Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (73)

Search Parameters:
Keywords = tile drainage

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1803 KiB  
Article
Sustainable Crop Farm Productivity: Weather Effects, Technology Adoption, and Farm Management
by Sun Ling Wang, Ryan Olver and Daniel Bonin
Sustainability 2025, 17(15), 6778; https://doi.org/10.3390/su17156778 - 25 Jul 2025
Viewed by 330
Abstract
The main purpose of this study is to understand the potential determinants of sustainable field crop farm productivity. This paper considers a multi-input, multi-output production technology to estimate the effects of aridity on farm-level productivity using a stochastic input distance function. By isolating [...] Read more.
The main purpose of this study is to understand the potential determinants of sustainable field crop farm productivity. This paper considers a multi-input, multi-output production technology to estimate the effects of aridity on farm-level productivity using a stochastic input distance function. By isolating the respective weather components of agricultural total factor productivity (TFP), we can better assess the impact on productivity of adopting various technologies and farm practices that might otherwise be masked by changing climate conditions or weather shocks. We make use of data from Phase 3 of the United States Department of Agriculture (USDA) Agricultural Resource Management Survey (ARMS) between 2006 and 2020. We supplement this estimation using field crop farm productivity determinants, including technology adoption and farm practice variables derived from the ARMS Phase 2 data. We identify several factors that affect farm productivity, including many practices that help farmers make more sustainable use of natural resources. The results show that adopting yield monitoring technology, fallowing in previous years, adding or improving tile drainage, and contour farming each improved farm productivity. In particular, during our study period, conservation tillage increased by over 300% across states on average. It is estimated to increase productivity level by approximately 3% for those adopting this practice. Critically, accounting for local weather effects increased the estimated productivity of nearly all farm practices and increased the statistical significance of several variables, indicating that other TFP studies that did not account for climate or weather effects may have underestimated the technical efficiency of farms that adopted these conservation practices. However, the results also show the impacts can be heterogeneous, with effects varying between farms located in the U.S. northern or southern regions. Full article
(This article belongs to the Special Issue Sustainable Agricultural and Rural Development)
Show Figures

Figure 1

27 pages, 7434 KiB  
Article
Baseflow Index Trends in Iowa Rivers and the Relationships to Other Hydrologic Metrics
by Elliot S. Anderson and Keith E. Schilling
Hydrology 2025, 12(5), 116; https://doi.org/10.3390/hydrology12050116 - 10 May 2025
Cited by 1 | Viewed by 838
Abstract
The US state of Iowa has experienced profound historical changes in its streamflow and baseflow. While several studies have noted increasing baseflow and baseflow index (BFI) values throughout the 20th century, analyses quantifying BFI trends in recent years or exploring spatial differences in [...] Read more.
The US state of Iowa has experienced profound historical changes in its streamflow and baseflow. While several studies have noted increasing baseflow and baseflow index (BFI) values throughout the 20th century, analyses quantifying BFI trends in recent years or exploring spatial differences in watersheds marked by varying land use and geologic properties have not been conducted. This study calculated annual values for BFI (and several other hydrologic metrics) using flow records from 42 Iowa stream gauges containing at least 50 years of uninterrupted measurements. While BFI overwhelmingly rose throughout the mid-1900s, circa 1990 it began to level off. In some areas of Iowa (e.g., the southwest), BFI has continued to rise over the past 30 years—albeit at a slower rate; in other regions, it has become stationary or declined. One site failed to follow this trend (Walnut Cr), the only basin to experience large-scale urbanization. Furthermore, BFI demonstrated a strong negative correlation to streamflow flashiness, indicating that rising baseflow has also made Iowa streams less dynamic. BFI was largely independent of overall streamflow. These results may suggest the increased influence of conservation practices and the diminishing impacts of tile drainage on the delivery of water to Iowa’s rivers. Full article
(This article belongs to the Special Issue Hydrological Processes in Agricultural Watersheds)
Show Figures

