Experimental Study on the Clogging Performance of Waste Slag
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Characteristics
2.2. Experimental Design and Apparatus
2.3. Experimental Procedure and Data Analysis
3. Results and Discussions
3.1. Determination of the Fine Particle Size Resulting in Clogging for Coarse Slags
3.2. Clogging Assessment Criterion Based on Different Methods for Coarse Slag and Relevant Parameter Modification
3.3. Prediction and Verification of the Clogging Particle Size of Graded Distribution Slags
3.3.1. Some Explanations Based on the Clogging Experiments of Graded Distribution Slags
3.3.2. Experimental Verification of Graded Distribution Slags Clogging
4. Summary and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Valenta, R.K.; Lèbre, É.; Antonio, C. Decarbonisation to drive dramatic increase in mining waste-Options for reduction. Resour. Conserv. Recycl. 2023, 190, 106859. [Google Scholar] [CrossRef]
- Zhu, X.-H.; Cui, Y.-F.; Peng, J.-B. Erosion and transport mechanisms of mine waste along gullies. J. Mt. Sci. 2019, 16, 402–413. [Google Scholar] [CrossRef]
- Yan, Y.; Hu, S.; Zhou, K.-L.; Jin, W.; Ma, N.; Zeng, C. Hazard characteristics and causes of the “7.22” 2021 debris flow in Shenshuicao gully, Qilian Mountains, NW China. Landslides 2023, 20, 111–125. [Google Scholar] [CrossRef]
- Zhang, W.-X. Research on the Development Law and Initiation Mechanism of Mine Slag Debris. Master’s Thesis, North China University of Water Resources and Electric Power, Zheng Zhou, China, May 2017. [Google Scholar]
- Zhu, X.-H.; Zhuang, J.-Q.; Li, Y.-Z.; Zhang, L.-Y. Model Test on Sediment Discharge Rate of Debris Flow Induced by Mine Waste. J. Yangtze River Sci. Res. Inst. 2017, 34, 41–46. [Google Scholar]
- Deng, L.-S.; Fan, W.; Xiong, W.; Yan, F.-R. Development Features and Risk of Inducing Slag Debris Flow at Daxicha Gully. Eng. Geol. 2009, 17, 415–420. [Google Scholar]
- Xu, Y.-N.; Chen, H.-Q.; Yang, M.; Ke, H.-L.; Zhang, J.-H.; Liu, R.-P.; Qiao, G. Controlling role of particle sizes of mining waste residues in the initiation of mine debris flow: A case study of the Xiaoqinling gold mining area. Geol. Bull. China 2015, 34, 1993–2000. [Google Scholar]
- Xue, X.-C. Development Law and Environmental Effect of Typical Mine Debris Flow in West Qinling Mountains; Shaanxi Science and Technology Press: Xi’an, China, 2010; pp. 30–38. [Google Scholar]
- Zhuang, J.-Q.; Cui, P.; Hu, K.-H.; Chen, X.-Q. Fine Particle Size Moving and It’s Effective on Debris Flow Initiation. Mt. Res. Dev. 2015, 33, 713–720. [Google Scholar]
- Cui, Y.-F.; Zhou, X.-J.; Guo, C.-X. Experimental study on the moving characteristics of fine grains in wide grading uncon-solidated soil under heavy rainfall. J. Mt. Sci.-Engl. 2017, 14, 417–431. [Google Scholar] [CrossRef]
- Wang, Z.-B.; Mai, T.-K.; Qi, C. Effect of Fine of Soil in the Process of Debris Flow Preparation and Initiation. J. Eng. Geol. Guilin China 2017, 25, 357–364. [Google Scholar]
