Assessing the Impact of Sensor Height on the Representativeness of Temperature-Monitoring Sites in a Dense Midrise Urban Development Using PALM-4U
Abstract
1. Introduction
2. Methodology
2.1. Model Description
2.2. Case Description
2.3. Model Area and Static Driver
2.4. Calculation of Spatial and Temporal Representativity
2.5. Sensitivity Simulation Settings
3. Results and Discussion
3.1. General Simulation Results
3.2. Spatial and Temporal Representativity
3.3. Influence of Simulated Measurement Height on Representativity
3.4. Sensitivity
3.4.1. Wind Speed Sensitivity
3.4.2. Building Height Sensitivity
4. Summary and Conclusions
4.1. Main Findings and Practical Recommendations
- The extended point-to-volume representativity method based on Nappo is capable of locating representative temperature-monitoring sites within the dense urban development of LCZ 2 “dense midrise”.
- The results suggest flexibility of the sensor height between 2.5 m and 6.5 m, which increases the fraction of areas for measurements representative of the air temperature at 1.5 m by over 50%.
- The identified representative locations cluster around model areas with domain representative building density and land use between buildings.
- In areas with predominantly sealed surfaces, green areas are unsuitable for temperature monitoring due to stronger nighttime cooling compared with sealed surfaces.
- A distance of approximately 2 m should be maintained between the monitoring station and nearby walls, particularly in the case of walls that are not oriented northward.
- Sensitivity analysis with varying wind speeds and building heights indicates robust results under hot summer conditions analyzed in LCZ 2.
4.2. Limitations and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Oke, T.R.; Mills, G.; Christen, A.; Voogt, J.A. Urban Climates; Cambridge University Press: Cambridge, UK, 2017; pp. 1–526. [Google Scholar] [CrossRef]
- UN-Habitat. World Cities Report 2022: Envisaging the Future of Cities; UN-Habitat: Nairobi, Kenya, 2022. [Google Scholar]
- Li, Y.; Yang, T.; Zhao, G.; Ma, C.; Yan, Y.; Xu, Y.; Wang, L.; Wang, L. A systematic review of studies involving canopy layer urban heat island: Monitoring and associated factors. Ecol. Indic. 2024, 158, 111424. [Google Scholar] [CrossRef]
- World Meteorological Organization (WMO). Guide to Instruments and Methods of Observation (WMO-No. 8); World Meteorological Organization: Geneva, Switzerland, 2023; 5 volumes, various pagination. [Google Scholar]
- Croce, S.; Tondini, S. Fixed and Mobile Low-Cost Sensing Approaches for Microclimate Monitoring in Urban Areas: A Preliminary Study in the City of Bolzano (Italy). Smart Cities 2022, 5, 54–70. [Google Scholar] [CrossRef]
- Gubler, M.; Christen, A.; Remund, J.; Brönnimann, S. Evaluation and application of a low-cost measurement network to study intra-urban temperature differences during summer 2018 in Bern, Switzerland. Urban Climate 2021, 37, 100817. [Google Scholar] [CrossRef]
- Lelovics, E.; Unger, J.; Gál, T.; Gál, C.V. Design of an urban monitoring network based on Local Climate Zone mapping and temperature pattern modelling. Clim. Res. 2014, 60, 51–62. [Google Scholar] [CrossRef]
- Lähne, W. Konzeption und Aufbau Stadtklimamessnetz Mannheim; MKB Mannheimer Kommunalbeteiligungen GmbH und Smart City Mannheim GmbH: Mannheim, Germany, 2024; 17 S. [Google Scholar]
- Treptow, J. Abschlussbericht Bürgerwolke Soest; City of Soest, Germany. 2023. Available online: https://interkommunales.nrw/wp-content/uploads/2024/01/abschlussbericht-buergerwolke-stadt-soest-64ec7f4d84eb7950723880.pdf (accessed on 17 July 2025).
