Impacts of Tile Drainage on Phosphorus Losses from Edge-of-Field Plots in the Lake Champlain Basin of New York
Abstract
1. Introduction
2. Materials and Methods
2.1. Site Description and Plot Establishment
2.2. Runoff Sampling, Flow Measurement and Analytical Methods
2.3. Statistical Analysis
3. Results and Discussion
3.1. Runoff in Tile-Drained and Undrained Plots
3.2. Export of Phosphorus and Total Suspended Solids
3.3. Flow-Weighted Mean Concentrations
3.4. Study Limitations
3.5. Water Quality Implications
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sharpley, A.N.; McDowell, R.W.; Kleinman, P.J.A. Phosphorus loss from land to water: Integrating agricultural and environmental management. Plant Soil 2001, 237, 287–307. [Google Scholar] [CrossRef]
- Foy, R.H. The return of the phosphorus paradigm; agricultural phosphorus and eutrophication. In Phosphorus: Agriculture and the Environment; Sims, J.T., Sharpley, A.N., Eds.; ASA-CSA-SSSA: Madison, WI, USA, 2005; pp. 1021–1068. [Google Scholar]
- USEPA. National Water Quality Inventory: Report to Congress. 2004 Reporting Cycle; United States Environmental Protection Agency Office of Water: Washington, DC, USA, 2009; EPA 841-R-08-001.
- Sharpley, A.N.; Foy, B.; Withers, P. Practical and innovative measures for the control of agricultural phosphorus losses to water: An overview. J. Environ. Qual. 2000, 29, 1–9. [Google Scholar] [CrossRef]
- Skaggs, R.W.; Brevé, M.A.; Gilliam, J.W. Hydrologic and water quality impacts of agricultural drainage. Crit. Rev. Environ. Sci. Tec. 1994, 24, 1–32. [Google Scholar] [CrossRef]
- Gilliam, J.W.; Baker, J.L.; Reddy, K.R. Water quality effects of drainage in humid regions. In Agricultural Drainage; Skaggs, R.W., van Schilfgaarde, J., Eds.; American Society of Agronomy: Madison, WI, USA, 1999; pp. 801–830. [Google Scholar]
- Benoit, G.R. Effect of agricultural management of wet sloping soil on nitrate and phosphorus in surface and subsurface water. Water Resour. Res. 1973, 9, 1296–1303. [Google Scholar] [CrossRef]
- Hanway, J.J.; Laflen, J.M. Plant nutrient losses from tile-outlet terraces. J. Environ. Qual. 1974, 3, 351–356. [Google Scholar] [CrossRef]
- Baker, J.L.; Campbell, K.L.; Johnson, H.P.; Hanway, J.J. Nitrate, phosphorus, and sulfate in subsurface drainage water. J. Environ. Qual. 1975, 4, 406–412. [Google Scholar] [CrossRef]
- Zhao, S.L.; Gupta, S.C.; Huggins, D.R.; Moncrief, J.F. Tillage and nutrient source effects on surface and subsurface water quality at corn planting. J. Environ. Qual. 2001, 30, 998–1008. [Google Scholar] [CrossRef]
- Coelho, B.B.; Murray, R.; Lapen, D.; Topp, E.; Bruin, A. Phosphorus and sediment loading to surface waters from liquid swine manure application under different drainage and tillage practices. Agric. Water Manag. 2012, 104, 51–61. [Google Scholar] [CrossRef]
- Sims, J.T.; Simard, R.R.; Joern, B.C. Phosphorus loss in agricultural drainage: Historical perspective and current research. J. Environ. Qual. 1998, 27, 277–293. [Google Scholar] [CrossRef]
- Geohring, L.D.; McHugh, O.V.; Walter, M.T.; Steenhuis, T.S.; Akhtar, M.S.; Walter, M.F. Phosphorus transport into subsurface drains by macropores after manure applications: Implications for best manure management practices. Soil Sci. 2001, 166, 896–909. [Google Scholar] [CrossRef]
