Assessment and Minimization of Potential Environmental Impacts of Ground Source Heat Pump (GSHP) Systems
Abstract
:1. Introduction
- Shallow heat collectors are installed at very small depths (1–3 m), and can be arranged in coils, trenches, or heat exchange units such as geothermal baskets (Figure 1A);
- Borehole heat exchangers (BHEs) are installed in vertical boreholes, generally with a depth of 50 ÷ 200 m and a diameter of 15 ÷ 20 cm (Figure 1B);
- Thermally active geo-structures (Figure 1C) are installed into foundation components of the building, such as foundation piles, diaphragms, platforms, or tunnels.
2. Analysis of Potential Interferences of GSHPs with Subsurface and Groundwater
2.1. Potential Interferences with Specific (Hydro)geological Conditions
2.2. Specific Issues Related to BHEs
2.3. Underground Temperature Alterations
2.4. Underground Chemical and Microbiological Alterations
3. Discussion: How to Ensure Groundwater Protection with GSHPs at Different Implementation Stages
3.1. Planning
- allowed with no ex-ante authorization (green areas);
- allowed, requiring an expert consultancy (orange areas);
- subject to a thorough impact assessment studies as the installations exceeding the above-mentioned thresholds (red areas).
3.2. Authorization
3.3. Installation
3.4. Operation
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Category | Issue | References | Suggestions |
---|---|---|---|
Impacts of drilling | Artesian aquifers | [18,55] | Avoid drilling BHEs and water wells crossing sensitive layers. Provide geo-referenced information (web Geographic Information System, GIS) on areas with these (hydro)geological risks. |
Swelling layers | [17,18,19,55] | ||
Salt layer dissolution | [17,18] | ||
Shallow gas layers | [18,55,58] | ||
Impacts on BHEs and wells | Landslides | [13,14] | |
Possible negative conditions for GSHPs | Interference with mining activities | [57] | These areas do not necessarily represent a risk for GSHP installation and operation. A case-by-case evaluation of risks and opportunities is necessary. |
Interaction with groundwater contamination | [28,32,33,59,60,61] | ||
Hardness and mineral content of groundwater | [39,40,41] | Intermediate exchanger above 12°F [39]. Use threshold values from the work of [41] for GWHPs. | |
Saltwater | [63] | Reinject on the coastline [63] and use saltwater-specific heat exchangers | |
Impacts of BHEs | Heat carrier fluid release from BHEs | [18,24,25,26,65] | Using pure water in BHEs. Further research is needed on the impact of anti-freeze additives on groundwater quality. |
Preferential flow through BHEs | [20,21,22,23,24] | Use specifically developed, well-mixed and properly installed geothermal grouts. Further modelling and field studies needed for preferential flow. | |
Impact of GSHP operation | Thermal alterations | [42,43,44,45,46,47,80,81,82] | The works of [45,47] for modelling assumptions. City-scale modelling of thermal plumes. Modelling studies on reciprocal impacts of neighboring GWHPs such as the work of [81]. Relaxation factor approach suggested by the authors of [42]. |
Microbial alteration | [32,34,35,85] | Keep within ±6 K thermal alteration [69]. Case-by-case evaluation for higher temperatures. Reinject under pressure (no free-fall). City-scale monitoring funded by taxes on GSHPs. | |
Geochemical alterations | [30,32,33,36,37,38] |
References
- Nejat, P.; Jomehzadeh, F.; Taheri, M.M.; Gohari, M.; Majid, M.Z. A global review of energy consumption, CO2 emissions and policy in the residential sector (with an overview of the top ten CO2 emitting countries). Renew. Sustain. Energy Rev. 2015, 43, 843–862. [Google Scholar] [CrossRef]
- Bari, M.A.; Baumbach, G.; Kuch, B.; Scheffknecht, G. Temporal variation and impact of wood smoke pollution on a residential area in southern Germany. Atmos. Environ. 2010, 44, 3823–3832. [Google Scholar] [CrossRef]
- Sarigiannis, D.A.; Karakitsios, S.P.; Kermenidou, M.V. Health impact and monetary cost of exposure to particulate matter emitted from biomass burning in large cities. Sci. Total Environ. 2015, 524–525, 319–330. [Google Scholar] [CrossRef] [PubMed]
- EHPA. European Heat Pump Market and Statistic Report 2017 & Stats Tool. Available online: https://www.ehpa.org/market-data/2017/ (accessed on 2 February 2019).