Figure 1

12 pages, 70638 KiB  
Communication
Land Drainage Interventions for Climate Change Adaptation: An Overlooked Phenomenon—A Conceptual Case Study from Northern Bohemia, Czech Republic
by Jiří Černý, Petr Fučík and Antonín Zajíček
Land 2025, 14(4), 782; https://doi.org/10.3390/land14040782 - 5 Apr 2025
Viewed by 727
Abstract
This study investigates the often-overlooked phenomenon of land drainage interventions as a means of climate change adaptation, focusing on a conceptual case study from Northern Bohemia, Czech Republic. The intensification of agriculture has led to extensive tile drainage systems, which have had significant [...] Read more.
This study investigates the often-overlooked phenomenon of land drainage interventions as a means of climate change adaptation, focusing on a conceptual case study from Northern Bohemia, Czech Republic. The intensification of agriculture has led to extensive tile drainage systems, which have had significant environmental impacts, including disruption of water balance, nutrient leaching, and ecological degradation. With climate change expected to alter precipitation patterns and increase temperatures, these impacts are likely to intensify, leading to more frequent droughts and pollutant delivery from soil to water bodies. This study explores the options for the allocation and implementation of drainage-related measures such as controlled drainage, constructed wetlands, and partial drainage elimination to mitigate these effects, with the use of readily available archival data as well as aerial images, current as well as historical soil, land use, geomorphological and landowner-land user relationships. At two cadastral units with local potable water resources at the hilly Lovečkovicko case study, the paper proposes conceptual, practical approaches for integrating drainage-related measures into land consolidation processes. Here, eleven sites based on the cross-intersection of the above interventions’ criteria were selected, and twenty various drainage-related measures were tentatively designed. This study categorizes the implementation potential of the proposed measures into three levels: high, medium, and low, highlighting the feasibility and transferability of these interventions within the land consolidation or similar process. Full article
Show Figures

Figure 1

15 pages, 1773 KiB  
Article
Relationships Between Land Use and Stream Macroinvertebrate Biotic Integrity in Central Ohio, USA
by Douglas Spieles, Zoe Krashes, Khiem Nguyen, Summer Rodgers, Lillian Ruiz and Marco Vigilante
Water 2025, 17(6), 895; https://doi.org/10.3390/w17060895 - 20 Mar 2025
Viewed by 686
Abstract
Land use is known to be an important factor in the composition and function of adjacent freshwater lotic ecosystems. However, the relative effects of land use type, extent, intensity, and proximity on aquatic ecosystem quality are not fully understood. We evaluate these questions [...] Read more.
Land use is known to be an important factor in the composition and function of adjacent freshwater lotic ecosystems. However, the relative effects of land use type, extent, intensity, and proximity on aquatic ecosystem quality are not fully understood. We evaluate these questions in low-order streams within 30 watersheds in developed, agricultural, and less developed landscapes of central Ohio, USA. We assess the relationships of land use cover percentage and spatial scale with stream macroinvertebrate community diversity and biotic integrity. We also investigate the importance of impervious cover and subsurface tile drainage within each watershed and Active River Area (ARA). We find that the percentage of coverage of developed land at the watershed scale is the strongest predictor of stream macroinvertebrate community diversity and integrity. High-intensity development is a stronger negative correlate than low-intensity development or agriculture. There is a significant decline in stream macroinvertebrate diversity and biotic integrity at the watershed and ARA scales when undeveloped land coverage falls below 20–30%. We do not find a significant relationship between stream macroinvertebrate metrics and land use at the 1 km2 scale or in comparison with any instream habitat attributes except sinuosity. Impervious cover has a significant negative relationship with both macroinvertebrate taxon richness and biotic integrity at the watershed and ARA scales. However, subsurface tile-drained land does not have a significant relationship with the stream macroinvertebrate community at any scale. We conclude that impervious land cover at the watershed and ARA scales is a critical factor for the biotic integrity of small streams in this region. Collectively, our conclusions provide evidence to support practices of ecologically sensitive land use planning. Full article
(This article belongs to the Special Issue Aquatic Ecosystems: Biodiversity and Conservation)
Show Figures