- Zhu, X.-H.; Liu, B.-X.; Peng, J.-B.; Zhang, Z.-F.; Zhuang, J.-Q.; Huang, W.-L.; Leng, Y.-Q.; Duan, Z. Experimental study on the longitudinal evolution of the overtopping breaching of noncohesive landslide dams. Eng. Geol. 2021, 288, 106–137. [Google Scholar] [CrossRef]
- Zhu, X.-H.; Peng, J.-B.; Jiang, C.; Guo, W.-L. A Preliminary Study of the Failure Modes and Process of Landslide Dams Due to Upstream Flow. Water 2019, 11, 1115. [Google Scholar] [CrossRef]
- Meyer, G.A.; Well, S.G. Fire-Related Sedimentation Events on Alluvial Fans, Yellowstone National Park, U.S.A. J. Sedi.-Ment. Res. 1997, 67, 776–791. [Google Scholar]
- Reid, M.E.; Brien, D.L.; Lahusen, R.; Roering, J.; Fuente, J.D.L.; Ellen, S.D. Debris-flow initiation from large, slow-moving landslides. In Proceedings of the 3rd International Conference on Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment, Davos, Switzerland, 10–12 September 2003. [Google Scholar]
- Coe, J.A.; Kinner, D.A.; Godt, J.W. Initiation Conditions for Debris Flows Generated by Runoff at Chalk Cliffs, Central Colorado. Geomorphology 2008, 96, 270–297. [Google Scholar] [CrossRef]
- Cao, Y.-B. Experiment of Initiation Mechanism of Mine Debris Flow. Master’s Thesis, Chang’an University, Xi’an, China, June 2008. [Google Scholar]
- Xu, Y.-N.; Cao, Y.-B.; Zhang, J.-H.; Chen, H.-Q.; Yang, M.; Wang, X.-W. Research on Starting of Mine Debris Flow Based on Artificial Simulation Experiment in Xiaoqinling Gold Ore Area. Chin. J. Rock Mech. Eng. 2009, 28, 1388–1395. [Google Scholar]
- Li, S.-B.; Wang, C.-M.; Wang, G.-C.; Ma, J.-Q. Infiltration clogging test and simulation by PFC3D for loose dam foundation. Shuili Xuebao 2012, 43, 1163–1170. [Google Scholar]
- Shen, P.; Zhang, L.-M.; Chen, H.-X.; Fan, R.-L. EDDA 2.0: Integrated simulation of debris flow initiation and dynamics considering two initiation mechanisms. Geosci. Model Dev. 2018, 11, 2841–2856. [Google Scholar] [CrossRef]
- Chang, M.; Liu, Y.; Zhou, C.; Che, H.-X. Hazard assessment of a catastrophic mine waste debris flow of Hou Gully, Shimian, China. Eng. Geol. 2020, 275, 105733. [Google Scholar] [CrossRef]
- Yan, Y.; Cui, Y.-F. Combining seismic signal dynamic inversion and numerical modeling improves landslide process re-construction. Earth Surf. Dyn. 2022, 10, 1233–1252. [Google Scholar] [CrossRef]
- Zhang, X.-D.; Du, D.-W.; Man, T.; Ge, Z.; Huppert, H.E. Particle clogging mechanisms in hyporheic exchange with coupled lattice Boltzmann discrete element simulations. Phys. Fluids 2024, 36, 013312. [Google Scholar] [CrossRef]
- Wang, Z.-B.; Li, K.; Wang, R.; Hu, M.-J. Impact of fine particle content on mode and scale of slope instability of debris flow. Adv. Sci. Technol. Water Resour. 2016, 36, 35–41. [Google Scholar]
- Kang, Z.; Zhang, S. A preliminary analysis of the characteristics of debris flow. In Proceedings of the International Symposium on River Sedimentation; Chinese Society for Hydraulic Engineering: Beijing, China, 1980; pp. 225–226. [Google Scholar]
