Deep Learning Emulator Towards Both Forward and Adjoint Modes of Atmospheric Gas-Phase Chemical Process
Abstract
1. Introduction
2. Methodology and Datasets
2.1. Chemical Model Description
2.2. Dataset Collection
2.3. The Architecture of Deep Learning Emulator
2.4. Emulator Embedding Framework
2.5. Emulator Evaluation Method
3. Results and Discussions
3.1. Forward Accuracy Validation
3.2. Adjoint Accuracy Validation
3.3. Comparison of Computational Efficiency
3.4. Limitations and Outlook
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brasseur, G.P.; Jacob, D.J. Modeling of Atmospheric Chemistry, 1st ed.; Cambridge University Press: Cambridge, UK, 2017; ISBN 978-1-316-54475-4. [Google Scholar]
- Henze, D.K.; Hakami, A.; Seinfeld, J.H. Development of the Adjoint of GEOS-Chem. Atmos. Chem. Phys. 2007, 7, 2413–2433. [Google Scholar] [CrossRef]
- Zhao, S.; Russell, M.G.; Hakami, A.; Capps, S.L.; Turner, M.D.; Henze, D.K.; Percell, P.B.; Resler, J.; Shen, H.; Russell, A.G.; et al. A Multiphase CMAQ Version 5.0 Adjoint. Geosci. Model Dev. 2020, 13, 2925–2944. [Google Scholar] [CrossRef]
- Mo, J.; Gong, S.; He, J.; Zhang, L.; Ke, H.; An, X. Quantification of SO2 Emission Variations and the Corresponding Prediction Improvements Made by Assimilating Ground-Based Observations. Atmosphere 2022, 13, 470. [Google Scholar] [CrossRef]
- Sandu, A.; Daescu, D.N.; Carmichael, G.R.; Chai, T. Adjoint Sensitivity Analysis of Regional Air Quality Models. J. Comput. Phys. 2005, 204, 222–252. [Google Scholar] [CrossRef]
- Quevedo, D.; Do, K.; Delic, G.; Rodríguez-Borbón, J.; Wong, B.M.; Ivey, C.E. GPU Implementation of a Gas-Phase Chemistry Solver in the CMAQ Chemical Transport Model. ACS EST Air 2025, 2, 226–235. [Google Scholar] [CrossRef]
- Zhang, H.; Linford, J.C.; Sandu, A.; Sander, R. Chemical Mechanism Solvers in Air Quality Models. Atmosphere 2011, 2, 510–532. [Google Scholar] [CrossRef]
- Hakami, A.; Henze, D.K.; Seinfeld, J.H.; Singh, K.; Sandu, A.; Kim, S.; Byun; Li, Q. The Adjoint of CMAQ. Environ. Sci. Technol. 2007, 41, 7807–7817. [Google Scholar] [CrossRef]
- Daescu, D.; Carmichael, G.R.; Sandu, A. Adjoint Implementation of Rosenbrock Methods Applied to Variational Data Assimilation. In Air Pollution Modeling and Its Application XIV; Gryning, S.-E., Schiermeier, F.A., Eds.; Springer: Boston, MA, USA, 2004; pp. 361–369. ISBN 978-0-306-46534-5. [Google Scholar]
- Zheng, T.; Feng, S.; Steward, J.; Tian, X.; Baker, D.; Baxter, M. Development of the Tangent Linear and Adjoint Models of the Global Online Chemical Transport Model MPAS-CO2 v7.3. Geosci. Model Dev. 2024, 17, 1543–1562. [Google Scholar] [CrossRef]
- Huang, Y.; Seinfeld, J.H. A Neural Network-Assisted Euler Integrator for Stiff Kinetics in Atmospheric Chemistry. Environ. Sci. Technol. 2022, 56, 4676–4685. [Google Scholar] [CrossRef]
- Yang, X.; Guo, L.; Zheng, Z.; Riemer, N.; Tessum, C.W. Atmospheric Chemistry Surrogate Modeling With Sparse Identification of Nonlinear Dynamics. J. Geophys. Res. Mach. Learn. Comput. 2024, 1, e2024JH000132. [Google Scholar] [CrossRef]
- Goswami, S.; Jagtap, A.D.; Babaee, H.; Susi, B.T.; Karniadakis, G.E. Learning Stiff Chemical Kinetics Using Extended Deep Neural Operators. Comput. Methods Appl. Mech. Eng. 2024, 419, 116674. [Google Scholar] [CrossRef]
- Kelp, M.M.; Tessum, C.W.; Marshall, J.D. Orders-of-Magnitude Speedup in Atmospheric Chemistry Modeling through Neural. arXiv 2018. [Google Scholar] [CrossRef]