Figure 1

18 pages, 26143 KiB  
Article
A Non-Contact Method for Detecting and Evaluating the Non-Motor Use of Sidewalks Based on Three-Dimensional Pavement Morphology Analysis
by Shengchuan Jiang, Hui Wang, Wenruo Fan, Min Chi, Xun Zhang and Jinlong Ma
Sensors 2025, 25(6), 1721; https://doi.org/10.3390/s25061721 - 10 Mar 2025
Cited by 2 | Viewed by 1520
Abstract
This study proposes a non-contact framework for evaluating the skid resistance of shared roadside pavements to improve cyclist and pedestrian safety. By integrating a friction tester and a laser scanner, we synchronize high-resolution three-dimensional (3D) surface texture characterization with friction coefficient measurements under [...] Read more.
This study proposes a non-contact framework for evaluating the skid resistance of shared roadside pavements to improve cyclist and pedestrian safety. By integrating a friction tester and a laser scanner, we synchronize high-resolution three-dimensional (3D) surface texture characterization with friction coefficient measurements under dry and wet conditions. Key metrics—including fractal dimension (FD), macro/micro-texture depth density (HLTX and WLTX), mean texture depth (MTD), and joint dimensions—were derived from 3D laser scans. A hierarchical regression analysis was employed to prioritize the influence of texture and joint parameters on skid resistance across environmental conditions. Combined with material types (brick, tile, and stone) and drainage performance, these metrics are systematically analyzed to quantify their correlations with skid resistance. Results indicate that raised macro-textures and high FD (>2.5) significantly enhance dry-condition skid resistance, whereas recessed textures degrade performance. The hierarchical model further reveals that FD and MTD dominate dry friction (β = 0.61 and −0.53, respectively), while micro-texture density (WLTX) and seam depth are critical predictors of wet skid resistance (β = −0.76 and 0.31). In wet environments, skid resistance is dominated by micro-texture density (WLTX < 3500) and macro-texture-driven water displacement, with higher WLTX values indicating denser micro-textures that impede drainage. The study validates that non-contact laser scanning enables efficient mapping of critical texture data (e.g., pore connectivity, joint depth ≥0.25 mm) and friction properties, supporting rapid large-scale pavement assessments. These findings establish a data-driven linkage between measurable surface indicators (texture, morphometry, drainage) and skid resistance, offering a practical foundation for proactive sidewalk safety management, especially in high-risk areas. Future work should focus on refining predictive models through multi-sensor fusion and standardized design guidelines. Full article
(This article belongs to the Section Environmental Sensing)
Show Figures

Figure 1

11 pages, 7807 KiB  
Article
Yield Impact of Data-Informed Surface Drainage: An On-Farm Case Study
by Sagar Regmi, Paul Davidson and Cody Allen
Agriculture 2024, 14(12), 2210; https://doi.org/10.3390/agriculture14122210 - 3 Dec 2024
Viewed by 1334
Abstract
Drainage is an important aspect of effective water management in row-crop agriculture. Drainage systems can be broadly categorized as either subsurface or surface drainage. A significant amount of design goes into subsurface drainage installations, such as tile networks, and permanent surface drainage installations, [...] Read more.
Drainage is an important aspect of effective water management in row-crop agriculture. Drainage systems can be broadly categorized as either subsurface or surface drainage. A significant amount of design goes into subsurface drainage installations, such as tile networks, and permanent surface drainage installations, such as waterways and berms. However, many farmers also implement temporary surface drainage installations to drain localized areas within their fields each year. This practice involves creating shallow water paths, typically using spinner ditchers, and it is especially commonplace in areas with poor soil permeability. However, this practice is traditionally performed using only observations by farmers and without any data-based workflows. The objective of this study was to analyze the potential yield benefits from a more data-informed approach to surface drainage on a production row-crop farm by exploring corn and soybean yield data from 2008–2021 from two fields where a data-informed approach to surface drainage was implemented. Field topography and drainage information were combined with yield maps from prior years with traditional ad hoc drainage and the years following the incorporation of the data-informed approach to better understand the impact of the workflow. Geospatial distribution of the average normalized crop yields and elevation maps for the fields were analyzed to isolate the yield impacts of the areas affected by the data-informed on-farm surface drainage artifacts. In the years after implementation of the data-informed surface drainage approach, Field 1 and Field 2 showed respective increases of 18.3% and 13.9% in average corn yields. Further analysis isolating three areas affected by the surface drainage using topography and drainage layout showed that all three isolated areas improved more than the field averages, ranging from 15.9–26.5% for Field 1 and 21.4–40.2% for Field 2. Similarly, soybean yields were also higher in the isolated affected areas after the data-informed drainage ditch construction. The findings highlight the effectiveness of data-informed on-farm surface drainage, a relatively straightforward approach that proved beneficial for both soybean and corn production. Full article
Show Figures

