Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (204)

Search Parameters:
Keywords = sea surface cooling

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3421 KiB  
Article
The Role of Ocean Penetrative Solar Radiation in the Evolution of Mediterranean Storm Daniel
by John Karagiorgos, Platon Patlakas, Vassilios Vervatis and Sarantis Sofianos
Remote Sens. 2025, 17(15), 2684; https://doi.org/10.3390/rs17152684 - 3 Aug 2025
Viewed by 91
Abstract
Air–sea interactions play a pivotal role in shaping cyclone development and evolution. In this context, this study investigates the role of ocean optical properties and solar radiation penetration in modulating subsurface heat content and their subsequent influence on the intensity of Mediterranean cyclones. [...] Read more.
Air–sea interactions play a pivotal role in shaping cyclone development and evolution. In this context, this study investigates the role of ocean optical properties and solar radiation penetration in modulating subsurface heat content and their subsequent influence on the intensity of Mediterranean cyclones. Using a regional coupled ocean–wave–atmosphere model, we conducted sensitivity experiments for Storm Daniel (2023) comparing two solar radiation penetration schemes in the ocean model component: one with a constant light attenuation depth and another with chlorophyll-dependent attenuation based on satellite estimates. Results show that the chlorophyll-driven radiative heating scheme consistently produces warmer sea surface temperatures (SSTs) prior to cyclone onset, leading to stronger cyclones characterized by deeper minimum mean sea-level pressure, intensified convective activity, and increased rainfall. However, post-storm SST cooling is also amplified due to stronger wind stress and vertical mixing, potentially influencing subsequent local atmospheric conditions. Overall, this work demonstrates that ocean bio-optical processes can meaningfully impact Mediterranean cyclone behavior, highlighting the importance of using appropriate underwater light attenuation schemes and ocean color remote sensing data in coupled models. Full article
Show Figures

Figure 1

22 pages, 17693 KiB  
Article
Mooring Observations of Typhoon Trami (2024)-Induced Upper-Ocean Variability: Diapycnal Mixing and Internal Wave Energy Characteristics
by Letian Chen, Xiaojiang Zhang, Ze Zhang and Weimin Zhang
Remote Sens. 2025, 17(15), 2604; https://doi.org/10.3390/rs17152604 - 27 Jul 2025
Viewed by 190
Abstract
High-resolution mooring observations captured diverse upper-ocean responses during typhoon passage, showing strong agreement with satellite-derived sea surface temperature and salinity. Analysis indicates that significant wind-induced mixing drove pronounced near-surface cooling and salinity increases at the mooring site. This mixing enhancement was predominantly governed [...] Read more.
High-resolution mooring observations captured diverse upper-ocean responses during typhoon passage, showing strong agreement with satellite-derived sea surface temperature and salinity. Analysis indicates that significant wind-induced mixing drove pronounced near-surface cooling and salinity increases at the mooring site. This mixing enhancement was predominantly governed by rapid intensification of near-inertial shear in the surface layer, revealed by mooring observations. Unlike shear instability, near-inertial horizontal kinetic energy displays a unique vertical distribution, decreasing with depth before rising again. Interestingly, the subsurface peak in diurnal tidal energy coincides vertically with the minimum in near-inertial energy. While both barotropic tidal forcing and stratification changes negligibly influence diurnal tidal energy emergence, significant energy transfer occurs from near-inertial internal waves to the diurnal tide. This finding highlights a critical tide–wave interaction process and demonstrates energy cascading within the oceanic internal wave spectrum. Full article
(This article belongs to the Special Issue Remote Sensing for Ocean-Atmosphere Interaction Studies)
Show Figures

