Hydraulic Conductivity Estimation: Comparison of Empirical Formulas Based on New Laboratory Experiments
Abstract
:1. Introduction
2. Materials and Methods
2.1. Model Structure
2.2. Materials
- (i)
- Gravel (particles with dimensions of 2 to 63 mm),
- (ii)
- Sand (particles with dimensions of 0.063 to 2 mm),
- (iii)
- Silt (particles with dimensions of 0.002 to 0.063 mm), and
- (iv)
- Clay (particles smaller than 0.002 mm).
- (i)
- d10 (the diameter of which the dimensions of 10% of the sieved particles are smaller. As such, 90% of particles are larger than this size. d10 is known as “Effective size”),
- (ii)
- d20 (the diameter of which 20% of the sieved particles are smaller), and
- (iii)
- d50 (the diameter of which 50% of the sieved particles are smaller).
2.3. Experimental Processes
2.4. Experimental Formulas
3. Results
4. Discussion
- (1)
- Hazen’s formula is suitable for estimating K for the soil samples.
- (2)
- Breyer’s formula provides acceptable predictions of K for soils with 0.06 ≤ de ≤ 0.6 mm, and with CU ranging from 1 to 20.
- (3)
- Slichter, USBR, and Terzaghi’s formulas usually underestimate K.
- (4)
- A&S is very sensitive to the shape of the granulation curve and should be used carefully.
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Xue, P.; Wen, Z.; Zhao, D.; Jakada, H.; Liang, X. Determination of hydraulic conductivity and its spatial variability in the Jianghan Plain using a multi-format, multi-method approach. J. Hydrol. 2021, 594, 125917. [Google Scholar] [CrossRef]
- Kozlowski, T.; Ludynia, A. Permeability Coefficient of Low Permeable Soils as a Single-Variable Function of Soil Parameter. Water 2019, 11, 2500. [Google Scholar] [CrossRef]
- Mishra, P.N.; Scheuermann, A.; Li, L. Evaluation of Hydraulic Conductivity Functions of Saturated Soft Soils. Int. J. Geomech. 2020, 20, 04020214. [Google Scholar] [CrossRef]
- Tao, G.; Peng, P.; Chen, Q.; Nimbalkar, S.; Huang, Z.; Peng, Y.; Zhao, W. A new fractal model for nonlinear seepage of saturated clay considering the initial hydraulic gradient of microscopic seepage channels. J. Hydrol. 2023, 625, 130055. [Google Scholar] [CrossRef]
- Goodarzi, M.R.; Vazirian, M. A machine learning approach for predicting and localizing the failure and damage point in sewer networks due to pipe properties. J. Water Health 2024, 22, 487–509. [Google Scholar] [CrossRef]
- Koka, D.; Kargas, G.; Londra, P.A. Comparison of Soil Hydraulic Properties Estimated by Steady- and Unsteady-Flow Methods in the Laboratory. Water 2023, 15, 3554. [Google Scholar] [CrossRef]
- Rabinovich, A.; Guy, D. Equivalent Hydraulic Conductivity of Heterogeneous Aquifers Estimated by Multi-Frequency Oscillatory Pumping. Sustainability 2023, 15, 13124. [Google Scholar] [CrossRef]
- Akhter, G.; Ge, Y.; Hasan, M.; Shang, Y. Estimation of Hydrogeological Parameters by Using Pumping, Laboratory Data, Surface Resistivity and Thiessen Technique in Lower Bari Doab (Indus Basin), Pakistan. Appl. Sci. 2022, 12, 3055. [Google Scholar] [CrossRef]
- Miedema, S.A. A head loss model for homogeneous slurry transport for medium sized particles. J. Hydrol. Hydromech. 2015, 63, 1–12. [Google Scholar] [CrossRef]
- Kasenow, M. Determination of Hydraulic Conductivity from Grain Size Analysis; Water Resources Publication: Highland Ranch, CO, USA, 2002. [Google Scholar]
- Adjuik, T.A.; Nokes, S.E.; Montross, M.D.; Walton, R.; Wendroth, O. Laboratory Determination of the Impact of Incorporated Alkali Lignin-Based Hydrogel on Soil Hydraulic Conductivity. Water 2022, 14, 2516. [Google Scholar] [CrossRef]
- Goodarzi, M.R.; Poorattar, M.J.; Vazirian, M.; Talebi, A. Evaluation of a weather forecasting model and HEC-HMS for flood forecasting: Case study of Talesh catchment. Appl. Water Sci. 2024, 14, 34. [Google Scholar] [CrossRef]
- Schulze-Makuch, D.; Cherkauer, D.S. Scale behavior of hydraulic conductivity during a pumping test. IAHS Publ. 1995, 226, 141–146. [Google Scholar]
- Li, Y.; Zhou, Z.; Zhuang, C.; Dou, Z. Estimating Hydraulic Parameters of Aquifers Using Type Curve Analysis of Pumping Tests with Piecewise-Constant Rates. Water 2023, 15, 1661. [Google Scholar] [CrossRef]