- World Meteorological Organization (WMO). Initial Guidance to Obtain Representative Meteorological Observations at Urban Sites; Instruments and Observing Methods Report No. 81, WMO/TD-No. 1250; World Meteorological Organization: Geneva, Switzerland, 2006; 51p. [Google Scholar]
- World Meteorological Organization (WMO). Guidance on Measuring, Modelling and Monitoring the Canopy Layer Urban Heat Island (CL-UHI) (WMO-No. 1292); World Meteorological Organization: Geneva, Switzerland, 2023. [Google Scholar]
- Maronga, B.; Banzhaf, S.; Burmeister, C.; Esch, T.; Forkel, R.; Fröhlich, D.; Fuka, V.; Gehrke, K.F.; Geletič, J.; Giersch, S.; et al. Overview of the PALM model system 6.0. Geosci. Model Dev. 2020, 13, 1335–1372. [Google Scholar] [CrossRef]
- Nappo, C.J. The Representativeness of Meteorological Observations; NOAA Technical Memorandum ERL-ATDL-82/6; National Oceanic and Atmospheric Administration: Oak Ridge, TN, USA, 1983; 67p. [Google Scholar]
- Henne, S.; Brunner, D.; Folini, D.; Solberg, S.; Klausen, J.; Buchmann, B. Assessment of parameters describing representativeness of air quality in-situ measurement sites. Atmos. Chem. Phys. 2010, 10, 3561–3581. [Google Scholar] [CrossRef]
- Piersanti, A.; Vitali, L.; Righini, G.; Cremona, G.; Ciancarella, L. Spatial representativeness of air quality monitoring stations: A grid model based approach. Atmos. Pollut. Res. 2015, 6, 1011–1019. [Google Scholar] [CrossRef]
- Vitali, L.; Morabito, A.; Adani, M.; Assennato, G.; Ciancarella, L.; Cremona, G.; Giua, R.; Pastore, T.; Piersanti, A.; Righini, G.; et al. A Lagrangian modelling approach to assess the representativeness area of an industrial air quality monitoring station. Atmos. Pollut. Res. 2016, 7, 1000–1009. [Google Scholar] [CrossRef]
- Hohenberger, T.L.; Che, W.; Fung, J.C.H.; Lau, A.K.H. A proposed population-health based metric for evaluating representativeness of air quality monitoring in cities: Using Hong Kong as a demonstration. PLoS ONE 2021, 16, e0252290. [Google Scholar] [CrossRef]
- Stewart, I.D.; Oke, T.R. Local Climate Zones for Urban Temperature Studies. Bull. Am. Meteorol. Soc. 2012, 93, 1879–1900. [Google Scholar] [CrossRef]
- Anders, J.; Schubert, S.; Sauter, T.; Tunn, S.; Schneider, C.; Salim, M. Modelling the impact of an urban development project on microclimate and outdoor thermal comfort in a mid-latitude city. Energy Build. 2023, 296, 113324. [Google Scholar] [CrossRef]
- Geletič, J.; Lehnert, M.; Krč, P.; Resler, J.; Krayenhoff, E.S. High-Resolution Modelling of Thermal Exposure during a Hot Spell: A Case Study Using PALM-4U in Prague, Czech Republic. Atmosphere 2021, 12, 175. [Google Scholar] [CrossRef]
- Gronemeier, T.; Sühring, M. On the Effects of Lateral Openings on Courtyard Ventilation and Pollution—A Large-Eddy Simulation Study. Atmosphere 2019, 10, 63. [Google Scholar] [CrossRef]
- Maronga, B.; Winkler, M.; Li, D. Can area-wide building retrofitting affect the urban microclimate? An LES study for Berlin, Germany. J. Appl. Meteorol. Climatol. 2022, 61, 117–135. [Google Scholar] [CrossRef]
- Deardorff, J.W. Stratocumulus-capped mixed layers derived from a three-dimensional model. Bound.-Layer Meteorol. 1980, 18, 495–527. [Google Scholar] [CrossRef]
- Williamson, J.H. Low-storage Runge-Kutta schemes. J. Comput. Phys. 1980, 35, 48–56. [Google Scholar] [CrossRef]
- Gehrke, K.F.; Sühring, M.; Maronga, B. Modeling of land–surface interactions in the PALM model system 6.0: Land surface model description, first evaluation, and sensitivity to model parameters. Geosci. Model Dev. 2021, 14, 5307–5329. [Google Scholar] [CrossRef]
- Resler, J.; Eben, K.; Geletič, J.; Krč, P.; Rosecký, M.; Sühring, M.; Belda, M.; Fuka, V.; Halenka, T.; Huszár, P.; et al. Validation of the PALM model system 6.0 in a real urban environment: A case study in Dejvice, Prague, the Czech Republic. Geosci. Model Dev. 2021, 14, 4797–4842. [Google Scholar] [CrossRef]
- PALM Model System Documentation. Leibniz University Hannover. Available online: https://palm.muk.uni-hannover.de/trac/wiki/doc/tec (accessed on 17 July 2025).