Figure 1

13 pages, 3319 KiB  
Technical Note
Intensification Trend and Mechanisms of Oman Upwelling During 1993–2018
by Xiwu Zhou, Yun Qiu, Jindian Xu, Chunsheng Jing, Shangzhan Cai and Lu Gao
Remote Sens. 2025, 17(15), 2600; https://doi.org/10.3390/rs17152600 - 26 Jul 2025
Viewed by 374
Abstract
The long-term trend of coastal upwelling under global warming has been a research focus in recent years. Based on datasets including sea surface temperature (SST), sea surface wind, air–sea heat fluxes, ocean currents, and sea level pressure, this study explores the long-term trend [...] Read more.
The long-term trend of coastal upwelling under global warming has been a research focus in recent years. Based on datasets including sea surface temperature (SST), sea surface wind, air–sea heat fluxes, ocean currents, and sea level pressure, this study explores the long-term trend and underlying mechanisms of the Oman coastal upwelling intensity in summer during 1993–2018. The results indicate a persistent decrease in SST within the Oman upwelling region during this period, suggesting an intensification trend of Oman upwelling. This trend is primarily driven by the strengthened positive wind stress curl (WSC), while the enhanced net shortwave radiation flux at the sea surface partially suppresses the SST cooling induced by the strengthened positive WSC, and the effect of horizontal oceanic heat transport is weak. Further analysis revealed that the increasing trend in the positive WSC results from the nonuniform responses of sea level pressure and the associated surface winds to global warming. There is an increasing trend in sea level pressure over the western Arabian Sea, coupled with decreasing atmospheric pressure over the Arabian Peninsula and the Somali Peninsula. This enhances the atmospheric pressure gradient between land and sea, and consequently strengthens the alongshore winds off the Oman coast. However, in the coastal region, wind changes are less pronounced, resulting in an insignificant trend in the alongshore component of surface wind. Consequently, it results in the increasing positive WSC over the Oman upwelling region, and sustains the intensification trend of Oman coastal upwelling. Full article
(This article belongs to the Section Ocean Remote Sensing)
Show Figures

Graphical abstract

16 pages, 5628 KiB  
Article
Contrasting Impacts of North Pacific and North Atlantic SST Anomalies on Summer Persistent Extreme Heat Events in Eastern China
by Jiajun Yao, Lulin Cen, Minyu Zheng, Mingming Sun and Jingnan Yin
Atmosphere 2025, 16(8), 901; https://doi.org/10.3390/atmos16080901 - 24 Jul 2025
Viewed by 279
Abstract
Under global warming, persistent extreme heat events (PHEs) in China have increased significantly in both frequency and intensity, posing severe threats to agriculture and socioeconomic development. Combining observational analysis (1961–2019) and numerical simulations, this study investigates the distinct impacts of Northwest Pacific (NWP) [...] Read more.
Under global warming, persistent extreme heat events (PHEs) in China have increased significantly in both frequency and intensity, posing severe threats to agriculture and socioeconomic development. Combining observational analysis (1961–2019) and numerical simulations, this study investigates the distinct impacts of Northwest Pacific (NWP) and North Atlantic (NA) sea surface temperature (SST) anomalies on PHEs over China. Key findings include the following: (1) PHEs exhibit heterogeneous spatial distribution, with the Yangtze-Huai River Valley as the hotspot showing the highest frequency and intensity. A regime shift occurred post-2000, marked by a threefold increase in extreme indices (+3σ to +4σ). (2) Observational analyses reveal significant but independent correlations between PHEs and SST anomalies in the tropical NWP and mid-high latitude NA. (3) Numerical experiments demonstrate that NWP warming triggers a meridional dipole response (warming in southern China vs. cooling in the north) via the Pacific–Japan teleconnection pattern, characterized by an eastward-retreated and southward-shifted sub-tropical high (WPSH) coupled with an intensified South Asian High (SAH). In contrast, NA warming induces uniform warming across eastern China through a Eurasian Rossby wave train that modulates the WPSH northward. (4) Thermodynamically, NWP forcing dominates via asymmetric vertical motion and advection processes, while NA forcing primarily enhances large-scale subsidence and shortwave radiation. This study elucidates region-specific oceanic drivers of extreme heat, advancing mechanistic understanding for improved heatwave predictability. Full article
Show Figures