- Staffell, I.; Brett, D.; Brandon, N.; Hawkes, A. A review of domestic heat pumps. Energy Environ. Sci. 2012, 5, 9291–9306. [Google Scholar] [CrossRef]
- Casasso, A.; Sethi, R. Tecnologia e potenzialità dei sistemi geotermici a bassa entalpia. Geoing. Ambient. E Min. 2013, 138, 13–22. [Google Scholar]
- Rivoire, M.; Casasso, A.; Piga, B.; Sethi, R. Assessment of Energetic, Economic and Environmental Performance of Ground-Coupled Heat Pumps. Energies 2018, 11, 1941. [Google Scholar] [CrossRef]
- Koffi, B.; Cerutti, A.; Duerr, M.; Iancu, A.; Kona, A.; Janssens-Maenhout, G. CoM Default Emission Factors for the Member States of the European Union—Version 2017. Available online: http://bit.ly/2Gge9VJ (accessed on 18 March 2019).
- Saner, D.; Juraske, R.; Kübert, M.; Blum, P.; Hellweg, S.; Bayer, P. Is it only CO2 that matters? A life cycle perspective on shallow geothermal systems. Renew. Sustain. Energy Rev. 2010, 14, 1798–1813. [Google Scholar] [CrossRef]
- Aste, N.; Adhikari, R.S.; Compostella, J.; Pero, C.D. Energy and environmental impact of domestic heating in Italy: Evaluation of national NOx emissions. Energy Policy 2013, 53, 353–360. [Google Scholar] [CrossRef]
- Caird, S.; Roy, R.; Potter, S. Domestic heat pumps in the UK: User behaviour, satisfaction and performance. Energy Effic. 2012, 5, 283–301. [Google Scholar] [CrossRef]
- Omlin, S.; Bauer, G.; Brink, M. Effects of noise from non-traffic-related ambient sources on sleep: Review of the literature of 1990–2010. Noise Health 2011, 13, 299–309. [Google Scholar] [CrossRef]
- Hamada, Y.; Marutani, K.; Nakamura, M.; Nagasaka, S.; Ochifuji, K.; Fuchigami, S.; Yokoyama, S. Study on underground thermal characteristics by using digital national land information, and its application for energy utilization. Appl. Energy 2002, 72, 659–675. [Google Scholar] [CrossRef]
- Butscher, C.; Huggenberger, P.; Auckenthaler, A.; Bänninger, D. Risikoorientierte Bewilligung von Erdwärmesonden. Grundwasser 2011, 16, 13–24. [Google Scholar] [CrossRef]
- Casasso, A.; Della Valentina, S.; Bucci, A.; Tiraferri, A.; Tosco, T.; Sethi, R.; Prestor, J.; Pestotnik, S.; Rajver, D.; Capodaglio, P.; et al. Assessment and Mapping of Potential Interferences to the Installation of NSGE Systems in the Alpine Regions—GRETA Project Deliverable 4.1.1. Available online: https://goo.gl/xvJ17c (accessed on 21 March 2019).
- Bonsor, H.C.; Dahlqvist, P.; Moosman, L.; Classen, N.; Epting, J.; Huggenberger, P.; Garcìa-Gil, A.; Janza, M.; Laursen, G.; Stuurman, R.; et al. Groundwater, Geothermal Modelling and Monitoring and City-Scale. Reviewing Practice and Knowledge Exchange. Report of the TU1206 “Sub-Urban” COST Action, WG 2.4. Available online: http://bit.ly/2RtTZvO (accessed on 18 June 2019).
