Optimal Irrigation Mode and Spatio-Temporal Variability Characteristics of Soil Moisture Content in Different Growth Stages of Winter Wheat
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area and TDR Field Sampling
2.2. Spatial Dependence of VMC and Sequential Gaussian Simulation
- The first step, based on all available samples, involves computing the representative CPDF of the entire study area, and a normal-score transformation of the original data into Gaussian-restricted data.
- In the next step, a random path is defined to visit each node in the grid once, with a specified number of items of neighboring conditioning data including both initially transformed data and previously simulated grid node values (the conditional restriction). Randomly drawing a value between 0 and 1 from the cumulative Gaussian distribution, the simulated value is added to the current dataset.
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Daccache, A.; Knox, J.W.; Weatherhead, E.K.; Daneshkhah, A.; Hess, T.M. Implementing precision irrigation in a humid climate—Recent experiences and on-going challenges. Agric. Water Manag. 2015, 147, 135–143. [Google Scholar] [CrossRef]
- Macedonio, F.; Drioli, E.; Gusev, A.A.; Bardow, A.; Semiat, R.; Kurihara, M. Efficient technologies for worldwide clean water supply. Chem. Eng. Process. Process Intensif. 2012, 51, 2–17. [Google Scholar] [CrossRef]
- Yue, X.; Zhang, T.; Zhao, X. Effects of rainfall patterns on annual plants in Horqin Sandy Land, Inner Mongolia of China. J. Arid Land 2016, 8, 389–398. [Google Scholar] [CrossRef]
- Yin, M.; Li, Y.; Xu, Y.; Zhou, C. Effects of mulches on water use in a winter wheat/summer maize rotation system in Loess Plateau, China. J. Arid Land 2018, 10, 277–291. [Google Scholar] [CrossRef]
- Rockström, J.; Lannerstad, M.; Falkenmark, M. Assessing the water challenge of a new green revolution in developing countries. Proc. Natl. Acad. Sci. USA 2007, 104, 6253–6260. [Google Scholar] [CrossRef] [PubMed]
- Daly, E.; Porporato, A. A review of soil moisture dynamics: From rainfall infiltration to ecosystem response. Environ. Eng. Sci. 2005, 22, 9–24. [Google Scholar] [CrossRef]
- Yang, P.; Zia-Khan, S.; Wei, G.; Zhong, R.; Aguila, M. Winter Irrigation Effects in Cotton Fields in Arid Inland Irrigated Areas in the North of the Tarim Basin, China. Water 2016, 8, 47. [Google Scholar] [CrossRef]
- Kim, S.; Lee, H.; Woo, N.C.; Kim, J. Soil moisture monitoring on a steep hillside. Hydrol. Process. 2007, 21, 2910–2922. [Google Scholar] [CrossRef]
- Vivoni, E.R.; Gutiérrez-Jurado, H.A.; Aragón, C.A.; Méndez-Barroso, L.A.; Rinehart, A.J.; Wyckoff, R.L. Variation of hydrometeorological conditions along a topographic transect in northwestern Mexico during the North American monsoon. J. Clim. 2007, 20, 1792–1809. [Google Scholar] [CrossRef]
- Tsakmakis, I.; Kokkos, N.; Pisinaras, V.; Papaevangelou, V.; Hatzigiannakis, E.; Arampatzis, G.; Gikas, G.D.; Linker, R.; Zoras, S.; Evagelopoulos, V.; et al. Operational Precise Irrigation for Cotton Cultivation through the Coupling of Meteorological and Crop Growth Models. Water Resour. Manag. 2017, 31, 563–580. [Google Scholar] [CrossRef]
- Yang, Y.; Zhu, J.; Zhao, C.; Liu, S.; Tong, X. The spatial continuity study of NDVI based on kriging and BPNN algorithm. Math. Comput. Model. 2011, 54, 1138–1144. [Google Scholar] [CrossRef]
- Ferraz, G.; Silva, F.; Alves, M.; Bueno, R.; Costa, P. Geostatistical analysis of fruit yield and detachment force in coffee. Precis. Agric. 2012, 13, 76–89. [Google Scholar] [CrossRef]
