Next Article in Journal
Role of Water User Associations on the Restoration of the Ecosystem in Tanzania
Previous Article in Journal
Assessment of Water Quality and Thermal Stress for an Artificial Fish Shelter in an Urban Small Pond during Early Summer
Open AccessArticle

Three-Dimensional Temperature Field Change in the South China Sea during Typhoon Kai-Tak (1213) Based on a Fully Coupled Atmosphere–Wave–Ocean Model

by 1,2,3,4, 1,2,*, 1,2, 1,2, 1,2 and 4
1
School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha 410004, China
2
Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province, Changsha 410004, China
3
School for Marine Science and Technology, University of Massachusetts-Dartmouth, New Bedford, MA 02744, USA
4
Key Laboratory of the Pearl River Estuarine Dynamics and Associated Process Regulation, Ministry of Water Resources, Guangzhou 510611, China
*
Author to whom correspondence should be addressed.
Water 2019, 11(1), 140; https://doi.org/10.3390/w11010140
Received: 5 December 2018 / Revised: 24 December 2018 / Accepted: 10 January 2019 / Published: 15 January 2019
(This article belongs to the Section Hydraulics)
Studying the sea–air interaction between the upper ocean and typhoons is crucial to improve our understanding of heat and momentum exchange between the atmosphere and the ocean. There is a strong heat flux exchange between the atmosphere and the ocean during the impact of a typhoon, and the physical fields, such as the wind field, wave field, flow field, and SST field, also interact with each other. A fully coupled Atmosphere–Wave–Ocean model in the South China Sea was established by the mesoscale atmospheric model WRF, wave model SWAN, and the regional ocean model ROMS based on the COAWST model system. Typhoon Kai-tak was simulated using this fully coupled model and some other coupled schemes. In this paper, the variation of sea surface temperature (SST) and ocean subsurface temperature caused by Typhoon Kai-tak is analyzed by the fully coupled model, and the basic characteristics of the response of the upper ocean to the typhoon are given. The simulation results demonstrate that the fully coupled WRF-SWAN-ROMS model shows that the typhoon passes through the sea with obvious cooling. In the cold eddy region, the sea surface temperature cools 4 to 5 °C, and the cooling zone is concentrated on the right side of the track. The change of sea surface temperature lags more than 12 h behind the change of sea surface height. The decrease of SST on the left side of the track was relatively small: ranging from 1.5 to 2.5 °C. The disturbance of typhoon causes the subsurface water to surge to the surface, changes the temperature distribution of the surface, and causes the mixing layer to deepen about 40 m to 60 m. The simulation results reveal the temporal and spatial distribution of sea temperature and mixed layer depth. The sea surface temperature field has an asymmetrical distribution in space and has a lag in time. The heat exchange at the air–sea interface is very strong under the influence of the typhoon. The heat exchange between the air and sea is divided into latent heat and sensible heat, and the latent heat generated by water vapor evaporation plays a dominant role in the heat exchange at the air–sea interface, which shows that the heat carried by the vaporization of the sea surface is one of the important factors for the decrease of sea temperature under the influence of the typhoon. View Full-Text
Keywords: temperature field; sea surface cooling; cold eddy; sea–air interaction; fully coupled Atmosphere–Wave–Ocean model; COAWST model system temperature field; sea surface cooling; cold eddy; sea–air interaction; fully coupled Atmosphere–Wave–Ocean model; COAWST model system
Show Figures

Figure 1

MDPI and ACS Style

Wu, Z.; Jiang, C.; Chen, J.; Long, Y.; Deng, B.; Liu, X. Three-Dimensional Temperature Field Change in the South China Sea during Typhoon Kai-Tak (1213) Based on a Fully Coupled Atmosphere–Wave–Ocean Model. Water 2019, 11, 140.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map

1
Back to TopTop