- Fleuchaus, P.; Blum, P. Damage event analysis of vertical ground source heat pump systems in Germany. Geotherm. Energy 2017, 5, 10. [Google Scholar] [CrossRef]
- Bezelgues-Courtade, S.; Durst, P. Impacts Potentiels de la Géothermie Très Basse Energie sur le sol, le Sous-sol et les eaux Souterraines—Synthèse Bibliographique. Report BRGM/RP-59837-FR (Potential Impact of Shallow Geothermal Energy on Soil, Subsoil and Groundwater—bibliographic synthesis). Available online: http://bit.ly/2Z3OuXy (accessed on 21 March 2019).
- Sass, I.; Burbaum, U. Damage to the historic town of Staufen (Germany) caused by geothermal drillings through anhydrite-bearing formations. Acta Carsologica 2010, 39, 233–245. [Google Scholar] [CrossRef]
- Bonte, M.; Zaadnoordijk, W.J.; Maas, K. A Simple Analytical Formula for the Leakage Flux through a Perforated Aquitard. Groundwater 2015, 53, 638–644. [Google Scholar] [CrossRef]
- Allan, M.L.; Philippacopoulos, A.J. Thermally Conductive Cementitious Grouts for Geothermal Heat Pumps. Progress Report FY 1998. Available online: https://www.osti.gov/servlets/purl/760977 (accessed on 3 April 2019).
- Park, M.; Min, S.; Lim, J.; Choi, J.M.; Choi, H. Applicability of cement-based grout for ground heat exchanger considering heating-cooling cycles. Sci. China Technol. Sci. 2011, 54, 1661–1667. [Google Scholar] [CrossRef]
- Indacoechea-Vega, I.; Pascual-Muñoz, P.; Castro-Fresno, D.; Calzada-Pérez, M.A. Experimental characterization and performance evaluation of geothermal grouting materials subjected to heating–cooling cycles. Constr. Build. Mater. 2015, 98, 583–592. [Google Scholar] [CrossRef]
- Bucci, A.; Prevot, A.B.; Buoso, S.; De Luca, D.A.; Lasagna, M.; Malandrino, M.; Maurino, V. Impacts of borehole heat exchangers (BHEs) on groundwater quality: The role of heat-carrier fluid and borehole grouting. Environ. Earth Sci. 2018, 77, 175. [Google Scholar] [CrossRef]
- Heinonen, E.W.; Wildin, M.W.; Beall, A.N.; Tapscott, R.E. Anti-Freeze Fluid Environmental and Health Evaluation—an Update. Available online: http://bit.ly/2JJmemU (accessed on 3 May 2019).
- Klotzbücher, T.; Kappler, A.; Straub, K.L.; Haderlein, S.B. Biodegradability and groundwater pollutant potential of organic anti-freeze liquids used in borehole heat exchangers. Geothermics 2007, 36, 348–361. [Google Scholar] [CrossRef]
- Fleuchaus, P.; Godschalk, B.; Stober, I.; Blum, P. Worldwide application of aquifer thermal energy storage—A review. Renew. Sustain. Energy Rev. 2018, 94, 861–876. [Google Scholar] [CrossRef]
- Zuurbier, K.G.; Hartog, N.; Valstar, J.; Post, V.E.A.; van Breukelen, B.M. The impact of low-temperature seasonal aquifer thermal energy storage (SATES) systems on chlorinated solvent contaminated groundwater: Modeling of spreading and degradation. J. Contam. Hydrol. 2013, 147, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Bonte, M.; Röling, W.F.M.; Zaura, E.; Van Der Wielen, P.W.J.J.; Stuyfzand, P.J.; Van Breukelen, B.M. Impacts of shallow geothermal energy production on redox processes and microbial communities. Environ. Sci. Technol. 2013, 47, 14476–14484. [Google Scholar] [CrossRef] [PubMed]
