Factors Affecting Shellfish Quality in Terms of Faecal Contamination at Blakeney Point, East Anglia, UK
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Sampling Area
2.2. Sample Collection
2.3. Chemicals and Reagents
2.4. Bacterial Analysis of Water
2.5. Sterol Extraction and Analysis
2.6. Sterol Extraction from Shellfish
2.7. Sterol Analysis
2.8. Statistical Analyses
3. Results and Discussion
3.1. Microbial Analysis
3.2. Sterol Concentrations and Sterol Profile Analysis of Water Samples
3.3. Sterol Concentrations and Sterol Profile Analysis of Shellfish
3.4. Relationship between Sterol and Microbial Concentrations in Water Samples
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Florini, S.; Shahsavari, E.; Ngo, T.; Aburto-Medina, A.; Smith, D.J.; Ball, A.S. Factors Influencing the Concentration of Fecal Coliforms in Oysters in the River Blackwater Estuary, UK. Water 2020, 12, 1086. [Google Scholar] [CrossRef]
- Blanch, A.R.; Belanche-Muñoz, L.; Bonjoch, X.; Ebdon, J.; Gantzer, C.; Lucena, F.; Ottoson, J.; Kourtis, C.; Iversen, A.; Kühn, I.; et al. Tracking the origin of faecal pollution in surface water: An ongoing project within the European Union research programme. J. Water Health 2004, 2, 249–260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, C.-Y.; Panicker, G.; Bej, A.K. Detection of pathogenic bacteria in shellfish using multiplex PCR followed by CovaLink™ NH microwell plate sandwich hybridization. J. Microbiol. Methods 2003, 53, 199–209. [Google Scholar] [CrossRef]
- Oliveira, J.; Cunha, A.; Castilho, F.; Romalde, J.L.; Pereira, M.J. Microbial contamination and purification of bivalve shellfish: Crucial aspects in monitoring and future perspectives—A mini-review. Food Control 2011, 22, 805–816. [Google Scholar] [CrossRef]
- Godfree, A.; Kay, D.; Wyer, M. Faecal streptococci as indicators of faecal contamination in water. J. Appl. Microbiol. 1997, 83, 110–119. [Google Scholar] [CrossRef] [PubMed]
- Stapleton, C.M.; Wyer, M.D.; Kay, D.; Crowther, J.; McDonald, A.T.; Walters, M.; Gawler, A.; Hindle, T. Microbial source tracking: A forensic technique for microbial source identification? J. Environ. Monit. 2007, 9, 427–439. [Google Scholar] [CrossRef] [PubMed]
- Chou, C.-C.; Liu, Y.-P. Determination of fecal sterols in the sediments of different wastewater outputs by GC-MS. Int. J. Environ. Anal. Chem. 2004, 84, 379–388. [Google Scholar] [CrossRef]
- American Water Works Association. Standard Methods for the Examination of Water and Wastewater, 9th ed.; APHA, AWWA and WPCF: Washington, DC, USA, 1995. [Google Scholar]
- Sinton, L.; Finlay, R.; Hannah, D. Distinguishing human from animal faecal contamination in water: A review. N. Z. J. Mar. Freshw. Res. 1998, 32, 323–348. [Google Scholar] [CrossRef] [Green Version]
- Sharip, Z.; Mohamad, M.F. Microbial Contamination in Urban Tropical Lentic Waterbodies and Ponds along an Urbanization Gradient. Pertanika J. Trop. Agric. Sci. 2019, 42, 165–184. [Google Scholar]
- Obiri-Danso, K.; Jones, K. Distribution and seasonality of microbial indicators and thermophilic campylobacters in two freshwater bathing sites on the River Lune in northwest England. J. Appl. Microbiol. 1999, 87, 822–832. [Google Scholar] [CrossRef] [Green Version]
- Obiri-Danso, K.; Jones, K. Intertidal sediments as reservoirs for hippurate negative campylobacters, salmonellae and faecal indicators in three EU recognised bathing waters in north west England. Water Res. 2000, 34, 519–527. [Google Scholar] [CrossRef]