- Liu, Z.-S.; Clusius, P.; Boy, M. Neural Network Emulator for Atmospheric Chemical ODE. Neural Netw. 2025, 184, 107106. [Google Scholar] [CrossRef]
- Kelp, M.M.; Jacob, D.J.; Kutz, J.N.; Marshall, J.D.; Tessum, C.W. Toward Stable, General Machine-Learned Models of the Atmospheric Chemical System. JGR Atmos. 2020, 125, e2020JD032759. [Google Scholar] [CrossRef]
- Keller, C.A.; Evans, M.J. Application of Random Forest Regression to the Calculation of Gas-Phase Chemistry within the GEOS-Chem Chemistry Model V10. Geosci. Model Dev. 2019, 12, 1209–1225. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, H.; Cheng, Z.; Shen, J.; Zhao, J.; Wang, Y.; Wang, S.; Cheng, Y. Emulation of an Atmospheric Gas-Phase Chemistry Solver through Deep Learning: Case Study of Chinese Mainland. Atmos. Pollut. Res. 2021, 12, 101079. [Google Scholar] [CrossRef]
- Wang, Z.; Li, J.; Wu, L.; Zhu, M.; Zhang, Y.; Ye, Z.; Wang, Z. Deep Learning-Based Gas-Phase Chemical Kinetics Kernel Emulator: Application in a Global Air Quality Simulation Case. Front. Environ. Sci. 2022, 10, 955980. [Google Scholar] [CrossRef]
- Kelp, M.M.; Jacob, D.J.; Lin, H.; Sulprizio, M.P. An Online-Learned Neural Network Chemical Solver for Stable Long-Term Global Simulations of Atmospheric Chemistry. J. Adv. Model Earth Syst. 2022, 14, e2021MS002926. [Google Scholar] [CrossRef]
- Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning Representations by Back-Propagating Errors. Nature 1986, 323, 533–536. [Google Scholar] [CrossRef]
- Carmichael, G.R.; Sandu, A.; Potra, F.A. Sensitivity Analysis for Atmospheric Chemistry Models via Automatic Differentiation. Atmos. Environ. 1997, 31, 475–489. [Google Scholar] [CrossRef]
- Baydin, A.G.; Pearlmutter, B.A.; Radul, A.A.; Siskind, J.M. Automatic Differentiation in Machine Learning: A Survey. arXiv 2015. [Google Scholar] [CrossRef]
- Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. PyTorch: An Imperative Style, High-Performance Deep Learning Library. arXiv 2019. [Google Scholar] [CrossRef]
- Hatfield, S.; Chantry, M.; Dueben, P.; Lopez, P.; Geer, A.; Palmer, T. Building Tangent-Linear and Adjoint Models for Data Assimilation with Neural Networks. J. Adv. Model. Earth Syst. 2021, 13, e2021MS002521. [Google Scholar] [CrossRef]
- Nonnenmacher, M.; Greenberg, D.S. Deep Emulators for Differentiation, Forecasting, and Parametrization in Earth Science Simulators. J. Adv. Model. Earth Syst. 2021, 13, e2021MS002554. [Google Scholar] [CrossRef]
- Gelbrecht, M.; White, A.; Bathiany, S.; Boers, N. Differentiable Programming for Earth System Modeling. Geosci. Model Dev. 2023, 16, 3123–3135. [Google Scholar] [CrossRef]
- Irrgang, C.; Boers, N.; Sonnewald, M.; Barnes, E.A.; Kadow, C.; Staneva, J.; Saynisch-Wagner, J. Will Artificial Intelligence Supersede Earth System and Climate Models? arXiv 2021. [Google Scholar] [CrossRef]
- Appel, K.W.; Napelenok, S.L.; Foley, K.M.; Pye, H.O.T.; Hogrefe, C.; Luecken, D.J.; Bash, J.O.; Roselle, S.J.; Pleim, J.E.; Foroutan, H.; et al. Description and Evaluation of the Community Multiscale Air Quality (CMAQ) Modeling System Version 5.1. Geosci. Model Dev. 2017, 10, 1703–1732. [Google Scholar] [CrossRef]
- Eder, B.; Kang, D.; Mathur, R.; Yu, S.; Schere, K. An Operational Evaluation of the Eta–CMAQ Air Quality Forecast Model. Atmos. Environ. 2006, 40, 4894–4905. [Google Scholar] [CrossRef]