- Brons, H.J.; Griffioen, J.; Appelo, C.A.J.; Zehnder, A.J.B. (Bio) Geochemical reactions in aquifer material from a thermal energy storage site. Water Res. 1991, 25, 729–736. [Google Scholar] [CrossRef]
- Bonte, M.; van Breukelen, B.M.; Stuyfzand, P.J. Temperature-induced impacts on groundwater quality and arsenic mobility in anoxic aquifer sediments used for both drinking water and shallow geothermal energy production. Water Res. 2013, 47, 5088–5100. [Google Scholar] [CrossRef] [PubMed]
- Griebler, C.; Brielmann, H.; Haberer, C.M.; Kaschuba, S.; Kellermann, C.; Stumpp, C.; Hegler, F.; Kuntz, D.; Walker-Hertkorn, S.; Lueders, T. Potential impacts of geothermal energy use and storage of heat on groundwater quality, biodiversity, and ecosystem processes. Environ. Earth Sci. 2016, 75, 1391. [Google Scholar] [CrossRef]
- Jesußek, A.; Grandel, S.; Dahmke, A. Impacts of subsurface heat storage on aquifer hydrogeochemistry. Environ. Earth Sci. 2013, 69, 1999–2012. [Google Scholar] [CrossRef]
- Brielmann, H.; Griebler, C.; Schmidt, S.I.; Michel, R.; Lueders, T. Effects of thermal energy discharge on shallow groundwater ecosystems. FEMS Microbiol. Ecol. 2009, 68, 273–286. [Google Scholar] [CrossRef] [Green Version]
- Brielmann, H.; Lueders, T.; Schreglmann, K.; Ferraro, F.; Avramov, M.; Hammerl, V.; Blum, P.; Bayer, P.; Griebler, C. Oberflächennahe Geothermie und ihre potenziellen Auswirkungen auf Grundwasserökosysteme. Grundwasser 2011, 16, 77. [Google Scholar] [CrossRef]
- Garrido Schneider, E.A.; García-Gil, A.; Vázquez-Suñè, E.; Sánchez-Navarro, J.Á. Geochemical impacts of groundwater heat pump systems in an urban alluvial aquifer with evaporitic bedrock. Sci. Total Environ. 2016, 544, 354–368. [Google Scholar] [CrossRef]
- García-Gil, A.; Epting, J.; Ayora, C.; Garrido, E.; Vázquez-Suñé, E.; Huggenberger, P.; Gimenez, A.C. A reactive transport model for the quantification of risks induced by groundwater heat pump systems in urban aquifers. J. Hydrol. 2016, 542, 719–730. [Google Scholar] [CrossRef]
- García-Gil, A.; Epting, J.; Garrido, E.; Vázquez-Suñé, E.; Lázaro, J.M.; Sánchez Navarro, J.Á.; Huggenberger, P.; Calvo, M.Á.M. A city scale study on the effects of intensive groundwater heat pump systems on heavy metal contents in groundwater. Sci. Total Environ. 2016, 572, 1047–1058. [Google Scholar] [CrossRef] [PubMed]
- Rafferty, K. Scaling in Geothermal Heat Pump Systems. Available online: https://www.osti.gov/etdeweb/servlets/purl/894041 (accessed on 5 March 2019).
- Rafferty, K.D. Water Chemistry Issues in Geothermal Heat Pump Systems. Ashrae Trans. 2004, 110, 550–555. [Google Scholar]
- Bezelgues-Courtade, S.; Martin, J.C.; Schomburgk, S.; Monnot, P.; Nguyen, D.; Le Brun, M.; Desplan, A. Geothermal Potential of Shallow Aquifers: Decision-Aid Tool for Heat-Pump Installation. In Proceedings of the World Geothermal Congress 2010, Bali, Indonesia, 25–29 April 2010; Available online: http://bit.ly/2Jw60P3 (accessed on 1 February 2019).