- Rabah, F.K.J.; Ghabayen, S.M.; Salha, A.A. Effect of GIS interpolation techniques on the accuracy of the spatial representation of groundwater monitoring data in Gaza strip. J. Environ. Sci. Technol. 2011, 4, 579–589. [Google Scholar] [CrossRef]
- Yang, Y.; Tong, X. The comparative analysis of spatial structure of Ji wheat 22 yield based on different stochastic samplings. Comput. Comput. Technol. Agric. 2011, 293, 195–205. [Google Scholar]
- Zhao, D.; Shen, J.; Lang, P.; Liu, Q.; Li, Q. Effects of irrigation and wide-precision planting on water use, radiation interception, and grain yield of winter wheat in the North China Plain. Agric. Water Manag. 2013, 118, 87–92. [Google Scholar]
- Xue, H.; Han, Y.; Li, Y.; Wang, G.; Feng, L.; Fan, Z.; Du, W.; Yang, B.; Cao, C.; Mao, S. Spatial distribution of light interception by different plant population densities and its relationship with yield. Field Crops Res. 2015, 184, 17–27. [Google Scholar] [CrossRef]
- Zhang, S.; Shao, M.; Li, D. Prediction of soil moisture scarcity using sequential Gaussian simulation in an arid region of China. Geoderma 2017, 295, 119–128. [Google Scholar] [CrossRef]
- Hedley, C.B.; Yule, I.J. Soil water status mapping and two variable-rate irrigation scenarios. J. Precis. Agric. 2009, 10, 342–355. [Google Scholar] [CrossRef]
- Stafford, J.V. Precision Agriculture ’13; Wageningen Academic Publishers: Wageningen, The Netherlands, 2013; pp. 7–11. [Google Scholar]
- Robinson, T.P.; Metternicht, G. Testing the performance of spatial interpolation techniques for mapping soil properties. Comput. Electron. Agric. 2006, 50, 97–108. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, W.; Xue, Q.; Chen, J.; Han, X. Evaluation of the AquaCrop model for simulating yield response of winter wheat to water on the southern Loess Plateau of China. Water Sci. Technol. 2013, 68, 821–828. [Google Scholar] [CrossRef] [PubMed]
- Ahmadi, S.H.; Mosallaeepour, E.; Kamgar-Haghighi, A.A.; Sepaskhah, A.R. Modeling Maize Yield and Soil Water Content with AquaCrop Under Full and Deficit Irrigation Managements. Water Resour. Manag. 2015, 29, 2837–2853. [Google Scholar] [CrossRef]
- Ferreyra, R.A.; Apezteguia, H.P.; Sereno, R.; Jones, J.W. Reduction of soil water spatial sampling density using scaled semivariograms and simulated annealing. Geoderma 2002, 110, 265–289. [Google Scholar] [CrossRef]
- Emery, X.; Ortiz, J.M. Weighted sample variograms as a tool to better assess the spatial variability of soil properties. Geoderma 2007, 140, 81–89. [Google Scholar] [CrossRef]
- Farifteh, J.; Van der Meer, F.; Atzberger, C.; Carranza, E.J.M. Quantitative analysis of salt affected soil reflectance spectra: A comparison of two adaptive methods (PLSR and ANN). Remote Sens. Environ. 2007, 110, 59–78. [Google Scholar] [CrossRef]
- Muhammed, S.E.; Marchant, B.P.; Webster, R.; Whitmore, A.P.; Dailey, G.; Milne, A.E. Assessing sampling designs for determining fertilizer practice from yield data. Comput. Electron. Agric. 2017, 135, 163–174. [Google Scholar] [CrossRef]
- Arriaga, J.; Rubio, F.R. A distributed parameters model for soil water content: Spatial and temporal variability analysis. Agric. Water Manag. 2017, 183, 101–106. [Google Scholar] [CrossRef]
- López-Vicente, M.; Quijano, L.; Navas, A. Spatial patterns and stability of topsoil water content in a rainfed fallow cereal field and Calcisol-type soil. Agric. Water Manag. 2015, 161, 41–52. [Google Scholar] [CrossRef]