- Vukovic, M.; Soro, A. Determination of Hydraulic Conductivity of Porous Media from Grain-Size Composition; Water Resources Publication LLC: Highland Ranch, CO, USA, 1992. [Google Scholar]
- Botros, F.; Hassan, A.; Pohll, G. Assessment of hydraulic conductivity upscaling techniques and associated uncertainty. In Proceedings of the XVI International Conference on Computational Methods in Water Resources, Copenhagen, Denmark, 18–22 June 2006. [Google Scholar]
- El-Daly, A.A.; Farag, N.O. Hydraulic Conductivity: Comparison Between Field Testing and Indirect Techniques. In GeoCongress 2006: Geotechnical Engineering in the Information Technology Age; ASCE: Reston, VA, USA, 2006; Volume 2006, pp. 1–6. [Google Scholar] [CrossRef]
- Odong, J. Evaluation of Empirical Formulae for Determination of Hydraulic Conductivity Based on Grain-Size Analysis. J. Am. Sci. 2007, 3, 54–60. [Google Scholar] [CrossRef]
- Cheong, J.-Y.; Hamm, S.-Y.; Kim, H.-S.; Ko, E.-J.; Yang, K.; Lee, J.-H. Estimating hydraulic conductivity using grain-size analyses, aquifer tests, and numerical modeling in a riverside alluvial system in South Korea. Hydrogeol. J. 2008, 16, 1129. [Google Scholar] [CrossRef]
- Goodarzi, M.R.; Vazirian, M. A geostatistical approach to estimate flow duration curve parameters in ungauged basins. Appl. Water Sci. 2023, 13, 178. [Google Scholar] [CrossRef]
- Sun, D.; Luo, N.; Vandenhoff, A.; McCall, W.; Zhao, Z.; Wang, C.; Rudolph, D.L.; Illman, W.A. Evaluation of Hydraulic Conductivity Estimates from Various Approaches with Groundwater Flow Models. Groundwater 2023, 62, 384–404. [Google Scholar] [CrossRef]
- Motaman, F.; Rakhshandehroo, G.R.; Hashemi, M.R.; Niazkar, M. Application of RBF-DQ Method to Time-Dependent Analysis of Unsaturated Seepage. Transp. Porous Media 2018, 125, 543–564. [Google Scholar] [CrossRef]
- Hala, M.; Petrula, L.; Alhasan, Z. Comparison of Hydraulic Conductivity Values Obtained from Empirical Formulae and Laboratory Experiments. Acta Univ. Agric. Silvic. Mendel. Brun. 2020, 68, 669–678. [Google Scholar] [CrossRef]
- Wu, Y.-S.; Lee, C.-H.; Yu, J.-L. Effects of Hydraulic Variables and Well Construction on Horizontal Borehole Flowmeter Measurements. Groundwater Monit. Remediat. 2008, 28, 65–74. [Google Scholar] [CrossRef]
- Hanif, M.H.; Adnan, M.; Shah, S.A.R.; Khan, N.M.; Nadeem, M.; Javed, J.; Akbar, M.W.; Farooq, A.; Waseem, M. Rainfall Runoff Analysis and Sustainable Soil Bed Optimization Engineering Process: Application of an Advanced Decision-Making Technique. Symmetry 2019, 11, 1224. [Google Scholar] [CrossRef]
- Day, R.W. Geotechnical Engineer’s Portable Handbook, 2nd ed.; McGraw-Hill Education: New York, NY, USA, 2012; Available online: https://www.accessengineeringlibrary.com/content/book/9780071789714 (accessed on 1 March 2023).
- Mallet, C.; Pacquant, J. Les Barrages en Terre; Eyrolles: Paris, France, 1951; Available online: https://books.google.com/books?id=dxqq0AEACAAJ (accessed on 1 March 2023).
- Cheng, C.; Chen, X. Evaluation of methods for determination of hydraulic properties in an aquifer-aquitard system hydrologically connected to a river. Hydrogeol. J. 2007, 15, 669–678. [Google Scholar] [CrossRef]
- Hazen, A. Discussion: Dams on sand foundations. Trans. Am. Soc. Civ. Eng. 1911, 73, 11. [Google Scholar]
- Hazen, R.A. Some physical properties of sand and gravels, with special reference to their use in filtration. 24th Ann. Rep. Mass. State Board Health Boston 1982, 1982, 539–556. [Google Scholar]
- Kozeny, J. Ueber kapillare leitung des wassers im boden. Sitzungsberichte Akad. Wiss. Wien 1927, 136, 271. [Google Scholar]
- Carman, P.C. Fluid Flow through Granular Beds. Trans. Inst. Chem. Eng. 1937, 15, 150. [Google Scholar] [CrossRef]
- Carman, P.C. Flow of Gases through Porous Media; London SE—IX, 22 cm; Butterworths Scientific Publications: London, UK, 1956; 182p, Available online: https://worldcat.org/title/911950680 (accessed on 20 October 2023).