- García-Gil, A.; Vázquez-Suñe, E.; Schneider, E.G.; Sánchez-Navarro, J.Á.; Mateo-Lázaro, J. Relaxation factor for geothermal use development—Criteria for a more fair and sustainable geothermal use of shallow energy resources. Geothermics 2015, 56, 128–137. [Google Scholar] [CrossRef]
- Barla, M.; Di Donna, A.; Baralis, M. City-scale analysis of subsoil thermal conditions due to geothermal exploitation. Environ. Geotech. 2018, 1–11. [Google Scholar] [CrossRef]
- Becchio, C.; Bottero, M.C.; Casasso, A.; Corgnati, S.P.; Dell’Anna, F.; Piga, B.; Sethi, R. Energy, economic and environmental modelling for supporting strategic local planning. Procedia Eng. 2017, 205, 35–42. [Google Scholar] [CrossRef]
- Epting, J.; Händel, F.; Huggenberger, P. Thermal management of an unconsolidated shallow urban groundwater body. Hydrol. Earth Syst. Sci. 2013, 17, 1851–1869. [Google Scholar] [CrossRef] [Green Version]
- Herbert, A.; Arthur, S.; Chillingworth, G. Thermal modelling of large scale exploitation of ground source energy in urban aquifers as a resource management tool. Appl. Energy 2013, 109, 94–103. [Google Scholar] [CrossRef]
- Piga, B.; Casasso, A.; Pace, F.; Godio, A.; Sethi, R. Thermal Impact Assessment of Groundwater Heat Pumps (GWHPs): Rigorous vs. Simplified Models. Energies 2017, 10, 1385. [Google Scholar]
- Pophillat, W.; Attard, G.; Bayer, P.; Hecht-Méndez, J.; Blum, P. Analytical solutions for predicting thermal plumes of groundwater heat pump systems. Renew. Energy 2018. [Google Scholar] [CrossRef]
- Hähnlein, S.; Bayer, P.; Blum, P. International legal status of the use of shallow geothermal energy. Renew. Sustain. Energy Rev. 2010, 14, 2611–2625. [Google Scholar] [CrossRef]
- Hähnlein, S.; Bayer, P.; Ferguson, G.; Blum, P. Sustainability and policy for the thermal use of shallow geothermal energy. Energy Policy 2013, 59, 914–925. [Google Scholar] [CrossRef]
- Prestor, J.; Pestotnik, S.; Zosseder, K.; Böttcher, F.; Capodaglio, P.; Götzl, G.; Bottig, M.; Weilbold, J.; Maragna, C.; Martin, J.C.; et al. Overview and Analysis of Regulation Criteria and Guidelines for NSGE Applications in the Alpine Region. GRETA Project Deliverable 2.1.1. Available online: http://bit.ly/2S8mMGy (accessed on 3 March 2019).
- Tsagarakis, K.P.; Efthymiou, L.; Michopoulos, A.; Mavragani, A.; Anđelković, A.S.; Antolini, F.; Bacic, M.; Bajare, D.; Baralis, M.; Bogusz, W.; et al. A review of the legal framework in shallow geothermal energy in selected European countries: Need for guidelines. Renew. Energy 2018. [Google Scholar] [CrossRef]
- Prestor, J.; Pestotnik, S.; Zosseder, K.; Böttcher, F.; Schulze, M.; Capodaglio, P.; Bottig, M.; Rupprecht, D.; Maragna, C.; Martin, J.C.; et al. Comparison of NSGE Installations in the Alpine Region Selected for Reproducibility and Transferability Relevance. GRETA Project Deliverable 2.2.1. Available online: http://bit.ly/2S8mMGy (accessed on 3 March 2019).
