Control of Suitability of the Culture Daphnia magna Straus for Bioassays of Aquatic Environments, Taking into Account Demographic Indicators of Model Populations
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Determination of Conditional Reference Characteristics of Model Populations of D. magna
3.2. Control of Suitability of the Aquaculture D. magna for Bioassay of Aquatic Environments
4. Conclusions
Funding
Conflicts of Interest
References
- Directive 2000/60/EC of the European Parliament and of the Council Establishing a Framework for the Community Action in the Field of Water Policy—EU Water Framework Directive (as Amended on 20 October 2014). 2000. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32000L0060 (accessed on 14 September 2020).
- Water Code of the Russian Federation (as Amended on 27 December 2018). 2006. Available online: http://docs.cntd.ru/document/901982862 (accessed on 15 October 2020).
- Altenburger, R.; Scholze, M.; Busch, W.; Escher, B.; Jakobs, G.; Krauss, M.; Krueger, J.; Neil, P.; Ait-Aissa, S.; Almeida, A.C.; et al. Mixture effects in samples of multiple contaminants—An inter-laboratory study with manifold bioassays. Environ. Int. 2018, 114, 95–106. [Google Scholar] [CrossRef] [PubMed]
- Terekhova, V.A.; Wadhia, K.; Fedoseeva, E.V.; Uchanov, P.V. Bioassay standardization issues in freshwater ecosystem assessment: Test cultures and test conditions. Knowl. Manag. Aquat. Ecosyst. 2018, 419, 32. [Google Scholar] [CrossRef]
- Ortiz-Urquiza, A.; Keyhani, N.O.; Quesada-Moraga, E. Culture conditions affect virulence and production of insect toxic proteins in the entomopathogenic fungus Metarhizium anisopliae. Biocontrol Sci. Technol. 2013, 23, 1199–1212. [Google Scholar] [CrossRef]
- Skalicky, A.; Bohata, A.; Simkova, J.; Osborne, L.S.; Landa, Z. Selection of indigenous isolates of entomopathogenic soil fungus Metarhizium anisopliae under laboratory conditions. Folia Microbiol. 2014, 59, 269–276. [Google Scholar] [CrossRef] [PubMed]
- Yi, X.W.; Gao, Z.Q.; Liu, L.H.; Zhu, Q.; Hu, G.J.; Zhou, X.H. Acute toxicity assessment of drinking water source with luminescent bacteria: Impact of environmental conditions and a case study in Luoma Lake, East China. Front. Environ. Sci. Eng. 2020, 14, 109. [Google Scholar] [CrossRef]
- Schipper, C.A.; Dubbeldam, M.; Feist, S.W.; Rietjens, I.M.C.M.; Murk, A.J. Cultivation of the heart urchin Echinocardium cordatum and validation of its use in marine toxicity testing for environmental risk assessment. In Assessment of Effects of Chemical Contaminants in Dredged Material on Marine Ecosystems and Human Health; Book Series: Deltares Select Series; IOS Press: Amsterdam, The Netherlands, 2009; Volume 6, pp. 55–66. [Google Scholar]
- Olkova, A.S. Modern trends in the development of the methodology of bioassay aquatic environments. Theor. Appl. Ecol. 2018, 3, 19–26. [Google Scholar] [CrossRef]
- ISO 6341:2012. Water Quality—Determination of the Inhibition of the Mobility of Daphnia Magna Straus (Cladocera, Crustacea)—Acute Toxicity Test; International Organization for Standardization: Geneva, Switzerland, 2012; 22p, Available online: https://www.iso.org/standard/54614.html (accessed on 15 October 2020).
- OECD Guidelines for the Testing of Chemicals, Section 2. Test No. 202: Daphnia sp. Acute Immobilisation Test; OECD Publishing: Paris, France, 2004; 12p, Available online: https://www.oecd-ilibrary.org/environment/test-no-202-daphnia-sp-acute-immobilisation-test_9789264069947-en (accessed on 6 November 2020).
- Federal Register FR 1.39.2007.03222. Methodology for Determining the Toxicity of Water and Water Extracts from Soils, Sewage Sludge, and Waste by Mortality and Changes in Fertility of Daphnias; Akvaros: Moscow, Russia, 2012; 51p. [Google Scholar]
- Biological Test Method: Acute Lethality Test Using Daphnia spp. EPS 1/RM/12. Report; Environment Canada: Ottawa, ON, Canada, 1990; Available online: https://www.canada.ca/content/dam/eccc/migration/main/faunescience-wildlifescience/dfad4a5b-4216-4ed8-af90-98a6de8f7b6b/rm11e.pdf (accessed on 15 October 2020).