Figure 1

16 pages, 16789 KiB  
Article
An Evidence-Driven Approach to Slip and Fall Prevention in Large Campus Facilities
by Michael Yit Lin Chew, Ashan Senel Asmone and Mark Tiam Weng Lam
Buildings 2024, 14(12), 3700; https://doi.org/10.3390/buildings14123700 - 21 Nov 2024
Cited by 1 | Viewed by 1385
Abstract
We developed an evidence-based risk assessment and benchmarking framework towards pedestrian safety. Pendulum slip resistance tests were conducted on 23 sites within a large campus facility covering ceramic tiles, pebbles, tactile indicators, and metal coverings for manholes and drainage. The results show frictional [...] Read more.
We developed an evidence-based risk assessment and benchmarking framework towards pedestrian safety. Pendulum slip resistance tests were conducted on 23 sites within a large campus facility covering ceramic tiles, pebbles, tactile indicators, and metal coverings for manholes and drainage. The results show frictional resistance can be reduced when tested wet and exacerbated when it is on a slope. The results were further verified via laboratory tests under controlled conditions. The perceived affordance of certain features such as tactile indicators providing a better grip or traction requires urgent attention. Therefore, a data-driven approach not only enhances the accuracy of slip risk assessments but also establishes empirically grounded benchmarks for surface safety, ensuring effective and resource-efficient interventions. The findings contribute to the existing body of knowledge and future research agenda in pedestrian safety, offering a robust foundation for benchmarking and risk management efforts in diverse environments. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

16 pages, 3168 KiB  
Article
Impact of Subsurface Drainage System Design on Nitrate Loss and Crop Production
by Soonho Hwang, Shailendra Singh, Rabin Bhattarai, Hanseok Jeong and Richard A. Cooke
Appl. Sci. 2024, 14(22), 10180; https://doi.org/10.3390/app142210180 - 6 Nov 2024
Viewed by 1290
Abstract
Subsurface (or tile) drainage offers a valuable solution for enhancing crop productivity in poorly drained soils. However, this practice is also associated with significant nutrient leaching, which can contribute to water quality problems at the regional scale. This research presents the findings from [...] Read more.
Subsurface (or tile) drainage offers a valuable solution for enhancing crop productivity in poorly drained soils. However, this practice is also associated with significant nutrient leaching, which can contribute to water quality problems at the regional scale. This research presents the findings from a 4-year tile depth and spacing study in central Illinois that included three drain spacings (12.2, 18.3, and 24.4 m) and two drain depths (0.8 and 1.1 m) implemented in six plots under the corn and soybean rotation system (plots CS-1 and CS-3: 12.2 m spacing and 1.1 m depth, plots CS-2 and CS-4: 24.4 m spacing and 1.1 m depth, and plots CS-5 and CS-6 18.3 m spacing and 0.8 m depth). Our observations indicate that drain flow and NO3-N losses were higher in plots with narrower drain spacings, while plots with wider drain spacing showed reduced drain flow and NO3-N losses. Specifically, plots set up with drain spacings of 18.3 m and 24.4 m showed significant reductions in drain flow compared to plots featuring a 12.2 m drain spacing. Likewise, plots characterized by 18.3 m and 24.4 m drain spacings (except CS-4) showed better NO3-N retention and lower leaching losses than those with 12.2 m spacing (CS-1 and CS-3). Crop yield results over a 3-year period indicated that CS-2 (wider spacing plot) showed the highest productivity, with up to 13.6% higher yield compared to other plots. Furthermore, when comparing plots with the same drainage designs, CS-2 and CS-4 showed 5.1% to 2.6% higher corn yield (3-year average) compared to CS-1 and CS-3, and CS-5 and CS-6, respectively. Overall, a wider drainage system showed the capacity to export lower nutrient levels while concurrently enhancing productivity. These findings represent that optimizing tile drainage systems can effectively reduce nitrate losses while increasing crop productivity. Full article
Show Figures