- Van Es, H.M.; Schindelbeck, R.R.; Jokela, W.E. Effect of manure application timing, crop, and soil type on phosphorus leaching. J. Environ. Qual. 2004, 33, 1070–1080. [Google Scholar] [PubMed]
- Kleinman, P.J.; Sharpley, A.N.; Saporito, L.S.; Buda, A.R.; Bryant, R.B. Application of manure to no-till soils: Phosphorus losses by sub-surface and surface pathways. Nutr. Cycl. Agroecosys. 2009, 84, 215–227. [Google Scholar] [CrossRef]
- Eastman, M.; Gollamudi, N.; Stampfli, N.; Madramootoo, C.A.; Sarangi, A. Comparative evaluation of phosphorus losses from subsurface and naturally drained agricultural fields in the Pike River watershed of Quebec, Canada. Agric. Water Manag. 2010, 97, 596–604. [Google Scholar] [CrossRef]
- Tan, C.S.; Zhang, T.Q. Surface runoff and sub-surface drainage phosphorus losses under regular free drainage and controlled drainage with sub-irrigation systems in southern Ontario. Can. J. Soil Sci. 2011, 91, 349–359. [Google Scholar] [CrossRef]
- Smith, D.R.; King, K.W.; Johnson, L.; Francesconi, W.; Richards, P.; Baker, D.; Sharpley, A.N. Surface runoff and tile drainage transport of phosphorus in the midwestern United States. J. Environ. Qual. 2015, 44, 495–502. [Google Scholar] [CrossRef]
- King, K.W.; Williams, M.R.; Macrae, M.L.; Fausey, N.R.; Frankenberger, J.; Smith, D.R.; Kleinman, P.J.A.; Brown, L.C. Phosphorus transport in agricultural subsurface drainage: A review. J. Environ. Qual. 2015, 44, 467–485. [Google Scholar] [CrossRef]
- King, K.W.; Williams, M.R.; Fausey, N.R. Contributions of systematic tile drainage to watershed-scale phosphorus transport. J. Environ. Qual. 2014, 44, 486–494. [Google Scholar] [CrossRef]
- Madison, A.M.; Ruark, M.D.; Stuntebeck, T.D.; Komiskey, M.J.; Good, L.W.; Drummey, N.; Cooley, E.T. Characterizing phosphorus dynamics in tile-drained agricultural fields of eastern Wisconsin. J. Hydrol. 2014, 519, 892–901. [Google Scholar] [CrossRef]
- Culley, J.L.B.; Bolton, E.F. Suspended solids and phosphorus loads from a clay soil: II. Watershed study. J. Environ. Qual. 1983, 12, 498–503. [Google Scholar] [CrossRef]
- Macrae, M.L.; English, M.C.; Schiff, S.L.; Stone, M. Intra-annual variability in the contribution of tile drains to basin discharge and phosphorus export in a first-order agricultural catchment. Agric. Water Manag. 2007, 92, 171–182. [Google Scholar] [CrossRef]
- King, K.W.; Fausey, N.R.; Williams, M.R. Effect of subsurface drainage on streamflow in an agricultural headwater watershed. J. Hydrol. 2014, 519, 438–445. [Google Scholar] [CrossRef]
- Trevail, T.D. Soil Survey of Clinton County, New York; USDA-NRCS: Washington, DC, USA, 2006; pp. 104–106, 376–377. [Google Scholar]
- American Public Health Association. Phosphorus: 4500-P. In Standard Methods for the Examination of Waste and Wastewaters, 17th ed.; Clesceri, L.S., Greenberg, A.E., Trussell, R.R., Eds.; Port City Press: Baltimore, MD, USA, 1989; pp. 166–181. [Google Scholar]
- Howard, A.; (University of Vermont, Burlington, VT, USA). Personal communication, 2015.