- Cabridenc, R. Exercice D’intercalibration Concernant une Méthode de Détermination de L’ecotoxicité à Moyen Terme des Substances Chimiques vis-à-vis des Daphnies; Unpublished EC Report; Contract W/63/476 (214). Ref. I.R.C.H.A.D. 8523; Institut National de Recherche Chimique Appliquee: Vert-le-Petit, France, 1986; 20p. [Google Scholar]
- Baird, D.J.; Barber, I.; Bradley, M.; Calow, P.; Soares, A.M.V.M. The Daphnia bioassay: A critique. Hydrobiologia 1989, 188, 403–406. [Google Scholar] [CrossRef]
- Crouau, Y.; Cazes, L. What causes variability in the Folsomia candida reproduction test? Appl. Soil Ecol. 2003, 22, 175–180. [Google Scholar] [CrossRef]
- Olkova, A.S. Health monitoring of Daphnia magna Straus test culture. Water Ecol. Probl. Solut. 2019, 3, 50–69. [Google Scholar] [CrossRef]
- Olkova, A.S.; Kantor, G.Y.; Kutyavina, T.I.; Ashikhmina, T.Y. The importance of maintenance conditions of Daphnia magna Straus as a test organism for ecotoxicological analysis. Environ. Toxicol. Chem. 2018, 37, 376–384. [Google Scholar] [CrossRef] [PubMed]
- Vorob”eva, O.V.; Filenko, O.F.; Isakova, E.F. Changes in the fertility of the laboratory culture D. magna. Perspect. Sci. 2013, 9, 11–14. [Google Scholar]
- Misejko, G.N.; Tushkova, G.I.; Ckhaj, I.V. Daphnia magna (Crustacea Cladocera) as a test-object under optimal laboratory cultivation conditions. Izv. Altaj. Gos. Univ. 2001, 3, 83–86. [Google Scholar]
- Odum, E.P. Fundamentals of Ecology, 3rd ed.; W. B. Saunders Co.: Philadelphia, PA, USA, 1971; 574p. [Google Scholar]
- PND F 14.1:2:4.139-98. Environmental Regulatory Document. Method for Measuring Mass Concentrations Cobalt, Nickel, Copper, Zinc, Chrome, Manganese, Iron, Silver, Cadmium and Lead in Samples Drinking, Natural and Waste Water Method Atomic Absorption Spectrometry; FCAO: Moscow, Russia, 2010; Available online: https://files.stroyinf.ru/Data2/1/4293832/4293832535.htm (accessed on 6 November 2020).
- Guidance Document RD 52.24.476-2007. Mass Concentration of Oil Products in Water. Procedure for Performance of Measurements by IK-Photometric Method; Hydrochemical Institute: Rostov-na Donu, Russia, 2007; Available online: https://files.stroyinf.ru/Data2/1/4293837/4293837309.htm (accessed on 6 November 2020).
- PND F 14.1:2:3:4.204-04. Environmental Regulatory Document. Measurement Procedure of Mass Concentrations of Organic Chlorous Pesticides and Polychlorinated Biphenyl in Drinking, Natural and Waste Water Gas Chromatographic Method; FCAO: Moscow, Russia, 2009; Available online: https://files.stroyinf.ru/Data2/1/4293809/4293809643.htm (accessed on 6 November 2020).
- Federal Register 1.31.2005.01724. Methods for Measuring the Mass Concentration of Fluoride, Chloride, Nitrate, Phosphate and Sulfate Ions in Samples of Drinking, Mineral, Table, Medical-Table, Natural and Waste Water by Ion Chromatography; Aquilon: Moscow, Russia, 2008; Available online: http://www.prochrom.ru/ru/?id=4&idp=met&mode=mdesc (accessed on 6 November 2020).
- Federal Register 1.31.2005.01738. Methods for Measuring the Mass Concentration of Ammonium, Potassium, Sodium, Magnesium, Calcium, Strontium Cations in Samples of Drinking, Mineral, Table, Medical-Table, Natural and Waste Water by Ion Chromatography; Aquilon: Moscow, Russia, 2008; Available online: http://www.prochrom.ru/ru/?id=3&idp=met.http://www.prochrom.ru/ru/?id=3&idp=met (accessed on 6 November 2020).