- Manzella, A.; Allansdottir, A.; Pellizzone, A. (Eds.) Geothermal Energy and Society; Springer: Cham, Switzerland, 2019. [Google Scholar]
- Stober, I.; Bucher, K. Geothermal Energy: From Theoretical Models to Exploration and Development; Springer Science & Business Media: Berlin, Germany, 2013. [Google Scholar]
- Peralta Ramos, E.; Breede, K.; Falcone, G. Geothermal heat recovery from abandoned mines: A systematic review of projects implemented worldwide and a methodology for screening new projects. Environ. Earth Sci. 2015, 73, 6783–6795. [Google Scholar] [CrossRef]
- Markle, J.M.; Schincariol, R.A. Thermal plume transport from sand and gravel pits – Potential thermal impacts on cool water streams. J. Hydrol. 2007, 338, 174–195. [Google Scholar] [CrossRef]
- Sachs, O.; Eberhard, M. Erdgasausbruch bei einer Erdwärmesondenbohrung in Rothrist-Buchrain–ein Erfahrungsbericht. Swiss Bull. Angew. Geowiss 2010, 15, 43–51. [Google Scholar]
- Podobnik, J.C.; Horst, B.I. A Survey of Sites Using Pump and Treat Remediation Methods And A Survey Study of Applying Geothermal Heat Pump Systems to Pump and Treat Sites at Lawrence Livermore National Laboratory. Available online: http://bit.ly/2xNleZh (accessed on 15 March 2019).
- Bailey, M.T.; Gandy, C.J.; Watson, I.A.; Wyatt, L.M.; Jarvis, A.P. Heat recovery potential of mine water treatment systems in Great Britain. Int. J. Coal Geol. 2016, 164, 77–84. [Google Scholar] [CrossRef] [Green Version]
- Coccia, C.J.R.; Gupta, R.; Morris, J.; McCartney, J.S. Municipal solid waste landfills as geothermal heat sources. Renew. Sustain. Energy Rev. 2013, 19, 463–474. [Google Scholar] [CrossRef]
- Banks, D. An Introduction to Thermogeology: Ground Source Heating and Cooling; John Wiley & Sons: New York, NY, USA, 2012. [Google Scholar]
- De Keuleneer, F.; Renard, P. Can shallow open-loop hydrothermal well-doublets help remediate seawater intrusion? Hydrogeol. J. 2015, 23, 619–629. [Google Scholar] [CrossRef] [Green Version]
- Ramakrishna, D.M.; Viraraghavan, T. Environmental Impact of Chemical Deicers—A Review. Water Air Soil Pollut. 2005, 166, 49–63. [Google Scholar] [CrossRef]
- Heinonen, E.W.; Wildin, M.W.; Beall, A.N.; Tapscott, R.E. Assessment of antifreeze solutions for ground-source heat pump systems. ASHRAE Trans. 1997, 103, 747. [Google Scholar]
- Javadi, H.; Mousavi Ajarostaghi, S.S.; Rosen, A.M.; Pourfallah, M. A Comprehensive Review of Backfill Materials and Their Effects on Ground Heat Exchanger Performance. Sustainability 2018, 10, 4486. [Google Scholar] [CrossRef]
- Fetter, C.W. Applied Hydrogeology; Pearson: London, UK, 2014. [Google Scholar]
- DECC. MCS 022: Ground Heat Exchanger Look-Up Tables: Supplementary Material to MIS 3005. Issue 1.0. Available online: http://bit.ly/32rZ2SB (accessed on 15 January 2019).
- Verein Deutsche Ingenieure (VDI). VDI 4640 Sheet 2. Thermal Use of the Underground—Ground Source Heat Pump Systems. Available online: http://bit.ly/30z50zm (accessed on 1 February 2019).
- Kavanaugh, S.P.; Rafferty, K. Ground-Source Heat Pumps—Design of Geothermal Systems for Commercial and Institutional Buildings; ASHRAE: Atlanta, GA, USA, 1997. [Google Scholar]
- Eskilson, P. Thermal Analysis of Heat Extraction Boreholes. Available online: http://bit.ly/2JCl6Be (accessed on 1 February 2019).
- Diersch, H.J.G. FEFLOW. Finite Element Modeling of Flow, Mass and Heat Transport in Porous and Fractured Media; Springer: Berlin, Germany, 2014. [Google Scholar]
- Harbaugh, A.W.; Banta, E.R.; Hill, M.C.; McDonald, M.G. MODFLOW-2000, the US Geological Survey Modular Ground-Water Model: User Guide to Modularization Concepts and the Ground-Water Flow Process; US Geological Survey: Reston, VA, USA, 2000.