- Hollósi, B.; Žuvela-Aloise, M.; Neureiter, A.; Frießenbichler, M.; Auferbauer, P.; Feigl, J.; Hahn, C.; Kolejka, T. Capability of the building-resolving PALM model system to capture micrometeorological characteristics of an urban environment in Vienna, Austria. City Environ. Interact. 2024, 23, 100152. [Google Scholar] [CrossRef]
- Straub, A.; Beck, C.; du Preez, D.J.; Knote, C.; Holst, C.C.; Philipp, A. Characterization of potential temperature hotspots during urban heat island episodes examined by large eddy simulation and land use regression for the city of Augsburg. Meteorol. Z. 2025, in press. [Google Scholar] [CrossRef]
- Scherer, D.; Holtmann, A.; Ament, F.; Fehrenbach, U.; Goldberg, V.; Grassmann, T.; Hansen, A.; Holst, C.; Kiseleva, O.; Klemp, D.; et al. [UC]2 Evaluierungsbericht Teil 2; Technische Universität Berlin: Berlin, Germany, 2024. [Google Scholar] [CrossRef]
- van der Linden, L.; Hogan, P.; Maronga, B.; Hagemann, R.; Bechtel, B. Crowdsourcing air temperature data for the evaluation of the urban microscale model PALM—A case study in central Europe. PLoS Clim. 2023, 2, e0000197. [Google Scholar] [CrossRef]
- Burmeister, C.; Mendzigall, K.; Pavlik, D.; Krüger, A.; Reinbold, A.; Schubert-Frisius, M.; Teichmann, C.; Henning, J.; Stadler, S.; Winkler, M.; et al. PALM-4U Anwendungskatalog für die kommunale Praxis. Grundlagen für die Operationalisierung von PALM-4U—Praktikabilität und Verstetigungsstrategie. Available online: https://uc2-propolis.de/imperia/md/assets/propolis/images/palm-4u_anwendungskatalog_april_2023.pdf (accessed on 17 July 2025).
- Christen, A. Vertikale Gliederung der Stadtatmosphäre. In Warnsignal Klima: Die Städte; Lozán, J.L., Breckle, S.-W., Grassl, H., Kuttler, W., Matzarakis, A., Eds.; Universität Hamburg: Hamburg, Germany, 2019; pp. 36–42. [Google Scholar] [CrossRef]
- Demuzere, M.; Bechtel, B.; Middel, A.; Mills, G. Mapping Europe into local climate zones. PLoS ONE 2019, 14, e0214474. [Google Scholar] [CrossRef]
- Nakamura, Y.; Oke, T.R. Wind, temperature and stability conditions in an east–west oriented urban canyon. Atmos. Environ. 1988, 22, 2691–2700. [Google Scholar] [CrossRef]
Simulation | Wind Forcing | Median Building Height |
---|---|---|
Baseline | 1 m/s | 20 m |
W2 | 2 m/s | 20 m |
W3 | 3 m/s | 20 m |
B17 | 1 m/s | 17 m |
B14 | 1 m/s | 14 m |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Steigerwald, F.; Eichhorn-Müller, A.; Schau-Noppel, H.; Kossmann, M. Assessing the Impact of Sensor Height on the Representativeness of Temperature-Monitoring Sites in a Dense Midrise Urban Development Using PALM-4U. Atmosphere 2025, 16, 1035. https://doi.org/10.3390/atmos16091035
Steigerwald F, Eichhorn-Müller A, Schau-Noppel H, Kossmann M. Assessing the Impact of Sensor Height on the Representativeness of Temperature-Monitoring Sites in a Dense Midrise Urban Development Using PALM-4U. Atmosphere. 2025; 16(9):1035. https://doi.org/10.3390/atmos16091035
Chicago/Turabian StyleSteigerwald, Florian, Astrid Eichhorn-Müller, Heike Schau-Noppel, and Meinolf Kossmann. 2025. "Assessing the Impact of Sensor Height on the Representativeness of Temperature-Monitoring Sites in a Dense Midrise Urban Development Using PALM-4U" Atmosphere 16, no. 9: 1035. https://doi.org/10.3390/atmos16091035
APA StyleSteigerwald, F., Eichhorn-Müller, A., Schau-Noppel, H., & Kossmann, M. (2025). Assessing the Impact of Sensor Height on the Representativeness of Temperature-Monitoring Sites in a Dense Midrise Urban Development Using PALM-4U. Atmosphere, 16(9), 1035. https://doi.org/10.3390/atmos16091035