- Machacek, J. Daphnia galeata life history response to heterogeneous food conditions and dissolved chemicals in the Rimov Reservoir. Hydrobiologia 2001, 442, 215–222. [Google Scholar] [CrossRef]
- Jonczyk, E.; Gilron, G. Acute and chronic toxicity testing with Daphnia sp. In Small-Scale Freshwater Toxicity Investigations; Volume 1 Toxicity Test Methods; Blaise, C., Férard, J.-F., Eds.; Springer Science & Business Media: Amsterdam, The Netherlands, 2005; pp. 337–393. [Google Scholar]
- Ol’kova, A.S. The conditions of cultivation and the variety of test functions of Daphnia magna Straus in bioassay. Water Ecol. Probl. Solut. 2017, 1, 64–82. [Google Scholar] [CrossRef]
- Olkova, A.S.; Mahanova, E.V. Selection of bioassay for ecological research of water, polluted by mineral nitrogen forms. Water Ecol. Probl. Solut. 2018, 4, 70–81. [Google Scholar] [CrossRef]
Demographic Characteristics | 10 Specimens/dm3 | 25 Specimens/dm3 | 50 Specimens/dm3 |
---|---|---|---|
First offspring, day | 7 ± 1 | 10 ± 2 | 15 ± 2 |
First mass offspring 1, day | 7 ± 1 | 18 ± 2 | 18 ± 2 |
Average lifetime, days | 41.7 ± 4.7 | 79.7 ± 1.0 | 58.9 ± 5.7 |
Maximum duration of life, days | 72.0 ± 9.8 | 114.0 ± 1.7 | 92.0 ± 9.1 |
Average fertility, pcs./1 adult female | 153.6 ± 33.7 | 74.3 ± 2.4 | 51.2 ± 1.0 |
Number of abortive eggs, pcs. | 0 | 0 | 6 ± 1 |
Demographic Characteristics. | Laboratory No. 1—Conditional Standard | Laboratory No. 2 |
---|---|---|
First offspring, day | 10 ± 2 | 17 ± 2 |
First mass offspring, day | 18 ± 2 | 27 ± 3 |
Average lifetime, days | 79.7 ± 1.0 | 46.6 ± 2.3 |
Maximum duration of life, days | 114.0 ± 1.7 | 74.0 ± 2.1 |
Average fertility, pcs./1 adult female | 74.3 ± 2.4 | 21.4 ± 3.5 |
Range LD50 (K2Cr2O7) for 6 months | 1.3–1.7 | 0.95–1.9 |
Number of abortive eggs, pcs. | 0 | 11.7 ± 4.5 |
Conditions | Meaning | Conclusion |
---|---|---|
Temperature of stock 1 culture keeping | 20 °C (climatic chamber) | Normal |
Temperature of synchronized 2 culture keeping | 20 °C (climatic chamber) | Normal |
Light period | 12 h (climatic chamber) | Normal |
Regularity of feeding | Daily, except weekends | Not satisfactory |
Variety of feed | Only Ch. vulgaris | Not satisfactory |
Density of stock 1 culture | Not controlled | Not satisfactory |
Density of a synchronized culture | 20–25 individuals/dm3 | Normal |
Frequency of removal of juveniles from aquacultures | Every other day, except weekends | Not satisfactory |
Control of the chemical composition of cultivation water | Regularly done | The analyses are presented below |
Season | Mg2+ | NO3− | SO42− |
---|---|---|---|
winter | 49 ± 5 | 53 ± 8 | 117 ± 12 |
spring | 41 ± 4 | 45 ± 7 | 106 ± 11 |
summer | 40 ± 4 | 50 ± 8 | 101 ± 10 |
autumn | 41 ± 9 | 51 ± 8 | 105 ± 11 |
MPC 1 | 40.0 | 40.0 | 100.0 |
Season | Multiplicity (NO3−) to MPC | LD50 (K2Cr2O7) | Pearson Coefficient |
---|---|---|---|
winter | 1.30 | 0.95 | −0.9 |
spring | 1.10 | 1.9 | |
summer | 1.25 | 1.5 | |
autumn | 1.28 | 1.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olkova, A. Control of Suitability of the Culture Daphnia magna Straus for Bioassays of Aquatic Environments, Taking into Account Demographic Indicators of Model Populations. Water 2021, 13, 47. https://doi.org/10.3390/w13010047
Olkova A. Control of Suitability of the Culture Daphnia magna Straus for Bioassays of Aquatic Environments, Taking into Account Demographic Indicators of Model Populations. Water. 2021; 13(1):47. https://doi.org/10.3390/w13010047
Chicago/Turabian StyleOlkova, Anna. 2021. "Control of Suitability of the Culture Daphnia magna Straus for Bioassays of Aquatic Environments, Taking into Account Demographic Indicators of Model Populations" Water 13, no. 1: 47. https://doi.org/10.3390/w13010047
APA StyleOlkova, A. (2021). Control of Suitability of the Culture Daphnia magna Straus for Bioassays of Aquatic Environments, Taking into Account Demographic Indicators of Model Populations. Water, 13(1), 47. https://doi.org/10.3390/w13010047