Figure 1

24 pages, 17460 KiB  
Article
Improved Pacific Decadal Oscillation Prediction by an Optimizing Model Combined Bidirectional Long Short-Term Memory and Multiple Modal Decomposition
by Hang Yu, Junbo Lei, Pengfei Lin, Tao Zhang, Hailong Liu, Huilin Lai, Lindong Lai, Bowen Zhao and Bo Wu
Remote Sens. 2025, 17(15), 2537; https://doi.org/10.3390/rs17152537 - 22 Jul 2025
Viewed by 346
Abstract
The Pacific Decadal Oscillation (PDO), as the dominant mode of decadal sea surface temperature variability in the North Pacific, exhibits both interannual and decadal fluctuations that significantly influence global climate. The complexity associated with PDO changes poses challenges for accurate predictions. This study [...] Read more.
The Pacific Decadal Oscillation (PDO), as the dominant mode of decadal sea surface temperature variability in the North Pacific, exhibits both interannual and decadal fluctuations that significantly influence global climate. The complexity associated with PDO changes poses challenges for accurate predictions. This study develops a BiLSTM-WOA-MMD (BWM) model, which integrates a bidirectional long short-term memory network with a whale optimization algorithm (WOA) and multiple modal decomposition (MMD), to forecast PDO at both interannual and decadal time scales. The model successfully predicts monthly/annual average PDO index of up to 15 months/5 years in advance, achieving a correlation coefficient of 0.56/0.55. By utilizing the WOA to effectively optimize hyperparameters, the model enhances the PDO prediction skill compared to existing deep learning PDO prediction models, improving the correlation coefficient from 0.47 to 0.68 at a 6-month lead time. The combination of MMD and WOA further minimizes prediction errors and extends the forecasting effective time to 15 months by capturing essential modes. The BWM model can be employed for future PDO prediction and the predicted PDO will remain in its cool phase in the next year both using the PDO index from NECI and derived from near-time satellite data. This proposed model offers an effective way to advance the prediction skill of climate variability on multiple time scales by utilizing all kinds of data available including satellite data, and provides a large-scale background to monitor marine heatwaves. Full article
Show Figures

Graphical abstract

15 pages, 3061 KiB  
Article
Based on the Spatial Multi-Scale Habitat Model, the Response of Habitat Suitability of Purpleback Flying Squid (Sthenoteuthis oualaniensis) to Sea Surface Temperature Variations in the Nansha Offshore Area, South China Sea
by Xue Feng, Xiaofan Hong, Zuozhi Chen and Jiangtao Fan
Biology 2025, 14(6), 684; https://doi.org/10.3390/biology14060684 - 12 Jun 2025
Viewed by 512
Abstract
Overfishing and climate change have led to the depletion of fishery resources in the offshore South China Sea. The purpleback flying squid (Sthenoteuthis oualaniensis) has emerged as a promising alternative due to its ecological and economic value. However, information on its [...] Read more.
Overfishing and climate change have led to the depletion of fishery resources in the offshore South China Sea. The purpleback flying squid (Sthenoteuthis oualaniensis) has emerged as a promising alternative due to its ecological and economic value. However, information on its preferred habitat conditions remains scarce. This study integrates geostatistical and fisheries oceanographic approaches to explore optimal spatial–temporal scales for habitat modeling and to assess habitat changes under warming scenarios. Utilizing fishery data from 2013 to 2017, environmental variables including SST, sea surface temperature anomaly (SSTA), and chlorophyll-a concentration (CHL) were analyzed. Fishing effort data revealed significant seasonal differences, with the highest vessel numbers in summer and the lowest in autumn. Among the six modeling schemes, the combination of 0.5° × 0.5° spatial resolution and seasonal temporal resolution yielded the highest HSI model accuracy (84.02%). Optimal environmental ranges varied by season. Simulations of SST deviations (±0.2 °C, ±0.5 °C, and ±1 °C) showed that extreme warming or cooling could eliminate suitable habitats. These findings highlight the vulnerability of squid habitats to thermal shifts and support adaptive fishery strategies in the South China Sea. Full article
Show Figures

