for irrigation and drinking water. Desalination 2018, 444, 44–52. [Google Scholar] [CrossRef]
- Mitra, S.; Srinivasan, K.; Kumar, P.; Murthy, S.S.; Dutta, P. Solar Driven Adsorption Desalination System. Energy Procedia 2014, 49, 2261–2269. [Google Scholar] [CrossRef]
- Giacomelli, C.E.; Norde, W. The Adsorption–Desorption Cycle. Reversibility BSA–Silica Syst. J. Colloid Interface Sci. 2001, 233, 234–240. [Google Scholar] [CrossRef]
- Olkis, C.; Brandani, S.; Santori, G. A small-scale adsorption desalinator. Energy Procedia 2019, 158, 1425–1430. [Google Scholar] [CrossRef]
- Alnajdi, O.; Wu, Y.; Calautit, J.K.K. Toward a Sustainable Decentralized Water Supply: Review of Adsorption Desorption Desalination (ADD) and Current Technologies: Saudi Arabia (SA) as a Case Study. Water 2020, 12, 1111. [Google Scholar] [CrossRef]
- Ng, K.C.; Thu, K.; Kim, Y.; Chakraborty, A.; Amy, G. Adsorption desalination: An emerging low-cost thermal desalination method. Desalination 2013, 308, 161–179. [Google Scholar] [CrossRef]
- Atab, M.S.S.; Smallbone, A.J.; Roskilly, A.P. An operational and economic study of a reverse osmosis desalination system for potable water and land irrigation. Desalination 2016, 397, 174–184. [Google Scholar] [CrossRef]
- Harby, K.; Emad, M.; Benghanem, M.; Abolibda, T.Z.; Almohammadi, K.; Aljabri, A.; Alsaiari, A.; Elgendi, M. Reverse osmosis hybridization with other desalination techniques: An overview and opportunities. Desalination 2024, 581, 117600. [Google Scholar] [CrossRef]
- Zheng, X.; Wang, S.; Wan, T. Composites (LiCl + CH3COONa)/ACF/SiO2 for multicyclic adsorption-based atmospheric water harvesting. Solar Energy 2023, 262, 111919. [Google Scholar] [CrossRef]
- Mavukkandy, M.O.; Chabib, C.M.; Mustafa, I.; Al Ghaferi, A.; AlMarzooqi, F. Brine management in desalination industry: From waste to resources generation. Desalination 2019, 472, 114187. [Google Scholar] [CrossRef]
- Ihsanullah, I.; Atieh, M.A.; Sajid, M.; Nazal, M.K. Desalination and environment: A critical analysis of impacts, mitigation strategies, and greener desalination technologies. Sci. Total Environ. 2021, 780, 146585. [Google Scholar] [CrossRef]
- Balfaqih, H.; Al-Nory, M.; Nopiah, Z.; Saibani, N. Environmental and economic performance assessment of desalination supply chain. Desalination 2017, 406, 2–9. [Google Scholar] [CrossRef]
- Ogunbiyi, O.; Saththasivam, J.; Al-Masri, D.; Manawi, Y.; Lawler, J.; Zhang, X.; Liu, Z. Sustainable brine management from the perspectives of water, energy and mineral recovery: A comprehensive review. Desalination 2021, 513, 115055. [Google Scholar] [CrossRef]
- Soliman, M.N.; Guen, F.Z.; Ahmed, S.A.; Saleem, H.; Khalil, M.J.; Zaidi, S.J. Energy consumption and environmental impact assessment of desalination plants and brine disposal strategies. Process Saf. Environ. Prot. 2021, 147, 589–608. [Google Scholar] [CrossRef]
- Panagopoulos, A.; Haralambous, K.-J. Environmental impacts of desalination and brine treatment—Challenges and mitigation measures. Mar. Pollut. Bull. 2020, 161, 111773. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions, or products referred to in the content. |
Review Aspects | Number of Documents | Refined Documents |
---|---|---|
Background to study | 70 | 23 |
Water scarcity in the RSA | 33 | 13 |
Conventional water systems in the RSA | 20 | 6 |
Desalination progress in the RSA | 35 | 20 |
Adsorption desalination | 35 | 10 |
Solar tensity and seawater salinity | 60 | 26 |
Social and environmental | 15 | 6 |
WHO-Acceptable Salinity in Potable Water (in ppt) | MENA Coast Average Seawater Salinity (in ppt) | RSA Coast Average Seawater Salinity (in ppt) |
---|---|---|
0.5 | 36–40 | 35–35.8 |
MENA Solar Irradiation (kWh/m2) | RO Desal. Energy Consumption Electrically Driven (kWh/m3) | Adsorption Desal. Energy Consumption Thermally Driven (kWh/m3) | MED Desal. Energy Consumption Thermally Driven (kWh/m3) | MSF Desal. Energy Consumption Thermally Driven (kWh/m3) |
---|---|---|---|---|
3.5–5.5 | 3.5–8 | 38.8 | 40.3–63.9 | 52.8–78.3 |
Parameters | Adsorption Desalination | RO Desalination | Ref. |
---|---|---|---|
Max TDS in feed water ×103 (ppm) | 67 | 45 | [32] |
Min TDS in Water produced (ppm) | 10 | 10 | [32] |
Electrical energy required kWh/m3 | ≤1.38 | 3.5–8 | [32,104] |
Thermal energy required kWh/m3 | ≤38.8 | n/a | [104] |
Daily water production (L/day) | 3.9–7.7 | 26,000–50,000 | [106,107] |
Cost of water production (USD/m3) | 0.2 | 0.49–0.75 | [32,105] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Msomi, V. Possibility of Implementing Large-Scale Solar Desalination System in the Republic of South Africa. Water 2024, 16, 2465. https://doi.org/10.3390/w16172465
Msomi V. Possibility of Implementing Large-Scale Solar Desalination System in the Republic of South Africa. Water. 2024; 16(17):2465. https://doi.org/10.3390/w16172465
Chicago/Turabian StyleMsomi, Velaphi. 2024. "Possibility of Implementing Large-Scale Solar Desalination System in the Republic of South Africa" Water 16, no. 17: 2465. https://doi.org/10.3390/w16172465
APA StyleMsomi, V. (2024). Possibility of Implementing Large-Scale Solar Desalination System in the Republic of South Africa. Water, 16(17), 2465. https://doi.org/10.3390/w16172465