- Böttcher, F.; Casasso, A.; Götzl, G.; Zosseder, K. TAP—Thermal aquifer Potential: A quantitative method to assess the spatial potential for the thermal use of groundwater. Renew. Energy 2019, 142, 85–95. [Google Scholar] [CrossRef]
- Banks, D. Thermogeological assessment of open-loop well-doublet schemes: A review and synthesis of analytical approaches. Hydrogeol. J. 2009, 17, 1149–1155. [Google Scholar] [CrossRef]
- Milnes, E.; Perrochet, P. Assessing the impact of thermal feedback and recycling in open-loop groundwater heat pump (GWHP) systems: A complementary design tool. Hydrogeol. J. 2013, 21, 505–514. [Google Scholar] [CrossRef]
- Casasso, A.; Sethi, R. Modelling thermal recycling occurring in groundwater heat pumps (GWHPs). Renew. Energy 2015, 77, 86–93. [Google Scholar] [CrossRef] [Green Version]
- Hecht-Méndez, J.; Molina-Giraldo, N.; Blum, P.; Bayer, P. Evaluating MT3DMS for heat transport simulation of closed geothermal systems. Groundwater 2010, 48, 741–756. [Google Scholar] [CrossRef] [PubMed]
- Poppei, J.; Mayer, G.; Schwarz, R. Groundwater Energy Designer (GED)—Computergestütztes Auslegungstool zur Wärme und Kältenutzung von Grundwasser [Computer Assisted Design Tool for the Use of Heat and Cold from Groundwater]. Available online: http://bit.ly/2NSTbT4 (accessed on 13 January 2019).
- Verda, V.; Guelpa, E.; Kona, A.; Lo Russo, S. Reduction of primary energy needs in urban areas trough optimal planning of district heating and heat pump installations. Energy 2012, 48, 40–46. [Google Scholar] [CrossRef]
- Attard, G.; Bayer, P.; Rossier, Y.; Blum, P.; Eisenlohr, L. A novel concept for managing thermal interference between geothermal systems in cities. Renew. Energy 2020, 145, 914–924. [Google Scholar] [CrossRef]
- Menberg, K.; Blum, P.; Schaffitel, A.; Bayer, P. Long-Term Evolution of Anthropogenic Heat Fluxes into a Subsurface Urban Heat Island. Environ. Sci. Technol. 2013, 47, 9747–9755. [Google Scholar] [CrossRef]
- Menberg, K.; Bayer, P.; Zosseder, K.; Rumohr, S.; Blum, P. Subsurface urban heat islands in German cities. Sci. Total Environ. 2013, 442, 123–133. [Google Scholar] [CrossRef]
- Zhu, K.; Blum, P.; Ferguson, G.; Balke, K.D.; Bayer, P. The geothermal potential of urban heat islands. Environ. Res. Lett. 2010, 5, 044002. [Google Scholar] [CrossRef]
- García-Gil, A.; Gasco-Cavero, S.; Garrido, E.; Mejías, M.; Epting, J.; Navarro-Elipe, M.; Alejandre, C.; Sevilla-Alcaine, E. Decreased waterborne pathogenic bacteria in an urban aquifer related to intense shallow geothermal exploitation. Sci. Total Environ. 2018, 633, 765–775. [Google Scholar] [CrossRef] [PubMed]
- Bayerisches Landesamt fur Umwelt Energie-Atlas Bayern—Maps and Data on the Energy Transition. Available online: http://bit.ly/2YPVuHA (accessed on 4 April 2019).
- LGRB. Informationssystem Oberflächennahe Geothermie für Baden-Württemberg (ISONG) [Information System Shallow Geothermal Energy for Baden-Württemberg]. Available online: http://isong.lgrb-bw.de/ (accessed on 4 April 2019).