- Breyer, W. Zur Bestimmung der Wasserdurchlässigkeit von Kiesen und Sanden aus der Kornverteilung. Wasserwirtsch. Wassertech. 1964, 14, 165–169. [Google Scholar]
- Slichter, C. Theoretical Investigation of the Motion of Ground Waters, Part 2; United States Government Printing Office: Washington, DC, USA, 1899.
- Terzaghi, K.; Peck, R.B. Soil Mechanics in Engineering Practice; Wiley: New York, NY, USA, 1964; Volume 14. [Google Scholar]
- Alyamani, M.S.; Şen, Z. Determination of hydraulic conductivity from complete grain-size distribution curves. Groundwater 1993, 31, 551–555. [Google Scholar] [CrossRef]
- Sauerbrey, I.I. On the Problem and Determination of the Permeability Coefficient. Proc. VNIIG. 1932, 3–5, 115–145. (In Russian) [Google Scholar]
- Cabalar, A.F.; Akbulut, N. Evaluation of actual and estimated hydraulic conductivity of sands with different gradation and shape. SpringerPlus 2016, 5, 820. [Google Scholar] [CrossRef]
- Ishaku, J.M.; Gadzama, E.; Kaigama, U. Evaluation of empirical formulae for the determination of hydraulic conductivity based on grain-size analysis. J. Geol. Min. Res. 2011, 3, 105–113. [Google Scholar]
- Sahu, S.; Saha, D. Empirical Methods and Estimation of Hydraulic Conductivity of Fluvial Aquifers. Environ. Eng. Geosci. 2016, 22, 319–340. [Google Scholar] [CrossRef]
- Hussain, F.; Nabi, G. Empirical formulae evaluation for hydraulic conductivity determination based on grain size analysis. Pyrex J. Res. Environ. Stud. 2016, 3, 26–32. [Google Scholar]
- Chandel, A.; Shankar, V. Assessment of Hydraulic Conductivity of Porous Media Using Empirical Relationships. In Modeling of Sediment Transport; IntechOpen: London, UK, 2022. [Google Scholar] [CrossRef]
Soil Type | A | B | C | D | E | F |
---|---|---|---|---|---|---|
K (mm/s) | 4.02 | 5.93 | 6.95 | 7.73 | 8.19 | 8.78 |
K (mm/s) | Soil A | Soil B | Soil C | Soil D | Soil E | Soil F | RMSE |
---|---|---|---|---|---|---|---|
USBR | 1.53 | 1.69 | 1.89 | 2.15 | 3.93 | 4.3 | 4.46 |
Hazen | 3.6 | 3.88 | 4.12 | 4.62 | 5.29 | 8.46 | 2.26 |
Modified Hazen | 4.19 | 4.54 | 5.03 | 5.44 | 6.12 | 9.6 | 1.62 |
K-C | 2.36 | 2.61 | 2.98 | 3.11 | 3.68 | 5.24 | 3.74 |
Breyer | 4.01 | 4.53 | 4.8 | 5.07 | 6.71 | 9.53 | 1.65 |
Sauerbrey | 1.68 | 1.77 | 2.19 | 2.34 | 2.89 | 4.01 | 1.95 |
Laboratory data (this study) | 4.02 | 5.93 | 6.95 | 7.73 | 8.19 | 8.78 | - |
1 (Best) | 2 | 3 | 4 | 5 | 6 | 7 (Worst) | |
---|---|---|---|---|---|---|---|
Cabalar [39] | USBR | Slichter | Chapuis | Terzaghi | A-S | Breyer | Hazen |
Ishaku [40] | Terzaghi | K-C | Hazen | Breyer | Slichter | USBR | - |
Odong [18] | K-C | Breyer | Slichter | USBR | Terzaghi | A-S | Hazen |
Sahu [41] | Hazen | Breyer | Slichter | Terzaghi | K-C | USBR | A-S |
Hussain [42] | K-C | Hazen | Breyer | Slichter | Terzaghi | USBR | A-S |
Laboratory data (this study) | Hazen (modified) | Breyer | Sauerbrey | Hazen | K-C | USBR | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goodarzi, M.R.; Vazirian, M.; Niazkar, M. Hydraulic Conductivity Estimation: Comparison of Empirical Formulas Based on New Laboratory Experiments. Water 2024, 16, 1854. https://doi.org/10.3390/w16131854
Goodarzi MR, Vazirian M, Niazkar M. Hydraulic Conductivity Estimation: Comparison of Empirical Formulas Based on New Laboratory Experiments. Water. 2024; 16(13):1854. https://doi.org/10.3390/w16131854
Chicago/Turabian StyleGoodarzi, Mohammad Reza, Majid Vazirian, and Majid Niazkar. 2024. "Hydraulic Conductivity Estimation: Comparison of Empirical Formulas Based on New Laboratory Experiments" Water 16, no. 13: 1854. https://doi.org/10.3390/w16131854
APA StyleGoodarzi, M. R., Vazirian, M., & Niazkar, M. (2024). Hydraulic Conductivity Estimation: Comparison of Empirical Formulas Based on New Laboratory Experiments. Water, 16(13), 1854. https://doi.org/10.3390/w16131854