- Fei, X.-J. Effect of Fine Grain and Debris Flow Slurry Bodies on Debris Flow Motion. Mt. Res. 1991, 9, 143–152. [Google Scholar]
- Cui, P. Studies on condition and mechanism of debris flow initiation by means of experiment. Chin. Sci. Bull. 1992, 37, 759–763. [Google Scholar]
- Yan, Y.; Tang, H.; Hu, K.-H.; Jens, M.T.; Wei, F.-Q. Deriving debris-flow dynamics from real-time impact-force measure-ments. J. Geophys. Res.-Earth 2023, 128, e2022JF006715. [Google Scholar] [CrossRef]
- Takahashi, T. Debris Flow: Mechanics, Prediction and Countermeasures, 2nd ed.; Taylor & Francis: Leiden, the Netherlands; London, UK, 2007. [Google Scholar]
- Liu, J. Seepage Control of Earth-Rock Dams Theoretical Basis; Engineering Experiences and Lessons; China Water & Power Press: Beijing, China, 2006; pp. 30–45. [Google Scholar]
- Terzaghi, K.; Peck, R.B.; Mesri, G. Soil Mechanics in Engineering Practice, 3rd ed.; Wiley-Interscience: New York, NY, USA, 1996; p. 592. [Google Scholar]
- Ma, J.-Q.; Zhao, X.-J.; Li, S.-B.; Peng, H.; Xiao, L.-L.; Ma, D.-H.; Zhang, X.-S. Exploring the clogging process in coarse soil deposits in a dam Foundation. B Eng. Geol. Environ. 2022, 81, 16. [Google Scholar] [CrossRef]
- Reddi, L.N.; Xiao, M.; Hajra, M.G.; Lee, I.M. Physical clogging of soil filters under constant flow rate versus constant head. Can. Geotech. J. 2005, 42, 804–811. [Google Scholar] [CrossRef]
- Kandra, H.S.; McCarthy, D.; Fletcher, T.D.; Deletic, A. Assessment of clogging phenomena in granular flter media used for stormwater treatment. J. Hydrol. 2014, 512, 518–527. [Google Scholar] [CrossRef]
- Hatt, B.E.; Fletcher, T.D.; Deletic, A. Hydraulic and pollutant removal performance of fine media stormwater filtration systems. Environ. Sci. Technol. 2008, 7, 2535–2541. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.-J.; Du, X.-Q.; Yang, Y.-S.; Ye, X.-Y. Surface clogging process modeling of suspended solids during urban storm-water aquifer recharge. J. Environ. Sci. 2012, 24, 1418–1424. [Google Scholar] [CrossRef]
- Sun, H.-W. Different soil classifications in domestie geoteehnieal standards. In Proceedings of the 2nd National Conference on Engineering Safety and Protection, Beijing, China, 20–22 August 2010. [Google Scholar]
- Ma, J.-Q.; Peng, H.; Li, S.-B.; Duan, Z.; Zhang, X.-S.; Ma, D.-H. Exploring the Occurrence of Clogging in Highly Permeable Coarse Soils of Dam Foundations. Adv. Civ. Eng. 2020, 3, 8868052. [Google Scholar] [CrossRef]
- Li, S.-B.; Wang, C.-M.; Wang, G.-C.; Ma, J.-Q. Clogging types distinguishing of coarse-grained soil and determination of optimal range of clogging grain size. Shuili Xuebao 2013, 44, 1217–1224. [Google Scholar]
- Mintz, D.M.; Schubert, S.A.; Hui, Y.-J.; Ma, H.-M. Hydraulics on Granular Materials; Water Conservancy Press: Beijing, China, 1957. [Google Scholar]