- Dolezal, F.; Kulhavy, Z.; Soukup, M.; Kodesova, R. Hydrology of tile drainage runoff. Phys. Chem. Earth 2001, 26, 623–627. [Google Scholar] [CrossRef]
- Needelman, B.A.; Gburek, W.J.; Petersen, G.W.; Sharpley, A.N.; Kleinman, P.J.A. Surface runoff along two agricultural hillslopes with contrasting soils. Soil Sci. Soc. Am. J. 2004, 68, 914–923. [Google Scholar] [CrossRef]
- Kirkby, M. Hillslope runoff processes and models. J. Hydrol. 1988, 100, 315–339. [Google Scholar] [CrossRef]
- Karl, T.R.; Knight, R.W. Secular trends of precipitation amount, frequency, and intensity in the United States. Bull. Am. Meteorol. Soc. 1998, 79, 231–241. [Google Scholar] [CrossRef]
- Tan, C.S.; Drury, C.F.; Reynolds, W.D.; Gaynor, J.D.; Zhang, T.Q.; Ng, H.Y.F. Effect of long-term conventional tillage and no-tillage systems on soil and water quality at the field scale. Water Sci. Technol. 2002, 46, 183–190. [Google Scholar] [CrossRef]
- Jamieson, A.; Madramootoo, C.A.; Enright, P. Phosphorus losses in surface and subsurface runoff from a snowmelt event on an agricultural field in Quebec. Can. Biosyst. Eng. 2003, 45, 1–7. [Google Scholar]
- Rodzik, J.; Furtak, T.; Zglobicki., W. The impact of snowmelt and heavy rainfall runoff on erosion rates in a gully system, Lublin Upland, Poland. Earth Surf. Process. Landforms. 2009, 34, 1938–1950. [Google Scholar] [CrossRef]
- Heckrath, G.; Brooks, P.C.; Poulton, P.R.; Goulding, K.W.T. Phosphorus leaching from soils containing different phosphorus concentrations in the Broadbalk experiment. J. Environ. Qual. 1995, 24, 904–910. [Google Scholar] [CrossRef]
- Pote, D.H.; Daniel, T.C.; Sharpley, A.N.; Moore, P.A., Jr.; Edwards, D.R.; Nichols, D.J. Relating extractable soil phosphorus to phosphorus in runoff. J. Environ. Qual. 1996, 60, 855–859. [Google Scholar]
- McDowell, R.W.; Sharpley, A.N. Approximating phosphorus release from soils to surface runoff and subsurface drainage. J. Environ. Qual. 2001, 30, 508–520. [Google Scholar] [CrossRef] [PubMed]
- Maguire, R.O.; Sims, J.T. Soil testing to predict phosphorus leaching. J. Environ. Qual. 2002, 31, 1601–1609. [Google Scholar] [CrossRef] [PubMed]
- Vadas, P.A.; Kleinman, P.J.A.; Sharpley, A.N.; Turner, B.L. Relating soil phosphorus to dissolved phosphorus in runoff. J. Environ. Qual. 2005, 34, 572–580. [Google Scholar] [CrossRef]
- Kleinman, P.J.A.; Srinivasan, M.S.; Dell, C.J.; Schmidt, J.P.; Sharpley, A.N.; Bryant, R.B. Role of rainfall intensity and hydrology in nutrient transport via surface runoff. J. Environ. Qual. 2006, 35, 1248–1259. [Google Scholar] [CrossRef]
- Chapman, A.S.; Foster, I.D.L.; Lees, J.A.; Hodgkinson, R.A. Sediment delivery from agricultural land to rivers via subsurface drainage. Hydrol. Processes. 2005, 19, 2875–2897. [Google Scholar] [CrossRef]
- Stuntebeck, T.D.; Komiskey, M.J.; Owens, D.W.; Hall, D.W. Methods of Data Collection, Sample Processing, and Data Analysis for Edge-Of-Field, Streamgaging, Subsurface-Tile, and Meteorological Stations at Discovery Farms and Pioneer Farm in Wisconsin, 2001-7: U.S. Geological Survey Open-File Report 2008-1015. 2008. Available online: https://pubs.usgs.gov/of/2008/1015/pdf/ofr2008-1015.pdf (accessed on 22 January 2020).