Figure 1

24 pages, 1757 KiB  
Review
Unraveling the Interactions between Flooding Dynamics and Agricultural Productivity in a Changing Climate
by Thidarat Rupngam and Aimé J. Messiga
Sustainability 2024, 16(14), 6141; https://doi.org/10.3390/su16146141 - 18 Jul 2024
Cited by 20 | Viewed by 9997
Abstract
Extreme precipitation and flooding frequency associated with global climate change are expected to increase worldwide, with major consequences in floodplains and areas susceptible to flooding. The purpose of this review was to examine the effects of flooding events on changes in soil properties [...] Read more.
Extreme precipitation and flooding frequency associated with global climate change are expected to increase worldwide, with major consequences in floodplains and areas susceptible to flooding. The purpose of this review was to examine the effects of flooding events on changes in soil properties and their consequences on agricultural production. Flooding is caused by natural and anthropogenic factors, and their effects can be amplified by interactions between rainfall and catchments. Flooding impacts soil structure and aggregation by altering the resistance of soil to slaking, which occurs when aggregates are not strong enough to withstand internal stresses caused by rapid water uptake. The disruption of soil aggregates can enhance soil erosion and sediment transport during flooding events and contribute to the sedimentation of water bodies and the degradation of aquatic ecosystems. Total precipitation, flood discharge, and total water are the main factors controlling suspended mineral-associated organic matter, dissolved organic matter, and particulate organic matter loads. Studies conducted in paddy rice cultivation show that flooded and reduced conditions neutralize soil pH but changes in pH are reversible upon draining the soil. In flooded soil, changes in nitrogen cycling are linked to decreases in oxygen, the accumulation of ammonium, and the volatilization of ammonia. Ammonium is the primary form of dissolved inorganic nitrogen in sediment porewaters. In floodplains, nitrate removal can be enhanced by high denitrification when intermittent flooding provides the necessary anaerobic conditions. In flooded soils, the reductive dissolution of minerals can release phosphorus (P) into the soil solution. Phosphorus can be mobilized during flood events, leading to increased availability during the first weeks of waterlogging, but this availability generally decreases with time. Rainstorms can promote the subsurface transport of P-enriched soil particles, and colloidal P can account for up to 64% of total P in tile drainage water. Anaerobic microorganisms prevailing in flooded soil utilize alternate electron acceptors, such as nitrate, sulfate, and carbon dioxide, for energy production and organic matter decomposition. Anaerobic metabolism leads to the production of fermentation by-products, such as organic acids, methane, and hydrogen sulfide, influencing soil pH, redox potential, and nutrient availability. Soil enzyme activity and the presence of various microbial groups, including Gram+ and Gram− bacteria and mycorrhizal fungi, are affected by flooding. Waterlogging decreases the activity of β-glucosidase and acid phosphomonoesterase but increases N-acetyl-β-glucosaminidase in soil. Since these enzymes control the hydrolysis of cellulose, phosphomonoesters, and chitin, soil moisture content can impact the direction and magnitude of nutrient release and availability. The supply of oxygen to submerged plants is limited because its diffusion in water is extremely low, and this impacts mitochondrial respiration in flooded plant tissues. Fermentation is the only viable pathway for energy production in flooded plants, which, under prolonged waterlogging conditions, is inefficient and results in plant death. Seed germination is also impaired under flooding stress due to decreased sugar and phytohormone biosynthesis. The sensitivity of different crops to waterlogging varies significantly across growth stages. Mitigation and adaptation strategies, essential to the management of flooding impacts on agriculture, enhance resilience to climate change through improved drainage and water management practices, soil amendments and rehabilitation techniques, best management practices, such as zero tillage and cover crops, and the development of flood-tolerant crop varieties. Technological advances play a crucial role in assessing flooding dynamics and impacts on crop production in agricultural landscapes. This review embarks on a comprehensive journey through existing research to unravel the intricate interplay between flooding events, agricultural soil, crop production, and the environment. We also synthesize available knowledge to address critical gaps in understanding, identify methodological challenges, and propose future research directions. Full article
(This article belongs to the Section Hazards and Sustainability)
Show Figures