- Ding, Y.; Rao, Y.-K.; Ni, Q. Effects of gradation and void ratio on the coefficient of permeability of coarse-grained soil. Hydrogeol. Eng. Geol. 2019, 46, 108–116. [Google Scholar]
- Hu, W.; Li, Y.; Gou, H.-X.; Asch, T.; Gao, X.; Zheng, Y.-S.; Xin, C.-L. Hydraulic properties of co-seismic landslide deposits around the Wenchuan earthquake epicentre: Large-scale column experiments. Eng. Geol. 2021, 287, 106102. [Google Scholar] [CrossRef]
- Zhang, X.-D.; Huang, T.-W.; Wu, Y.-J. Soil drainage clogging mechanism under vacuum preloading: A review. Transp. Geotech. 2024, 45, 101178. [Google Scholar] [CrossRef]
- Itoh, T.; Ikeda, A.; Nagayama, T.; Mizuyama, T. Hydraulic model tests for propagation of flow and sediment in floods due to breaking of a natural landslide dam during a mountainous torrent. Int. J. Sediment. Res. 2018, 33, 107–116. [Google Scholar] [CrossRef]
- Fang, Q.-S.; Tang, C.; Chen, Z.-H.; Wang, S.-Y.; Yang, T. A calculation method for predicting the runout volume of dam-break and non-dam-break debris flows in the Wenchuan earthquake area. Geomorphology 2019, 327, 201–214. [Google Scholar] [CrossRef]
- Chen, N.-S.; Zhou, W.; Yang, C.-L.; Hu, G.-S.; Gao, Y.-C.; Han, D. The processes and mechanism of failure and debris flow initiation for gravel soil with different clay content. Geomorphology 2010, 121, 222–230. [Google Scholar] [CrossRef]
- Zhu, X.-H.; Peng, J.-B.; Jiang, C.; Guo, W.-L. Formation conditions of landslide dams triggered by incision of mine waste accumulations. J. Mt. Sci.-Engl. 2019, 16, 108–121. [Google Scholar] [CrossRef]
- Hu, W.; Li, Y.; Fan, Y.; Xiong, M.-Z.; Luo, H.; Mcsaveney, M.; Zheng, Y.-S. Flow amplification from cascading landslide dam failures: Insights from flume experiments. Eng. Geol. 2022, 297, 106483. [Google Scholar] [CrossRef]
- Zhu, X.-H.; Peng, J.-B.; Liu, B.-X.; Jiang, C.; Guo, J. Influence of textural properties on the failure mode and process of landslide dams. Eng. Geol. 2020, 271, 105613. [Google Scholar] [CrossRef]
- Kuang, S.-F. Formation mechanisms and prediction models of debris flow due to natural dam failures. J. Sediment Res. 1993, 4, 42–57. [Google Scholar]
- Awal, R.; Nakagawa, H.; Kawaike, K.; Baba, Y.; Zhang, H.; Kawaike, K. Experimental study on prediction of failure mode of landslide dams. In Proceedings of the Fourth International Conference on Scour and Erosion, Tokyo, Japan, 5–7 November 2008; pp. 655–660. [Google Scholar]
- Yang, Y.; Cao, S.-Y.; Yang, K.-J.; Li, W.-P. Experimental study of breach process of landslide dams by overtopping and its initiation mechanisms. J. Hydrodyn. 2015, 27, 872–883. [Google Scholar] [CrossRef]
- Jiang, X.-G.; Wei, Y.-W.; Wu, L.; Lei, Y. Experimental investigation of failure modes and breaching characteristics of natural dams. Geomat. Nat. Haz. Risk 2018, 9, 33–48. [Google Scholar] [CrossRef]
- Ermini, L.; Casagl, N. Prediction of the behavior of landslide dams using a geo-morphological dimensionless index. Earth Surf. Proc. Land 2003, 28, 31–47. [Google Scholar] [CrossRef]