- Sharpley, A.N.; Kleinman, P.J.A.; Heathwaite, A.L.; Gburek, W.J.; Folmar, G.J.; Schmidt, J.P. Phosphorus loss from an agricultural watershed as a function of storm size. J. Environ. Qual. 2008, 37, 362–368. [Google Scholar] [CrossRef]
- Correll, D.L. The Role of Phosphorus in the Eutrophication of Receiving Waters: A Review. J. Environ. Qual. 1998, 27, 261–266. [Google Scholar] [CrossRef]
- Sharpley, A.N.; Jarvie, H.P.; Buda, A.; May, L.; Spears, B.; Kleinman, P.J.A. Phosphorus legacy: Overcoming the effects of past management practices to mitigate future water quality impairment. J. Environ. Qual. 2013, 42, 1308–1326. [Google Scholar] [CrossRef]
- Sharpley, A.N.; Withers, P.J.A. The environmentally-sound management of agricultural phosphorus. Fert. Res. 1994, 39, 133–146. [Google Scholar] [CrossRef]
- Gentry, L.E.; David, M.B.; Royer, T.V.; Mitchell, C.A.; Starks, K.M. Phosphorus transport pathways to streams in tile-drained agricultural watersheds. J. Environ. Qual. 2007, 36, 408–415. [Google Scholar] [CrossRef]
- Vadas, P.A.; Good, L.W.; Jokela, W.E.; Karthikeyan, K.G.; Arriaga, F.J.; Stock, M. Quantifying the impact of seasonal and short-term manure application decisions on phosphorus loss in surface runoff. J. Environ. Qual. 2017, 46, 1395–1402. [Google Scholar] [CrossRef] [PubMed]
- Easton, Z.M.; Kleinman, P.J.A.; Buda, A.R.; Goering, D.; Emberston, N.; Reed, S.; Drohan, P.J.; Walter, M.T.; Guinan, P.; Lory, J.A.; et al. Short-term forecasting tools for agricultural nutrient management. J. Environ. Qual. 2017, 46, 1257–1269. [Google Scholar] [CrossRef] [PubMed]
- Dahlke, H.E.; Easton, Z.M.; Fuka, D.R.; Walter, M.T.; Steenhuis, T.S. Real-time forecast of hydrologically sensitive areas in the salmon creek watershed, New York state, using an online prediction tool. Water 2013, 5, 917–944. [Google Scholar] [CrossRef]
- Ketterings, Q.M.; Cela, S.; Collick, A.S.; Crittenden, S.J.; Czymmek, K.J. Restructuring the P index to better address P management in New York. J. Environ. Qual. 2017, 46, 1372–1379. [Google Scholar] [CrossRef] [PubMed]
- Williams, M.R.; King, K.W.; LaBarge, G.A.; Confesor, R.B.; Fausey, N.R. Edge-of-field evaluation of the Ohio phosphorus risk index. J. Environ. Qual. 2016, 46, 1306–1313. [Google Scholar] [CrossRef]
Event Date | Treatment | Runoff (mm) | SRP (g ha−1) | PUP (g ha−1) | TP (g ha−1) | TSS (kg ha−1) |
---|---|---|---|---|---|---|
16 May 2014 (54.4 mm) | TD | 24.4 a,† (5.6) § | 13.63 (12.55) | 62.23 (53.03) | 72.95 (65.58) | 42.67 (36.22) |