- Zimmer-Faust, A.G.; Brown, C.A.; Manderson, A. Statistical models of fecal coliform levels in Pacific Northwest estuaries for improved shellfish harvest area closure decision making. Mar. Pollut. Bull. 2018, 137, 360–369. [Google Scholar] [CrossRef]
- Leeming, R.; Ball, A.; Ashbolt, N.; Nichols, P. Using faecal sterols from humans and animals to distinguish faecal pollution in receiving waters. Water Res. 1996, 30, 2893–2900. [Google Scholar] [CrossRef]
- Harrault, L.; Milek, K.; Jardé, E.; Jeanneau, L.; Derrien, M.; Anderson, D.G. Faecal biomarkers can distinguish specific mammalian species in modern and past environments. PLoS ONE 2019, 14, e0211119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Florini, S.; Shahsavari, E.; Aburto-Medina, A.; Khudur, L.S.; Mudge, S.M.; Smith, D.J.; Ball, A.S. Are Sterols Useful for the Identification of Sources of Faecal Contamination in Shellfish? A Case Study. Water 2020, 12, 3076. [Google Scholar] [CrossRef]
- Scarlett, A.G.; Clough, R.; West, C.; Lewis, C.A.; Booth, A.M.; Rowland, S.J. Alkylnaphthalenes: Priority pollutants or minor contributors to the poor health of marine mussels? Environ. Sci. Technol. 2011, 45, 6160–6166. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, A.; Mortimer, D.; Gem, M.; Dicks, P.; Smith, F.; White, S.; Rose, M. Brominated dioxins (PBDD/Fs) and PBDEs in marine shellfish in the UK. Food Addit. Contam. 2009, 26, 918–927. [Google Scholar] [CrossRef] [Green Version]
- Law, R.; Kelly, C.; Baker, K.; Langford, K.; Bartlett, T. Polycyclic aromatic hydrocarbons in sediments, mussels and crustacea around a former gasworks site in Shoreham-by-Sea, UK. Mar. Pollut. Bull. 2002, 44, 903–911. [Google Scholar] [CrossRef]
- Langston, W.; O’Hara, S.; Pope, N.; Davey, M.; Shortridge, E.; Imamura, M.; Harino, H.; Kim, A.; Vane, C. Bioaccumulation surveillance in milford haven waterway. Environ. Monit. Assess. 2012, 184, 289–311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Emmanouil, C.; Green, R.M.; Willey, F.R.; Chipman, J.K. Oxidative damage in gill of Mytilus edulis from Merseyside, UK, and reversibility after depuration. Environ. Pollut. 2008, 151, 663–668. [Google Scholar] [CrossRef] [PubMed]
- Chiang, Y.-R.; Ismail, W. Anaerobic Biodegradation of Steroids. In Anaerobic Utilization of Hydrocarbons, Oils, and Lipids; Springer Nature: Cham, Switzerland, 2020; pp. 165–195. [Google Scholar]
- Mudge, S.M.; Bebianno, M.J.A.; East, J.A.; Barreira, L.A. Sterols in the Ria Formosa Lagoon, Portugal. Water Res. 1999, 33, 1038–1048. [Google Scholar] [CrossRef]
- Frena, M.; Souza, M.R.; Damasceno, F.C.; Madureira, L.A.; Alexandre, M.R. Evaluation of anthropogenic contamination using sterol markers in a tropical estuarine system of northeast Brazil. Mar. Pollut. Bull. 2016, 109, 619–623. [Google Scholar] [CrossRef]
- Patton, D.; Reeves, A. Sterol concentrations and temporal variations on the north shore mudflats of the firth of Tay, Scotland. Mar. Pollut. Bull. 1999, 38, 613–618. [Google Scholar] [CrossRef]
- Bull, I.D.; Lockheart, M.J.; Elhmmali, M.M.; Roberts, D.J.; Evershed, R.P. The origin of faeces by means of biomarker detection. Environ. Int. 2002, 27, 647–654. [Google Scholar] [CrossRef]
- Mudge, S.; Hooper, L.; Icely, J. Biomarkers associated with sewage in the Arade Estuary, Portugal. Environ. Technol. 1998, 19, 1055–1059. [Google Scholar] [CrossRef]
- Grimalt, J.O.; Fernandez, P.; Bayona, J.M.; Albaiges, J. Assessment of fecal sterols and ketones as indicators of urban sewage inputs to coastal waters. Environ. Sci. Technol. 1990, 24, 357–363. [Google Scholar] [CrossRef]