- Mehrashk, M.; Chang, S.-C.; Deng, Y.-B. On active and inactive voids and a compression model for granular soils. Eng. Geol. 2017, 222, 156–167. [Google Scholar]
Fine Particles Size (mm) | Coarse Slag Particle Size (mm) | Dry Density of Graded Distribution Slag (mm) | ||||||
---|---|---|---|---|---|---|---|---|
32–64 | 16–32 | 8–16 | 4–8 | 2–4 | 1.8 | 1.9 | 2.0 | |
4–8 | ★ | |||||||
2–4 | ★ | ★ | ||||||
1–2 | ★ | ★ | ★ | |||||
0.5–1 | ★ | ★ | ★ | ★ | ★ | ★ | ★ | |
0.25–0.5 | ★ | ★ | ★ | ★ | ★ | ★ | ★ | ★ |
0.125–0.25 | ★ | ★ | ★ | ★ | ★ | ★ | ★ | ★ |
0.075–0.125 | ★ | ★ | ★ | ★ | ★ | ★ | ★ | ★ |
Inflow (×10−3 m/s) | 7.1 | 7.1 | 7.8 | 7.2 | 7.6 | 1.7 | 1.6 | 1.5 |
D (De) | 32–64 (45.26) | 16–32 (22.63) | 8–16 (11.31) | 4–8 (5.66) | 2–4 (2.83) | |||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Item | S | C | W | L | CP-S | S | C | W | L | CP-S | S | C | W | L | CP-S | S | C | W | L | CP-S | S | C | W | L | CP-S | |
d (de) | 4–8 (5.66) | 22 | 69.15 | 76.91 | 0 | SC | / | / | / | / | / | / | / | / | / | / | / | / | / | / | / | / | / | / | / | / |
2–4 (2.83) | 5.07 | 48.08 | 93.29 | 0.61 | PB | 36.42 | 50.11 | 62.36 | 0.21 | SC | / | / | / | / | / | / | / | / | / | / | / | / | / | / | / | |
1–2 (1.41) | 0.64 | 11.88 | 62.39 | 35.38 | FS | 1.29 | 19.81 | 91.33 | 3.57 | PB | 34.7 | 53.4 | 64.33 | 0 | SC | / | / | / | / | / | / | / | / | / | / | |
0.5–1 (0.71) | 0.25 | 7.61 | 61.86 | 36.76 | FS | 0.25 | 7.25 | 66.42 | 30.33 | FS | 0.93 | 36.2 | 93.61 | 2.26 | PB | 26.4 | 56 | 71.63 | 1.06 | SC | / | / | / | / | / | |
0.25–0.5 (0.36) | 0.11 | 2.53 | 47.94 | 50.31 | UC | 0.12 | 5.13 | 46.15 | 51.24 | UC | 0.38 | 9.22 | 66.45 | 31.17 | FS | 0.59 | 37.2 | 89.82 | 6.75 | PB | 23.0 | 54.5 | 74.96 | 0.97 | SC | |
0.125–0.25 (0.18) | 0 | 0.42 | 27.24 | 70.39 | UC | 0.15 | 1.13 | 43.58 | 53.77 | UC | 0 | 1.95 | 26.19 | 70.11 | UC | 0.14 | 20.34 | 51.66 | 47.1 | FS | 3.31 | 17 | 81.03 | 14.3 | PB | |
0.063–0.125 (0.09) | 0 | 2.28 | 30.14 | 65.86 | UC | 0.26 | 1.14 | 41.14 | 56.40 | UC | 0.30 | 3.58 | 19.99 | 76.32 | UC | 2.85 | 6.33 | 30.23 | 63.92 | UC | 8.3 | 10.1 | 49.06 | 41.3 | FS |
Coarse Soil [39] | Coarse Slags | |||||||
---|---|---|---|---|---|---|---|---|
Clogging Patterns | Clogging Assessment Criterion Based on the Ratio of Coarse Particles and Fine Particles with Experiment Results | Clogging Assessment Criterion Based on Calculation by the Effective Aperture with Particle Shape Correction Factor ɑ1 = 1.5–1.9 | Clogging Assessment Criterion Based on Calculation by the Effective Aperture with Particle Shape Correction Factor ɑ1 = 1.5–1.9 | Clogging Assessment Criterion Based on the Ratio of Coarse Particles and Fine Particles with Experiment Results | Clogging Patterns | Clogging Assessment Criterion Based on Calculation by the Effective Aperture with Particle Shape Correction Factor β1 = 3–4 | ||
De/de | de/Dea | de/Dea | De/de | de/Dea’ | ||||
①Surface clogging | <4 | >1 | / | <4 | ① Surface sediment | / | ||