UD | 11.3 b (3.2) | 1.30 (1.06) | 14.25 (11.66) | 15.55 (12.72) | 113.21 (110.36) | |
3 June 2014 (27.9 mm) | TD | 10.9 (1.3) | 0.49 (0.34) | 15.73 (13.44) | 16.22 (13.77) | 14.47 (13.20) |
UD | 4.7 (2.6) | 0.50 (0.33) | 5.21 (1.51) | 5.70 (1.18) | 9.91 (0.65) | |
11 Jun 2014 (52.3 mm) | TD | 19.2 a (1.4) | 0.47 (0.27) | 3.87 (16.3) | 4.34 (1.90) | 1.21 (1.12) |
UD | 10.2 b (0.8) | 2.11 (1.45) | 7.40 (5.58) | 9.48 (6.02) | 7.21 (5.0) | |
24 Jun 2014 (10.9 mm) | TD | 2.0 a (0.9) | 0.04 (0.00) | 0.13 (0.04) | 0.17 (0.04) | 0.01 (0.00) |
UD | 0.7 b (0.7) | 0.02 (0.01) | 0.06 (0.05) | 0.08 (0.06) | 0.04 (0.03) | |
13 August 2014 (54.1 mm) | TD | 6.0 a (1.2) | 1.62 (1.38) | 2.45 (2.10) | 4.08 (3.47) | 0.33 a,† (0.29) |
UD | 2.6 b (0.1) | 1.73 (0.12) | 2.49 (0.56) | 4.22 (0.68) | 0.84 b (0.18) | |
24 December 2014 (11.4 mm) | TD | 50.3 (12.2) | 51.58 (49.03) | 14.00 (9.81) | 65.58 (58.84) | 1.21 (0.97) |
UD | 30.5 (16.8) | 110.45 (100.21) | 27.75 (22.88) | 138.19 (123.09) | 2.70 (1.86) | |
31 May 2015 (30.5 mm) | TD | 6.7 a (0.4) | 0.86 (0.62) | 0.90 (0.74) | 1.76 (1.36) | 0.18 (0.10) |
UD | 0.4 b (0.2) | 0.15 (0.04) | 0.20 (0.09) | 0.34 (0.13) | 0.05 (0.05) | |
Total (1042 mm) | TD | 559.6 a (110.1) | 84.19 (71.11) | 149.40 (82.24) | 233.59 (153.34) | 65.45 (51.36) |
UD | 163.8 b (51.1) | 130.78 (104.26) | 98.00 (31.83) | 228.78 (136.09) | 168.82 (101.07) |
Event Date | Treatment | Runoff (mm) | SRP (g ha−1) | PUP (g ha−1) | TP (g ha−1) | TSS (kg ha−1) |
---|---|---|---|---|---|---|
16 May 2014 (54.4 mm) | UD-surface | 11.3 (3.2) § | 1.30 (1.06) | 14.25 (11.66) | 15.55 (14.46) | 113.21 (111.80) |
TD-surface | 8.9 (8.5) | 13.12 (12.56) | 47.18 (46.18) | 60.31 (58.73) | 36.04 (35.87) | |
TD-tile | 15.4 (2.8) | 0.50 (0.01) | 15.06 (6.86) | 12.64 (6.85) | 6.63 (0.35) | |
3 Jun 2014 (27.9 mm) | UD-surface | 4.7 (2.6) | 0.50 (0.33) | 5.21 (1.51) | 5.70 (1.18) | 9.91 (0.65) |
TD-surface | 2.8 (2.2) | 0.36 (0.32) | 10.87 (9.74) | 11.23 (10.07) | 13.63 (12.93) | |
TD-tile | 8.1 (0.9) | 0.13 (0.02) | 4.86 (3.69) | 4.99 (3.71) | 0.84 (0.26) | |
11 Jun 2014 (52.3 mm) | UD-surface | 10.2 ab,† (0.8) | 1.87 (1.45) | 6.54 (4.58) | 8.41 (6.02) | 2.32 (1.55) |
TD-surface | 1.3 b (1.3) | 0.13 (0.14) | 0.94 (0.93) | 1.08 (1.08) | 0.34 (0.34) | |
TD-tile | 18.0 a (2.6) | 0.39 (0.13) | 2.88 (0.68) | 3.27 (0.81) | 0.29 (0.18) | |
24 Jun 2014 (10.9 mm) | UD-surface | 0.7 (0.7) | 0.02 (0.01) | 0.06 (0.05) | 0.08 (0.06) | 0.04 (0.03) |