Figure 1

12 pages, 2196 KiB  
Article
Post-El Niño Influence on Summer Monsoon Rainfall in Sri Lanka
by Pathmarasa Kajakokulan and Vinay Kumar
Water 2025, 17(11), 1664; https://doi.org/10.3390/w17111664 - 30 May 2025
Viewed by 823
Abstract
Sri Lanka typically experiences anomalously wet conditions during the summer following El Niño events, but this response varies due to El Niño complexity. This study investigates the impact of post-El Niño conditions on Sri Lanka’s Monsoon rainfall, contrasting summers after fast- and slow-decaying [...] Read more.
Sri Lanka typically experiences anomalously wet conditions during the summer following El Niño events, but this response varies due to El Niño complexity. This study investigates the impact of post-El Niño conditions on Sri Lanka’s Monsoon rainfall, contrasting summers after fast- and slow-decaying El Niño events. Results indicate that fast-decaying El Niño events lead to wet and cool summers while slow-decaying events result in dry and warm summers. These contrasting responses are linked to sea surface temperature (SST) changes in the central to eastern Pacific. During the fast-decaying El Niño, the transition to La Niña generates strong easterlies in the central and eastern Pacific, enhancing moisture convergence, upward motion, and cloud cover, resulting in wetter conditions over Sri Lanka. During the fast-decaying El Niño, enhanced precipitation over the Maritime Continent acts as a diabatic heating source, inducing Gill-type easterly wind anomalies over the tropical Pacific. These winds promote coupled feedbacks that accelerate the transition to La Niña, strengthening moisture convergence and upward motion over Sri Lanka. Conversely, slow-decaying El Niño events are associated with cooling in the western North Pacific and warming in the Indian Ocean, which promotes the development of the western North Pacific anticyclone, suppressing upward motion and reducing cloud cover, leading to conditions over Sri Lanka. Changes in the Walker circulation further contribute to these distinct rainfall patterns, highlighting its influence on regional climate dynamics. These findings enhance our understanding of the seasonal predictability of rainfall in Sri Lanka during post-El Niño Summers. Full article
Show Figures

Figure 1

17 pages, 1808 KiB  
Article
Locating Urban Area Heat Waves by Combining Thermal Comfort Index and Computational Fluid Dynamics Simulations: The Optimal Placement of Climate Change Infrastructure in a Korean City
by Sinhyung Cho, Sinwon Cho, Seungkwon Jung and Jaekyoung Kim
Climate 2025, 13(6), 113; https://doi.org/10.3390/cli13060113 - 29 May 2025
Viewed by 727
Abstract
The intensification of extreme temperature events driven by climate change has heightened the vulnerability of urban areas to heatwaves, making it a critical environmental challenge. In this study, we investigate the spatial characteristics of urban heatwave vulnerability in Jungang-dong, Gangneung—a representative mid-sized coastal [...] Read more.
The intensification of extreme temperature events driven by climate change has heightened the vulnerability of urban areas to heatwaves, making it a critical environmental challenge. In this study, we investigate the spatial characteristics of urban heatwave vulnerability in Jungang-dong, Gangneung—a representative mid-sized coastal city in South Korea that experiences a strong urban heat island (UHI) effect due to the prevalent land–sea breeze dynamics, high building density, and low green-space ratio. A representative heatwave day (22 August 2024) was selected using AWS data from the Korea Meteorological Administration (KMA), and hourly meteorological conditions were applied to Computational Fluid Dynamics (CFD) simulations to model the urban microclimates. The thermal stress levels were quantitatively assessed using the Universal Thermal Climate Index (UTCI). The results indicated that, at 13:00, the surface temperatures reached 40 °C and the UTCI values peaked at 43 °C, corresponding to a “Very Strong Heat Stress” level. Approximately 17.4% of the study area was identified as being under extreme thermal stress, particularly in densely built-up zones, roadside corridors with high traffic, and pedestrian commercial areas. Based on these findings, we present spatial analysis results that reflect urban morphological characteristics to guide the optimal allocation of urban cooling strategies, including green (e.g., street trees, urban parks, and vegetated roofs), smart, and engineered infrastructure. These insights are expected to provide a practical foundation for climate adaptation planning and thermal environment improvement in mid-sized urban contexts. Full article
(This article belongs to the Special Issue Climate Adaptation and Mitigation in the Urban Environment)
Show Figures