Figure 1

19 pages, 3982 KiB  
Article
Effect of Subsurface Drainage in Regulating Water on Desalinization and Microbial Communities in Salinized Irrigation Soils
by Jiapeng Zhang, Sha Zhao, Qingfeng Miao, Liang Feng, Zhaonan Chi, Zhen Li and Weiping Li
Agronomy 2024, 14(2), 282; https://doi.org/10.3390/agronomy14020282 - 27 Jan 2024
Cited by 4 | Viewed by 1723
Abstract
In order to achieve water conservation and salt control in saline irrigation areas and improve the soil ecological environment of farmland in irrigation areas, this study carried out a field trial in 2020–2021 on edible sunflowers planted in saline subsurface farmland in the [...] Read more.
In order to achieve water conservation and salt control in saline irrigation areas and improve the soil ecological environment of farmland in irrigation areas, this study carried out a field trial in 2020–2021 on edible sunflowers planted in saline subsurface farmland in the Hetao Irrigation District. Three irrigation level treatments and a control setup under subsurface drainage were compared. The control was with no drainage and local conventional irrigation levels (the spring irrigation amount is 240 mm and the bud stage irrigation amount is 90 mm, CK); and the three irrigation levels were conventional irrigation (the spring irrigation amount is 240 mm and the bud stage irrigation amount is 90 mm, W1), medium water (the spring irrigation amount is 120 mm and the bud stage irrigation amount is 90 mm, W2), and low water (the spring irrigation amount is 120 mm and there is no irrigation in the bud stage, W3). The results showed that soil desalinization was best in the conventional irrigation (W1) treatment and lowest in the low-water treatment (W3) under subsurface drainage. The desalinization rate was 13.54% higher in the subsurface drainage than in the undrained treatment with the same amount of irrigation water. Under subsurface drainage, the medium-water treatment (W2) increased the diversity of soil microorganisms and the relative abundance of dominant phyla such as Ascomycetes, Chlorobacterium, Acidobacterium, and Ascomycetes among soil bacteria and Ascomycetes and Tephritobacterium amongst fungi. The average sunflower yield in the treatments under subsurface drainage increased by 32.37% compared with the undrained treatment, and the medium-water treatment (W2) was the most favorable for protein and essential amino acid synthesis. Structural equation modeling indicated that desalinization rate, irrigation water utilization efficiency, bacterial Chao1 abundance and Shannon diversity, and fungal Chao1 abundance and Shannon diversity were the major influences on sunflower yield. Based on the entropy weight method TOPSIS model, 15 indicators such as soil desalinization rate, soil microbial diversity, water and nitrogen utilization rate, and sunflower yield and quality were evaluated comprehensively for each water treatment of subsurface drainage farmland. It was found that the irrigation volume under tile drainage of 210 mm (W2) had the highest comprehensive score, which could improve the soil microenvironment of the farmland while realizing water conservation and salt control in salty farmland, increase the production of high-quality crops, and be conducive to the sustainable development of agriculture; it was the optimal irrigation treatment for the comprehensive effect. The results of this study are of great significance for the realization of efficient water conservation and salt control and the protection of food security and ecological safety in the Hetao Irrigation District. Full article
Show Figures

Figure 1

19 pages, 21458 KiB  
Article
Modeling the Transport of Inorganic Arsenic Species through Field Soils: Irrigation and Soil Structure Effect
by Shah Rukh, Mohammad Saleem Akhtar, Fahad Alshehri, Ayaz Mehmood, Kouser Majeed Malik, Sattam Almadani, Ahmad Khan and Muhammad Shahab
Water 2024, 16(3), 386; https://doi.org/10.3390/w16030386 - 24 Jan 2024
Cited by 1 | Viewed by 1918
Abstract
Dissolved arsenic (As) may appear at the tile line level through preferential flow (PF), leading to contamination of shallow water bodies. Limited work on the movement of As forms in field soils urged the need for more research. The PF of arsenate (As(V)) [...] Read more.
Dissolved arsenic (As) may appear at the tile line level through preferential flow (PF), leading to contamination of shallow water bodies. Limited work on the movement of As forms in field soils urged the need for more research. The PF of arsenate (As(V)) and arsenite (As(III)) compared to chloride (Cl) at constant flow under saturated (10 mm), slightly unsaturated (−10 mm), and unsaturated (−40 mm) pressure heads was evaluated in replicated large field columns varying in subsoil structure. A solute containing As(V), As(III), and Cl was pulsed until the Cl concentration ratio in the drainage samples reached maxima and flushed with solute-free irrigation. HYDRUS-1D software version 4.15 was utilized to fit the breakthroughs of As(V) and As(III) in the dual-porosity physical non-equilibrium model (DP-PNE). The Langmuir equation was used to fit the As(V) and As(III) sorption isotherms, and blue dye staining was used for the marking of flow paths. Dye leaching was observed up to 50 cm or deeper in the soils. Under saturated conditions (+10 mm), Kotli, Guliana, and Mansehra soils showed chemical non-equilibrium (CNE) for As(V) and As(III); however, the extent of CNE was less under unsaturated conditions (−40 mm). These results implied that these well-structured soils had enough large macropores, which cause PF, but at the same time, they were also small enough to retain water and leach solutes under unsaturated conditions (−40 mm). It is concluded that irrigation of contaminated water or dumping solid waste on well-aggregated soil may exhibit PF of dissolved As during and after rains, and additionally As(III), which is more toxic and mobile under reduced conditions, has equal or greater potential for movement. Full article
Show Figures