- Park, S.-Y.; Dash, U.K.; Yu, J.; Yumimoto, K.; Uno, I.; Song, C.H. Implementation of an Ensemble Kalman Filter in the Community Multiscale Air Quality Model (CMAQ Model v5.1) for Data Assimilation of Ground-Level PM2.5. Geosci. Model Dev. 2022, 15, 2773–2790. [Google Scholar] [CrossRef]
- Wang, K.; Zhang, Y.; Jang, C.; Phillips, S.; Wang, B. Modeling Intercontinental Air Pollution Transport over the trans-Pacific Region in 2001 Using the Community Multiscale Air Quality Modeling System. J. Geophys. Res. 2009, 114, 2008JD010807. [Google Scholar] [CrossRef]
- Liu, X.-H.; Zhang, Y.; Cheng, S.-H.; Xing, J.; Zhang, Q.; Streets, D.G.; Jang, C.; Wang, W.-X.; Hao, J.-M. Understanding of Regional Air Pollution over China Using CMAQ, Part I Performance Evaluation and Seasonal Variation. Atmos. Environ. 2010, 44, 2415–2426. [Google Scholar] [CrossRef]
- Sandu, A.; Verwer, J.G.; Van Loon, M.; Carmichael, G.R.; Potra, F.A.; Dabdub, D.; Seinfeld, J.H. Benchmarking Stiff Ode Solvers for Atmospheric Chemistry Problems-I. Implicit vs Explicit. Atmos. Environ. 1997, 31, 3151–3166. [Google Scholar] [CrossRef]
- Turkoglu, M.O.; Becker, A.; Gündüz, H.A.; Rezaei, M.; Bischl, B.; Daudt, R.C.; D’Aronco, S.; Wegner, J.D.; Schindler, K. FiLM-Ensemble: Probabilistic Deep Learning via Feature-Wise Linear Modulation. arXiv 2022. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; IEEE: New York, NY, USA, 2016; pp. 770–778. [Google Scholar]
- Perez, E.; Strub, F.; de Vries, H.; Dumoulin, V.; Courville, A. FiLM: Visual Reasoning with a General Conditioning Layer. arXiv 2017. [Google Scholar] [CrossRef]
- Zhong, X.; Ma, Z.; Yao, Y.; Xu, L.; Wu, Y.; Wang, Z. WRF–ML v1.0: A Bridge between WRF v4.3 and Machine Learning Parameterizations and Its Application to Atmospheric Radiative Transfer. Geosci. Model Dev. 2023, 16, 199–209. [Google Scholar] [CrossRef]
- Bonavita, M.; Laloyaux, P. Machine Learning for Model Error Inference and Correction. J. Adv. Model. Earth Syst. 2020, 12, e2020MS002232. [Google Scholar] [CrossRef]
- Abarbanel, H.D.I.; Rozdeba, P.J.; Shirman, S. Machine Learning: Deepest Learning as Statistical Data Assimilation Problems. Neural Comput. 2018, 30, 2025–2055. [Google Scholar] [CrossRef]
- Czarnecki, W.M.; Osindero, S.; Jaderberg, M.; Świrszcz, G.; Pascanu, R. Sobolev Training for Neural Networks. arXiv 2017. [Google Scholar] [CrossRef]
- Park, S.-Y.; Park, C.; Yoo, J.-W.; Lee, S.-H.; Lee, H.W. Adjoint sensitivity of inland ozone to its precursors and meteorological and chemical influences. Atmos. Environ. 2018, 192, 104–115. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Liao, M.; Liu, J.; Cheng, Z. Deep Learning Emulator Towards Both Forward and Adjoint Modes of Atmospheric Gas-Phase Chemical Process. Atmosphere 2025, 16, 1109. https://doi.org/10.3390/atmos16091109
Liu Y, Liao M, Liu J, Cheng Z. Deep Learning Emulator Towards Both Forward and Adjoint Modes of Atmospheric Gas-Phase Chemical Process. Atmosphere. 2025; 16(9):1109. https://doi.org/10.3390/atmos16091109
Chicago/Turabian StyleLiu, Yulong, Meicheng Liao, Jiacheng Liu, and Zhen Cheng. 2025. "Deep Learning Emulator Towards Both Forward and Adjoint Modes of Atmospheric Gas-Phase Chemical Process" Atmosphere 16, no. 9: 1109. https://doi.org/10.3390/atmos16091109
APA StyleLiu, Y., Liao, M., Liu, J., & Cheng, Z. (2025). Deep Learning Emulator Towards Both Forward and Adjoint Modes of Atmospheric Gas-Phase Chemical Process. Atmosphere, 16(9), 1109. https://doi.org/10.3390/atmos16091109