Figure 1

27 pages, 3894 KiB  
Article
The Effects of Increasing Ambient Temperature and Sea Surface Temperature Due to Global Warming on Combined Cycle Power Plant
by Asiye Aslan and Ali Osman Büyükköse
Sustainability 2025, 17(10), 4605; https://doi.org/10.3390/su17104605 - 17 May 2025
Viewed by 1829
Abstract
The critical consequence of climate change resulting from global warming is the increase in temperature. In combined cycle power plants (CCPPs), the Electric Power Output (PE) is affected by changes in both Ambient Temperature (AT) and Sea Surface Temperature (SST), particularly in plants [...] Read more.
The critical consequence of climate change resulting from global warming is the increase in temperature. In combined cycle power plants (CCPPs), the Electric Power Output (PE) is affected by changes in both Ambient Temperature (AT) and Sea Surface Temperature (SST), particularly in plants utilizing seawater cooling systems. As AT increases, air density decreases, leading to a reduction in the mass of air absorbed by the gas turbine. This change alters the fuel–air mixture in the combustion chamber, resulting in decreased turbine power. Similarly, as SST increases, cooling efficiency declines, causing a loss of vacuum in the condenser. A lower vacuum reduces the steam expansion ratio, thereby decreasing the Steam Turbine Power Output. In this study, the effects of increases in these two parameters (AT and SST) due to global warming on the PE of CCPPs are investigated using various regression analysis techniques, Artificial Neural Networks (ANNs) and a hybrid model. The target variables are condenser vacuum (V), Steam Turbine Power Output (ST Power Output), and PE. The relationship of V with three input variables—SST, AT, and ST Power Output—was examined. ST Power Output was analyzed with four input variables: V, SST, AT, and relative humidity (RH). PE was analyzed with five input variables: V, SST, AT, RH, and atmospheric pressure (AP) using regression methods on an hourly basis. These models were compared based on the Coefficient of Determination (R2), Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), Mean Square Error (MSE), and Root Mean Square Error (RMSE). The best results for V, ST Power Output, and PE were obtained using the hybrid (LightGBM + DNN) model, with MAE values of 0.00051, 1.0490, and 2.1942, respectively. As a result, a 1 °C increase in AT leads to a decrease of 4.04681 MWh in the total electricity production of the plant. Furthermore, it was determined that a 1 °C increase in SST leads to a vacuum loss of up to 0.001836 bara. Due to this vacuum loss, the steam turbine experiences a power loss of 0.6426 MWh. Considering other associated losses (such as generator efficiency loss due to cooling), the decreases in ST Power Output and PE are calculated as 0.7269 MWh and 0.7642 MWh, respectively. Consequently, the combined effect of a 1 °C increase in both AT and SST results in a 4.8110 MWh production loss in the CCPP. As a result of a 1 °C increase in both AT and SST due to global warming, if the lost energy is to be compensated by an average-efficiency natural gas power plant, an imported coal power plant, or a lignite power plant, then an additional 610 tCO2e, 11,184 tCO2e, and 19,913 tCO2e of greenhouse gases, respectively, would be released into the atmosphere. Full article
Show Figures