Figure 1

22 pages, 4784 KiB  
Article
Assessing the Effectiveness of Alternative Tile Intakes on Agricultural Hillslopes
by Christopher G. Wilson, Matthew T. Streeter, William D. Ettema, Benjamin K. B. Abban, Adrian Gonzalez, Keith E. Schilling and Athanasios N. Papanicolaou
Water 2024, 16(2), 309; https://doi.org/10.3390/w16020309 - 17 Jan 2024
Cited by 1 | Viewed by 1623
Abstract
Existing surface inlets behind terraces and water and sediment control basins (WASCoBs) were replaced with alternative tile intakes (ATIs) in agricultural fields of southeast Iowa. These ATIs consisted of a buried column of gravel atop woodchips. Computational, experimental, and field methods were used [...] Read more.
Existing surface inlets behind terraces and water and sediment control basins (WASCoBs) were replaced with alternative tile intakes (ATIs) in agricultural fields of southeast Iowa. These ATIs consisted of a buried column of gravel atop woodchips. Computational, experimental, and field methods were used to design and evaluate the ATIs’ capacity to reduce sediment and nutrient export. Single-storm simulations using the Watershed Erosion Prediction Project (WEPP) provided boundary conditions for permeameter experiments that yielded a hydraulic conductivity for the layered gravel–woodchip configuration of 4.59 cm/s ± 0.36 cm/s. Additionally, a proportional amount of sediment was retained in the permeameter (42%) compared to the amount that settled on the permeameter surface (58%). Event monitoring of field-installed ATIs during three growing seasons measured a sediment trapping efficiency of 86 ± 12% that led to deposition rates of 5.44 ± 3.77 cm/yr, quantified with 210Pb profiles. Percent reduction values were 43% for nitrate and 17% for ortho-phosphate. Finally, long-term continuous-storm modeling using the WEPP suggested that these ATIs could withstand at least 75 25-year events before clogging. Modeling using the Agricultural Conservation Planning Framework suggested watershed-scale load reductions of 1.6% for NO3 and 1.4% for total P for ATIs draining 6.8% of the modeled watershed. Using ATIs in conjunction with WASCOBs and terraces, or as standalone practices, can be a cost-effective means for keeping sediment and nutrients in the landscape. Full article
Show Figures

Figure 1

14 pages, 1970 KiB  
Article
Numerical Model of the Critical Gas Velocity for Liquid Displacement from the Lower Section of an Upward-Sloping Pipe
by Jimiao Duan, Manqiu He, Jiali Tao, Huishu Liu, Shuo Xu, Jian Wang, Yang Guo and Yan Chen
Processes 2023, 11(10), 2956; https://doi.org/10.3390/pr11102956 - 12 Oct 2023
Viewed by 1491
Abstract
Mobile pipelines are the most efficient and reliable tools for transporting a large amount of oil over long distances in combat, emergency rescue and disaster relief situations. In the completion of oil transfer or pipeline maintenance, the oil in the pipe is usually [...] Read more.
Mobile pipelines are the most efficient and reliable tools for transporting a large amount of oil over long distances in combat, emergency rescue and disaster relief situations. In the completion of oil transfer or pipeline maintenance, the oil in the pipe is usually displaced by air. In the process of evacuation, due to the influence of terrain, working conditions and gravity, the gradual deposition of oil from upward-sloping pipeline sections to low-lying parts of the pipeline occurs, resulting in the formation of fluid deposits, which results in the incomplete drainage of the pipeline, directly affecting the recovery efficiency of the pipeline. According to the theory of gas–liquid two-phase stratified flow, the tail flow of a liquid membrane in an upward-sloping pipeline is analyzed as part of the gas-carrying oil flow process in an upward-sloping pipeline in this paper. The gas superficial velocity, which is the minimum velocity that can carry the accumulated liquid in the pipeline, is called the critical gas velocity of the gas-carrying liquid. A gas-carrying oil critical gas velocity model in an upward-sloping pipeline was established, and the change law of the critical gas-phase velocity in the upward-sloping pipeline was analyzed under the conditions of different tile angles, initial oil layer thicknesses and pipeline diameters. It was found that the tile angle had the greatest influence on the gas-carrying oil flow in the upward-sloping pipe, and the initial retained oil thickness had less of an influence on the gas-carrying oil flow in the upward-sloping pipe. When the pipeline diameter was small, the flow of the gas-carrying oil in the upward-sloping pipe was greatly affected by the pipeline diameter, but when the pipeline diameter was larger, the influence of the diameter on the gas-carrying oil flow in the upward-sloping pipe decreased gradually. The model developed can provide a useful means for the analysis and containment of accumulated liquid. Full article
Show Figures