- Blancheta, G.; Libohovab, Z.; Joostc, S.; Rossierd, N.; Schneidere, A.; Jeangrosa, B.; Sinaja, S. Spatial variability of potassium in agricultural soils of the canton of Fribourg, Switzerland. Geoderma 2017, 290, 107–121. [Google Scholar] [CrossRef]
- He, P.; Yang, L.; Xu, X.; Zhao, S.; Chen, F.; Li, S.; Tu, S.; Jin, J.; Johnston, A.M. Temporal and spatial variation of soil available potassium in China (1990–2012). Field Crops Res. 2015, 173, 49–56. [Google Scholar] [CrossRef]
- Ma, J.; He, P.; Xu, X.; He, W.; Liu, Y.; Yang, F.; Chen, F.; Li, S.; Tu, S.; Jin, J.; et al. Temporal and spatial changes in soil available phosphorus in China (1990–2012). Field Crops Res. 2016, 192, 13–20. [Google Scholar] [CrossRef]
- Malone, B.P.; Styc, Q.; Minasny, B.; McBratney, A.B. Digital soil mapping of soil carbon at the farm scale: A spatial downscaling approach in consideration of measured and uncertain data. Geoderma 2017, 290, 91–99. [Google Scholar] [CrossRef]
- Bordonal, R.; Ronquimd, R.; Figueiredo, E.; Carvalho, J.; Maldonado, W., Jr.; Milorie, D.; La Scala, N., Jr. Changes in quantity and quality of soil carbon due to the land-use conversion to sugarcane (Saccharum officinarum) plantation in southern Brazil. Agric. Ecosyst. Environ. 2017, 240, 54–65. [Google Scholar] [CrossRef]
- Xu, X.; He, P.; Zhang, J.; Pampolinod, M.F.; Johnstone, A.M.; Zhou, W. Spatial variation of attainable yield and fertilizer requirements for maize at the regional scale in China. Field Crops Res. 2017, 203, 8–15. [Google Scholar] [CrossRef]
- Cristi, F.; Fierroa, V.; Suárez, F.; Muñoz, J.F.; Hausner, M.B. A TDR-waveform approach to estimate soil water content in electrically conductive soils. Comput. Electron. Agric. 2016, 121, 160–168. [Google Scholar] [CrossRef]
- Polyakov, V.; Fares, A.; Ryder, M.H. Calibration of a capacitance system for measuring water content of tropical soil. Vadose Zone J. 2005, 4, 1004–1010. [Google Scholar] [CrossRef]
- Zanolin, A.; de Fouquet, C.; Granier, J.; Ruelle, P.; Nicoullaude, B. Geostatistical simulation of the spatial variability of an irrigated maize farm plot. C. R. Geosci. 2007, 339, 430–440. [Google Scholar] [CrossRef]
- Remy, N.; Boucher, A.; Wu, J. Applied Geostatistics with SGeMS; Cambridge University Press: New York, NY, USA, 2009; pp. 10–87. [Google Scholar]
- Diggle, P.J.; Ribeiro, P.J., Jr. Model-Based Geostatistics; Springer: New York, NY, USA, 2007; pp. 6–51. [Google Scholar]
- Alabert, F. Stochastic Imaging of Spatial Distributions Using Hard and Soft Information. Master’s Thesis, Stanford University, Stanford, CA, USA, 1987. [Google Scholar]
- Journel, A.G. Modeling uncertainty: Some conceptual thoughts. In Geostatistics for the Next Century; Dimitrakopoulos, R., Ed.; Springer: Dordrecht, The Netherlands, 1994; pp. 30–43. [Google Scholar]
- Ehlers, L.; Refsgaard, J.C.; Sonnenborg, T.O.; He, X.; Jensen, K.H. Using sequential Gaussian simulation to quantify uncertainties in interpolated Gauge based precipitation. In Proceedings of the EGU General Assembly, Vienna, Austria, 17–22 April 2016. [Google Scholar]
- Oliver, M.A. Geostatistical Applications for Precision Agriculture; Springer: London, UK, 2010; pp. 1–165. [Google Scholar]
- Miller, B.A.; Koszinski, S.; Wehrhan, M.; Sommer, M. Impact of multi-scale predictor selection for modeling soil properties. Geoderma 2015, 239, 97–106. [Google Scholar] [CrossRef]
- Zhu, Q.; Lin, H.; Doolittle, J.A. Functional soil mapping for site-specific soil moisture and crop yield management. Geoderma 2013, 200, 45–54. [Google Scholar] [CrossRef]