Figure 1

24 pages, 22764 KiB  
Article
The TSformer: A Non-Autoregressive Spatio-Temporal Transformers for 30-Day Ocean Eddy-Resolving Forecasting
by Guosong Wang, Min Hou, Mingyue Qin, Xinrong Wu, Zhigang Gao, Guofang Chao and Xiaoshuang Zhang
J. Mar. Sci. Eng. 2025, 13(5), 966; https://doi.org/10.3390/jmse13050966 - 16 May 2025
Viewed by 686
Abstract
Ocean forecasting is critical for various applications and is essential for understanding air–sea interactions, which contribute to mitigating the impacts of extreme events. While data-driven forecasting models have demonstrated considerable potential and speed, they often primarily focus on spatial variations while neglecting temporal [...] Read more.
Ocean forecasting is critical for various applications and is essential for understanding air–sea interactions, which contribute to mitigating the impacts of extreme events. While data-driven forecasting models have demonstrated considerable potential and speed, they often primarily focus on spatial variations while neglecting temporal dynamics. This paper presents the TSformer, a novel non-autoregressive spatio-temporal transformer designed for medium-range ocean eddy-resolving forecasting, enabling forecasts of up to 30 days in advance. We introduce an innovative hierarchical U-Net encoder–decoder architecture based on 3D Swin Transformer blocks, which extends the scope of local attention computation from spatial to spatio-temporal contexts to reduce accumulation errors. The TSformer is trained on 28 years of homogeneous, high-dimensional 3D ocean reanalysis datasets, supplemented by three 2D remote sensing datasets for surface forcing. Based on the near-real-time operational forecast results from 2023, comparative performance assessments against in situ profiles and satellite observation data indicate that the TSformer exhibits forecast performance comparable to leading numerical ocean forecasting models while being orders of magnitude faster. Unlike autoregressive models, the TSformer maintains 3D consistency in physical motion, ensuring long-term coherence and stability. Furthermore, the TSformer model, which incorporates surface auxiliary observational data, effectively simulates the vertical cooling and mixing effects induced by Super Typhoon Saola. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

22 pages, 29320 KiB  
Article
Synergistic Effects of Ocean Background and Tropical Cyclone Characteristics on Tropical Cyclone-Induced Sea Surface Cooling in the Western North Pacific
by Rao Rao, Chengcheng Yu, Peng Bai and Bo Li
J. Mar. Sci. Eng. 2025, 13(5), 955; https://doi.org/10.3390/jmse13050955 - 14 May 2025
Viewed by 323
Abstract
Tropical cyclones (TCs) induce intense mixing in the upper ocean, which significantly impacts sea surface temperature (SST) and marine environment. Previous studies have shown that TCs can cause a decrease in sea surface temperature (DSST), while further research is required to elucidate the [...] Read more.
Tropical cyclones (TCs) induce intense mixing in the upper ocean, which significantly impacts sea surface temperature (SST) and marine environment. Previous studies have shown that TCs can cause a decrease in sea surface temperature (DSST), while further research is required to elucidate the factors influencing SST changes. This study employs satellite observations and reanalysis data from the western North Pacific during 2002–2020 to investigate the relationship between DSST and the ocean background state (BG). In addition, by incorporating TC characteristics, we construct indices to explore the synergistic effects of TCs and BG on DSST, enabling a more comprehensive understanding of the mechanisms governing DSST variability. The results indicate that DSST exhibits significant monthly variations, with the maximum DSST in September for coastal regions and in August for offshore regions. Regardless of TC characteristics, when the mixed layer depth (MLD) exceeds 60 m or thermocline depth (TD) exceeds 115 m, it is difficult for the DSST to exceed 1 °C. In both coastal and offshore regions, MLD and TD exhibit moderate negative correlations with DSST, with values around −0.3. When TC characteristics are incorporated, these correlations rise to approximately 0.6, highlighting the importance of jointly considering BG and TC effects in characterizing DSST. The findings of this study provide theoretical support for improving the capability to predict DSST changes before the TC approaches the coast. Full article
(This article belongs to the Special Issue Air-Sea Interaction and Marine Dynamics)
Show Figures