- Evershed, R.P.; Bethell, P.H. Application of Multimolecular Biomarker Techniques to the Identification of Fecal Material in Archaeological Soils and Sediments; ACS Publications: Washington, DC, USA, 1996. [Google Scholar]
- Bligh, E.G.; Dyer, W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, P.; Patterson, G.W.; Wikfors, G.H. Use of an improved internal-standard method in the quantitative sterol analyses of phytoplankton and oysters. Lipids 1997, 32, 1011–1014. [Google Scholar] [CrossRef] [PubMed]
- Ennos, A.R. Statistical and Data Handling Skills in Biology; Pearson Education: London, UK, 2007. [Google Scholar]
- Aburto-Medina, A.; Shahsavari, E.; Salzman, S.A.; Kramer, A.; Ball, A.S.; Allinson, G. Elucidation of the microbial diversity in rivers in south-west Victoria, Australia impacted by rural agricultural contamination (dairy farming). Ecotoxicol. Environ. Saf. 2019, 172, 356–363. [Google Scholar] [CrossRef]
- Kolm, H.E.; Gomes, K.V.; Ishii, F.K.; Martins, C.C. An integrated appraisement of multiple faecal indicator bacteria and sterols in the detection of sewage contamination in subtropical tidal creeks. Int. J. Hyg. Environ. Health 2018, 221, 1032–1039. [Google Scholar] [CrossRef] [PubMed]
- Leeming, R.; Latham, V.; Rayner, M.; Nichols, P. Detecting and Distinguishing Sources of Sewage Pollution in Australian Inland and Coastal Waters and Sediments; ACS Publications: Washington, DC, USA, 1997. [Google Scholar]
- Lee, J.M.; Jeon, J.H.; Yim, M.-J.; Choi, G.; Lee, M.S.; Park, Y.G.; Lee, D.-S. Comparison of fucosterol content in algae using high-performance liquid chromatography. Fish. Aquat. Sci. 2020, 23, 9. [Google Scholar] [CrossRef] [Green Version]
- Puglisi, E.; Nicelli, M.; Capri, E.; Trevisan, M.; Del Re, A.A. Cholesterol, β-sitosterol, ergosterol, and coprostanol in agricultural soils. J. Environ. Qual. 2003, 32, 466–471. [Google Scholar] [CrossRef] [PubMed]
- Cathum, S.; Sabik, H. Determination of steroids and coprostanol in surface water, effluent and mussel using gas chromatography-mass spectrometry. Chromatographia 2001, 53, S394–S399. [Google Scholar] [CrossRef]
- Mudge, S.; Lintern, D.G. Comparison of sterol biomarkers for sewage with other measures in Victoria Harbour, BC, Canada. Estuar. Coast. Shelf Sci. 1999, 48, 27–38. [Google Scholar] [CrossRef]
Site Number | Sampling Site Name | Samples Types |
---|---|---|
1 | Simpoles Head | Mussels |
2 | Freshers Creek | Cockles |
3 | Mortson Creek | Water |
4 | Blakeney Harbour | Water |
5 | Blakeney Harbour Sluice | Water |
6 | Blakeney Channel (Scaupe Run) | Water |
7 | River Cley (below weir) | Water |
8 | River Cley (above weir) | Water |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ball, A.S.; Shahsavari, E.; Khudur, L.S.; Aburto-Medina, A.; Smith, D.J. Factors Affecting Shellfish Quality in Terms of Faecal Contamination at Blakeney Point, East Anglia, UK. Water 2021, 13, 3192. https://doi.org/10.3390/w13223192
Ball AS, Shahsavari E, Khudur LS, Aburto-Medina A, Smith DJ. Factors Affecting Shellfish Quality in Terms of Faecal Contamination at Blakeney Point, East Anglia, UK. Water. 2021; 13(22):3192. https://doi.org/10.3390/w13223192
Chicago/Turabian StyleBall, Andrew S., Esmaeil Shahsavari, Leadin S. Khudur, Arturo Aburto-Medina, and David J. Smith. 2021. "Factors Affecting Shellfish Quality in Terms of Faecal Contamination at Blakeney Point, East Anglia, UK" Water 13, no. 22: 3192. https://doi.org/10.3390/w13223192
APA StyleBall, A. S., Shahsavari, E., Khudur, L. S., Aburto-Medina, A., & Smith, D. J. (2021). Factors Affecting Shellfish Quality in Terms of Faecal Contamination at Blakeney Point, East Anglia, UK. Water, 13(22), 3192. https://doi.org/10.3390/w13223192