- Louveta, S.; Pellarina, T.; al Bitard, A.; Cappelaeree, B.; Gallea, S.; Grippaf, M.; Gruhierd, C.; Kerry, Y.; Lebela, T.; Mialond, M.E.; et al. SMOS soil moisture product evaluation over West-Africa from local to regional scale. Remote Sens. Environ. 2015, 156, 383–394. [Google Scholar] [CrossRef]
- Anselin, L. The Moran scatterplot as an ESDA tool to assess local instability in spatial association. In Spatial Analytical Perspectives on GIS; Fischer, M., Scholten, H.J., Unwin, D., Eds.; Taylor & Francis: London, UK, 1996; pp. 111–125. [Google Scholar]
- Webster, R.; Oliver, M.A. Geostatistics for Environmental Scientists, 2nd ed.; Wiley: Chichester, UK, 2007; pp. 1–134. [Google Scholar]
- Chen, Y. New Approaches for calculating Moran’s index of spatial autocorrelation. PLoS ONE 2013, 8. [Google Scholar] [CrossRef] [PubMed]
- Mirzaei, R.; Sakizadeh, M. Comparison of interpolation methods for the estimation of groundwater contamination in Andimeshk-Shush Plain, Southwest of Iran. Environ. Sci. Pollut. Res. 2016, 23, 2758–2769. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Zhang, X.S. Landscape spatial autocorrelation analysis of TM remote sensing data: A case study of Changping district, Beijing, China. Acta Ecol. Sin. 2004, 24, 2853–2858. [Google Scholar]
- Smith, A.; Bernardo, J.M. Bayesian Theory; Welly: New York, NY, USA, 2000; pp. 1–610. [Google Scholar]
- Schabenberger, O.; Gotway, C.A. Statistical Methods for Spatial Data Analysis; CRC Press: Boca Raton, FL, USA, 2005; pp. 5–29. [Google Scholar]
- Li, T.; Hao, X.; Kang, S. Spatiotemporal Variability of Soil Moisture as Affected by Soil Properties during Irrigation Cycles. Soil Sci. Soc. Am. J. 2014, 78, 598–608. [Google Scholar] [CrossRef]
- Wang, J.; Kang, S.; Sun, J.; Chen, Z.; Song, N. Spatial prediction of crop water requirement based on Bayesian maximum entropy and multi-source data. Trans. Chin. Soc. Agric. Eng. 2017, 33, 99–106. (In Chinese) [Google Scholar]
- Yu, Q. Farmland Ecological Processes and Models; Science Press: Beijing, China, 2007; pp. 1–256. [Google Scholar]
Stage | Model | Nugget (C0) | Sill (C0 + C) | Range (A0) | C0/(C0 + C) | R2 | RSS |
---|---|---|---|---|---|---|---|
Tillering | S | 17.5 | 39.7 | 57.7 | 0.44 | 0.822 | 132 |
Jointing | S | 16.9 | 69.9 | 75.9 | 0.24 | 0.970 | 121 |
Heading | E | 5.3 | 39.8 | 12.2 | 0.13 | 0.913 | 64.2 |
Milky dough | S | 0.1 | 68.5 | 6.9 | 0.001 | 0.350 | 81.8 |
Harvest | E | 8.9 | 17.9 | 12.4 | 0.50 | 0.962 | 1.68 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Huang, Y.; Zhang, Y.; Tong, X. Optimal Irrigation Mode and Spatio-Temporal Variability Characteristics of Soil Moisture Content in Different Growth Stages of Winter Wheat. Water 2018, 10, 1180. https://doi.org/10.3390/w10091180
Yang Y, Huang Y, Zhang Y, Tong X. Optimal Irrigation Mode and Spatio-Temporal Variability Characteristics of Soil Moisture Content in Different Growth Stages of Winter Wheat. Water. 2018; 10(9):1180. https://doi.org/10.3390/w10091180
Chicago/Turabian StyleYang, Yujian, Yanbo Huang, Yong Zhang, and Xueqin Tong. 2018. "Optimal Irrigation Mode and Spatio-Temporal Variability Characteristics of Soil Moisture Content in Different Growth Stages of Winter Wheat" Water 10, no. 9: 1180. https://doi.org/10.3390/w10091180
APA StyleYang, Y., Huang, Y., Zhang, Y., & Tong, X. (2018). Optimal Irrigation Mode and Spatio-Temporal Variability Characteristics of Soil Moisture Content in Different Growth Stages of Winter Wheat. Water, 10(9), 1180. https://doi.org/10.3390/w10091180