Figure 1

12 pages, 4383 KiB  
Article
Decadal Regime Shifts in Sea Fog Frequency over the Northwestern Pacific: The Influence of the Pacific Decadal Oscillation and Sea Surface Temperature Warming
by Shihan Zhang, Liguo Han, Jingchao Long, Lingyu Dong, Pengzhi Hong and Feng Xu
Atmosphere 2025, 16(2), 130; https://doi.org/10.3390/atmos16020130 - 26 Jan 2025
Viewed by 714
Abstract
Sea fog significantly impacts marine activities, ecosystems, and radiation balance. We analyzed the decadal variation characteristics of sea fog frequency (SFF) over the northwestern Pacific and investigated the roles of the Pacific decadal oscillation (PDO) and sea surface temperature (SST) warming in driving [...] Read more.
Sea fog significantly impacts marine activities, ecosystems, and radiation balance. We analyzed the decadal variation characteristics of sea fog frequency (SFF) over the northwestern Pacific and investigated the roles of the Pacific decadal oscillation (PDO) and sea surface temperature (SST) warming in driving these changes. The results show that SFF experienced a significant and sudden decadal increase around 1978 (up by 12.9%) and a prominent decadal decrease around 1999 (down by 7.8%). The sudden increase in SFF around 1978 was closely related to the PDO. A positive PDO phase induced unusual anticyclonic circulation and southerly winds over the northwestern Pacific, enhancing low-level atmospheric stability and moisture supply, thus facilitating sea fog formation. Nevertheless, the decrease in SFF around 1999 was related to SST warming in the north Pacific. The rise in sea temperatures weakened the SST front south of the foggy region, reducing the cooling and condensation of warm air necessary for sea fog formation. This study enhances the understanding of the decadal variability mechanism of SFF over the northwestern Pacific regulated by large-scale circulation systems and provides a reference for future sea fog forecasting work. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

25 pages, 22457 KiB  
Article
Three-Dimensional Structural Analysis of Sea Temperature During Typhoon Transit
by Lingxiang Yao, Yanzhao Fu, Tao Wu, Junru Guo and Fei Shi
Water 2024, 16(24), 3641; https://doi.org/10.3390/w16243641 - 18 Dec 2024
Viewed by 913
Abstract
This study uses the Finite-Volume Community Ocean Model (FVCOM) to simulate the hydrodynamic processes during typhoon “Saola”. The simulation results closely match observed data. Typhoon “Saola” was a major system in the Pacific typhoon season, highlighting the complexity and uncertainty of tropical cyclone [...] Read more.
This study uses the Finite-Volume Community Ocean Model (FVCOM) to simulate the hydrodynamic processes during typhoon “Saola”. The simulation results closely match observed data. Typhoon “Saola” was a major system in the Pacific typhoon season, highlighting the complexity and uncertainty of tropical cyclone dynamics. By analyzing historical sea surface temperature data and the typhoon’s trajectory, the three-dimensional response of sea temperature during typhoon “Saola” was explored. The key findings are as follows: 1. Typhoon passage affects both coastal and deep-sea warming and cooling. Temperature changes are more pronounced near the coast, with the highest warming and cooling occurring within five days after the typhoon. In deep-sea areas, the highest warming occurs within five days, while the lowest cooling occurs within two days. 2. The nearshore water layers respond quickly to the typhoon, while the deep-sea water layers primarily respond in the middle depths, with a delayed effect. 3. In coastal shallow waters, the response is intense, with the maximum temperature increase and decrease occurring near the bottom, reaching 5.26 °C and −5.17 °C, respectively. In deep-sea areas, the response is weaker, with the maximum temperature change occurring near the surface: an increase of 0.49 °C and a decrease of −0.98 °C. The deepest response in coastal waters reaches about 80 m, while in the deep-sea area, it only reaches 50 m due to the thicker mixed layer. Full article
(This article belongs to the Section Oceans and Coastal Zones)
Show Figures