- Vianello, A.; Estrada, A.; Scaramuzzino, C.; D’Alonzo, V.; Della Valentina, S.; Bucci, A.; Casasso, A.; Zambelli, P. GRETA project—Web GIS of Potential Interferences to the Installation of NSGE Systems in the Alpine Regions. Available online: http://greta.eurac.edu/maps/176/embed (accessed on 4 April 2019).
- BRGM. ADEME Espace Cartographique Géothermie Perspectives (Cartographic Space of the Géothermie Perspectives Project). Available online: http://www.geothermie-perspectives.fr/cartographie (accessed on 4 April 2019).
- ISPRA. Trasmissione Informazioni Legge 464/84 (Transmission of Information According to Law 464/84). Available online: http://bit.ly/2YSe16h (accessed on 17 June 2019).
- Regione Lombardia Banca Dati Geologica del Sottosuolo (Database on Geological Information on the Underground). Available online: http://bit.ly/2X1u9Rf (accessed on 17 June 2019).
- ARPA. Piemonte Banca Dati Geotecnica (Geotechnical Database). Available online: http://bit.ly/2SgAQxX (accessed on 17 June 2019).
- Majuri, P. Ground source heat pumps and environmental policy—The Finnish practitioner’s point of view. J. Clean. Prod. 2016, 139, 740–749. [Google Scholar] [CrossRef]
- Regione Lombardia Regolamento Regionale 15 Febbraio 2010 n° 7—Regolamento Regionale per L’installazione di Sonde Geotermiche che non Comportano il Prelievo di Acqua, in Attuazione dell’art. 10 Della L.R. 11 Dicembre 2006 n° 24 (Norme per la Prevenzione e la Riduzione Delle Emissioni in Atmosfera a Tutela Della Salute e Dell’ambiente) [Regional Regulation for the Installation of Borehole Heat Exchangers]. Available online: http://bit.ly/2xMcwKQ (accessed on 17 June 2019).
- République Française Arrêté du 25 Juin 2015 Relatif aux Prescriptions Générales Applicables aux Activités Géothermiques de Minime Importance | Legifrance. Available online: http://bit.ly/2JzhvoL (accessed on 17 June 2019).
- Regione Piemonte DPGR n. 1/R, 2014. Regolamento regionale recante: “Revisione del regolamento regionale 29 luglio 2003, n. 10/R (Disciplina dei procedimenti di concessione di derivazione di acqua pubblica, legge regionale 29 dicembre 2000, n. 61)”. (Revision of the 10/R 2003 Regulation on Water Abstraction Permits). Available online: http://bit.ly/2×1AhsJ (accessed on 17 June 2019).
- IGSHPA. Grouting Procedures for Vertical Ground Heat Exchangers. Available online: http://bit.ly/30IyivF (accessed on 14 June 2019).
- Bauer, M.; Freeden, W.; Jacobi, H.; Neu, T. Handbuch Oberflächennahe Geothermie (Handbook on Shallow Geothermal Energy); Springer: Berlin, Germany, 2018. [Google Scholar]
- GeoTrainet. Available online: http://geotrainet.eu/ (accessed on 23 June 2019).
- IGSHPA. IGSHPA—International Ground Source Heat Pump Association. Available online: https://igshpa.org/ (accessed on 23 June 2019).
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Casasso, A.; Sethi, R. Assessment and Minimization of Potential Environmental Impacts of Ground Source Heat Pump (GSHP) Systems. Water 2019, 11, 1573. https://doi.org/10.3390/w11081573
Casasso A, Sethi R. Assessment and Minimization of Potential Environmental Impacts of Ground Source Heat Pump (GSHP) Systems. Water. 2019; 11(8):1573. https://doi.org/10.3390/w11081573
Chicago/Turabian StyleCasasso, Alessandro, and Rajandrea Sethi. 2019. "Assessment and Minimization of Potential Environmental Impacts of Ground Source Heat Pump (GSHP) Systems" Water 11, no. 8: 1573. https://doi.org/10.3390/w11081573