②Clogging | ②-Ⅰ. Surface-internal clogging | 4–16 | 0.5–1 | <0.5 (0.25–0.5) | 4–16 | ② Surface-internal clogging | 0.5–1 | |
②-Ⅱ. Internal partial pore blockage | 16–29 | 0.25–0.5 | <0.25 (0.13–0.25) | 16–32 | ③ Internal partial pore blockage | 0.25–0.5 | ||
③Unclogging | >29 | <0.25 | <0.13 | 32–64 | ④-Ⅰ. Fine particle sediment | ④ Sediment or losses | 0.1–0.25 | |
>64 | ④-Ⅱ. Unclogging | <0.1 |
D | N | General Parameter | Geometric Shape Parameters | Shape Coefficient ff = 4πA/S2 (1/ff) | The Ratio of Length and Width (Rcd) Proportion for Each Particle Size (%) Rcd = L/W | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
De | S | A | Lm (Lm/De) | Wm (Wm/De) | Lm/Wm | Am (Am/A) | Sm (Sm/S) | Sm-t (Sm-t/S) | 1.0 < Rcd ≤ 1.5 | 1.5 < Rcd ≤ 2.0 | 2 < Rcd | |||
8–16 | 989 | 11.31 | 35.53 | 100.49 | 16.77 (1.5) | 11.09 (1) | 1.51 | 163.32 (1.6) | 47.52 (1.4) | 51.39 (1.5) | 0.744 (1.3) | 57.63 | 34.07 | 8.29 |
4–8 | 1032 | 5.66 | 17.76 | 25.12 | 10.28 (1.8) | 6.73 (1.2) | 1.53 | 50.10 (2.0) | 28.01 (1.6) | 29.75 (1.7) | 0.783 (1.3) | 54.65 | 35.47 | 9.88 |
2–4 | 1835 | 2.83 | 8.88 | 6.28 | 5.42 (1.9) | 3.57 (1.3) | 1.52 | 14.20 (2.3) | 14.70 (1.7) | 15.47 (1.8) | 0.796 (1.3) | 55.91 | 35.53 | 8.56 |
Ρd | ns | De’ | Dea’ | de’ | des’ | |
---|---|---|---|---|---|---|
1.8 × 103 | 0.381 | D15 | 1.61 | 0.165−0.220 | 0.08−0.22 | 0.063−0.25 |
D17 | 2.31 | 0.237−0.316 | 0.12−0.32 | 0.125−0.5 | ||
D20 | 2.5 | 0.256−0.342 | 0.13−0.34 | 0.125−0.5 | ||
D22 | 2.8 | 0.287−0.383 | 0.14−0.38 | 0.125−0.5 | ||
D25 | 4.1 | 0.421−0.561 | 0.21−0.56 | 0.25−0.5 | ||
1.9 × 103 | 0.347 | D15 | 1.61 | 0.143−0.190 | 0.07−0.19 | 0.063−0.125 |
D17 | 2.31 | 0.205−0.273 | 0.10−0.27 | 0.125−0.25 | ||
D20 | 2.5 | 0.221−0.295 | 0.11−0.30 | 0.125−0.5 | ||
D22 | 2.8 | 0.248−0.331 | 0.12−0.33 | 0.125−0.5 | ||
D25 | 4.1 | 0.363−0.484 | 0.18−0.48 | 0.125−0.5 | ||
2.0 × 103 | 0.313 | D15 | 1.61 | 0.122−0.163 | 0.06−0.16 | 0.063−0.125 |
D17 | 2.31 | 0.175−0.234 | 0.09−0.23 | 0.125−0.25 | ||
D20 | 2.5 | 0.190−0.253 | 0.10−0.25 | 0.125−0.25 | ||
D22 | 2.8 | 0.213−0.283 | 0.10−0.28 | 0.125−0.25 | ||
D25 | 4.1 | 0.311−0.415 | 0.16−0.42 | 0.125−0.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; Chen, J.; Ma, J.; Li, H.; Guo, H.; Qiu, Y.; Han, F.; Ji, Y. Experimental Study on the Clogging Performance of Waste Slag. Water 2024, 16, 1390. https://doi.org/10.3390/w16101390
Li S, Chen J, Ma J, Li H, Guo H, Qiu Y, Han F, Ji Y. Experimental Study on the Clogging Performance of Waste Slag. Water. 2024; 16(10):1390. https://doi.org/10.3390/w16101390
Chicago/Turabian StyleLi, Shibo, Jinduo Chen, Jianquan Ma, Hao Li, Hao Guo, Yongqiang Qiu, Fuli Han, and Yashu Ji. 2024. "Experimental Study on the Clogging Performance of Waste Slag" Water 16, no. 10: 1390. https://doi.org/10.3390/w16101390
APA StyleLi, S., Chen, J., Ma, J., Li, H., Guo, H., Qiu, Y., Han, F., & Ji, Y. (2024). Experimental Study on the Clogging Performance of Waste Slag. Water, 16(10), 1390. https://doi.org/10.3390/w16101390