Figure 1

14 pages, 4295 KiB  
Technical Note
The Impact of Consecutive Tropical Cyclones on Changes in Environmental Factors and Phytoplankton Distributions in Overlapping Areas
by Ying Chen, Hui Zhao and Hui Gao
Remote Sens. 2024, 16(23), 4460; https://doi.org/10.3390/rs16234460 - 28 Nov 2024
Cited by 2 | Viewed by 1438
Abstract
Tropical cyclones are known to have significant ecological impacts, particularly on marine productivity. This study investigates the effects of two tropical cyclones (TC “MARIA” and TC “AMPIL”) on changes in environmental factors and phytoplankton in overlapping marine areas during August 2024. Our findings [...] Read more.
Tropical cyclones are known to have significant ecological impacts, particularly on marine productivity. This study investigates the effects of two tropical cyclones (TC “MARIA” and TC “AMPIL”) on changes in environmental factors and phytoplankton in overlapping marine areas during August 2024. Our findings indicated that TC “MARIA”, despite its lower wind speeds, resulted in significant increases in surface chlorophyll-a (Chl-a) due to its prolonged duration, while depth-integrated Chl-a showed a declining trend, suggesting limitations on phytoplankton growth due to water column instability and reduced light availability. In contrast, TC “AMPIL”, with its higher wind speeds and faster translation speed, caused more immediate disturbances, leading to increases in surface Chl-a. However, the depth-integrated Chl-a did not significantly increase, as phytoplankton growth was hindered by the succession of the two typhoons. Additionally, we observed a pronounced cooling in sea surface temperature after both typhoons, likely linked to ongoing mixing processes and atmospheric influences. This study can provide us with more insights into the interaction between tropical cyclone dynamics and marine ecology. Full article
Show Figures

Figure 1

18 pages, 8141 KiB  
Article
Cold Intermediate Water Formation in the Black Sea Triggered by March 2022 Cold Intrusions
by Tülay Çokacar
J. Mar. Sci. Eng. 2024, 12(11), 2027; https://doi.org/10.3390/jmse12112027 - 9 Nov 2024
Cited by 1 | Viewed by 1270
Abstract
In mid-March 2022, a Siberian High brought intense cold air masses, leading to severe weather conditions across southern Europe, including the Black Sea region. This study investigates the spatial and temporal evolution of cold intermediate water (CIW) masses in the Black Sea, with [...] Read more.
In mid-March 2022, a Siberian High brought intense cold air masses, leading to severe weather conditions across southern Europe, including the Black Sea region. This study investigates the spatial and temporal evolution of cold intermediate water (CIW) masses in the Black Sea, with a particular focus on the successive anomalously cold episodes that occurred in March 2022. The research underscores the significance of the northwestern continental slope and cyclonic gyres, especially as the only cold-water mass observations during the warm winters of 2020 and 2021 were concentrated in these areas. Following two warm winters, the cold episodes of March 2022 revealed notable convection and simultaneous cooling, particularly in the cyclonic interior and the Rim Current periphery, excluding the northeastern periphery. Subsequently, cold waters spreading isopycnally throughout the summer months were transported laterally and reached these regions. Argo float measurements provided clear evidence of widespread replenishment of the CIW, indicating that it is not confined to specific areas. The study also highlights regional variability in the characteristics of CIW formation, which is influenced by local dynamics and preconditioning temperatures. The temperatures of CIW increased from west to east, in line with the sea surface temperature gradient. Notably, thicker and colder CIW was found in the western cyclonic gyre compared to the eastern cyclonic area. Furthermore, the study confirms that the warming trend in CIW, identified in previous research, not only continues but has intensified during the recent period analyzed. These findings, observed under the extreme conditions analyzed in this research, offer valuable insights into the widespread occurrence of CIW formation in the Black Sea. Additionally, the study confirms that the warming trend in CIW, identified in previous studies, continued in the region throughout the warm winter period and after the cold spell in 2022. These insights contribute to a deeper understanding of CIW dynamics and their response to extreme weather events in the Black Sea. Full article
(This article belongs to the Section Physical Oceanography)
Show Figures

Figure 1

Back to TopTop