Figure 1

15 pages, 5531 KiB  
Article
Application of Simple Crested Weirs to Control Outflows from Tiles Drainage
by Michał Napierała
Water 2023, 15(18), 3248; https://doi.org/10.3390/w15183248 - 12 Sep 2023
Cited by 3 | Viewed by 3624
Abstract
Triangular sharp-crested weirs are commonly used to measure low-flow measurements in open channels. The flow over such a V-notch is proportional to the height of water above the weir on the upstream side. Therefore, it is relatively easy to calculate the flow from [...] Read more.
Triangular sharp-crested weirs are commonly used to measure low-flow measurements in open channels. The flow over such a V-notch is proportional to the height of water above the weir on the upstream side. Therefore, it is relatively easy to calculate the flow from standard equations by using only recordings of water levels. Thus, these types of weirs can provide inexpensive measurements of flow volumes and resulting nutrient loads from subsurface drainage systems and associated conservation practices. The objective of this study was to develop appropriate weir equations for a 22.5° V-notch weir developed for a new tubular water level control structure in a controlled drainage system (CD). Analyses using this weir, with three typical slope angles of 30°, 45°, and 60°, were also conducted. There were no significant differences in the fitted parameters across the three analyzed slope angles. The coefficient of determination (R2) values were 0.9955, 0.9981, and 0.9980, respectively. However, the best-fitted equation for a 22.5° V-notch weir was for a slope angle of 45°. The flow equation was Q = 0.2235H2.4182, with Q in liters per minute and H in centimeters. This equation can be used for measuring flow through tubular-controlled drainage structures. Full article
Show Figures

Figure 1

17 pages, 6162 KiB  
Article
Is Controlled Drainage of Agricultural Land a Common Used Practice?—A Bibliographic Analysis
by Barbara Kęsicka, Rafał Stasik, Michał Kozłowski and Adam Choryński
Land 2023, 12(9), 1737; https://doi.org/10.3390/land12091737 - 7 Sep 2023
Cited by 2 | Viewed by 1892
Abstract
Controlled drainage (CD) is one of the basic techniques used to manage groundwater levels. Farmers can optimize water levels for crop growth at different stages of the growing season. Proper drainage water management can reduce the risk of soil erosion and surface water [...] Read more.
Controlled drainage (CD) is one of the basic techniques used to manage groundwater levels. Farmers can optimize water levels for crop growth at different stages of the growing season. Proper drainage water management can reduce the risk of soil erosion and surface water pollution. By controlling drainage, sediment and nutrient runoff can be minimized, leading to improved water quality in nearby streams and rivers. A mixed methods approach was used, which was based on the bibliometric analysis and content analysis of 462 articles using the bibliometrix R package and VOSviewer software. The article aimed to analyze the Author Keywords and KeyWords Plus to indicate the resulting clusters of complex interdependence that emerge from the main research areas. Continuous research continues to improve drainage techniques and systems to optimize agricultural water use. The results indicated the importance of researching the feasibility of CD for agriculture. The innovation of this study is that it points out the relevance of taking up the possibility of changing the use of unilateral subsurface drainage systems with another method of controlling drainage outflows as a current global challenge, contributing to filling this gap in the literature. Full article
(This article belongs to the Special Issue Sustainable Land Management, Climate Change and Food Security)
Show Figures

Figure 1

Back to TopTop