TD-surface | 0.0 (0.0) | 0.01 (0.01) | 0.06 (0.04) | 0.07 (0.06) | 0.00 (0.00) | |
TD-tile | 2.0 (0.9) | 0.03 (0.01) | 0.07 (0.01) | 0.10 (0.02) | 0.01 (0.01) | |
13 August 2014 (54.1 mm) | UD-surface | 2.6 (0.1) | 1.73 (0.12) | 2.49 (0.56) | 4.22 (0.68) | 0.84 a,† (0.18) |
TD-surface | 1.4 (1.2) | 1.27 (1.23) | 1.17 (1.14) | 2.44 (2.38) | 0.17 b (0.16) | |
TD-tile | 4.6 (0.0) | 0.35 (0.14) | 1.28 (0.95) | 1.63 (1.10) | 0.16 b (0.13) | |
24 December 2014 (11.4 mm) | UD-surface | 30.5 ab (16.8) | 110.45 (100.21) | 27.75 (22.88) | 138.19 (123.09) | 2.70 (1.86) |
TD-surface | 4.4 b (4.1) | 11.28 (9.42) | 2.08 (1.80) | 13.36 (11.22) | 0.21 (0.19) | |
TD-tile | 45.9 a (8.1) | 40.30 (39.61) | 11.92 (8.01) | 52.22 (47.61) | 1.00 (0.78) | |
31 May 2015 (30.5 mm) | UD-surface | 0.4 b (0.4) | 0.15 (0.04) | 0.20 (0.09) | 0.34 (0.13) | 0.05 (0.05) |
TD-surface | 0.5 b (0.4) | 0.56 (0.54) | 0.25 (0.23) | 0.81 (0.77) | 0.02 (0.02) | |
TD-tile | 6.2 a (0.2) | 0.30 (0.08) | 0.66 (0.51) | 0.96 (0.59) | 0.16 (0.08) | |
Total (1042 mm) | UD-surface | 163.8 ab (51.1) | 130.79 (104.26) | 100.10 (31.83) | 230.87 (136.09) | 162.29 (101.07) |
TD-surface | 25.8 a (22.9) | 34.01 (30.61) | 68.54 (64.92) | 102.52 (95.53) | 50.99 (50.00) | |
TD-tile | 533.8 b (133.0) | 50.17 (40.49) | 81.15 (17.32) | 131.35 (57.81) | 14.46 (1.36) |
Treatment | Pathway | SRP (μg L−1) | PUP (μg L−1) | TP (μg L−1) | TSS (mg L−1) |
---|---|---|---|---|---|
UD | surface | 80 | 61 | 141 | 99 |
TD | surface | 132 | 265 | 397 | 197 |
TD | tile | 9 | 15 | 25 | 3 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Klaiber, L.B.; Kramer, S.R.; Young, E.O. Impacts of Tile Drainage on Phosphorus Losses from Edge-of-Field Plots in the Lake Champlain Basin of New York. Water 2020, 12, 328. https://doi.org/10.3390/w12020328
Klaiber LB, Kramer SR, Young EO. Impacts of Tile Drainage on Phosphorus Losses from Edge-of-Field Plots in the Lake Champlain Basin of New York. Water. 2020; 12(2):328. https://doi.org/10.3390/w12020328
Chicago/Turabian StyleKlaiber, Laura B., Stephen R. Kramer, and Eric O. Young. 2020. "Impacts of Tile Drainage on Phosphorus Losses from Edge-of-Field Plots in the Lake Champlain Basin of New York" Water 12, no. 2: 328. https://doi.org/10.3390/w12020328
APA StyleKlaiber, L. B., Kramer, S. R., & Young, E. O. (2020). Impacts of Tile Drainage on Phosphorus Losses from Edge-of-Field Plots in the Lake Champlain Basin of New York. Water, 12(2), 328. https://doi.org/10.3390/w12020328