Influence of Atmospheric Circulation on Seasonal Temperatures in Serbia
Abstract
1. Introduction
2. Materials and Methods
2.1. Temperature in Serbia
2.2. Circulation Types
2.3. Statistical Approaches
3. Results
3.1. Atmospheric Circulation Types for the Serbian Region
3.1.1. Frequencies of Circulation Types
3.1.2. Trend of Circulation Weather Types
3.2. Relationship Between Circulation Types and Temperature in Serbia
3.2.1. Trends of Mean, Maximum and Minimum Temperatures
3.2.2. Mean, Maximum and Minimum Temperatures for Circulation Types
3.2.3. Temperature Anomalies
3.2.4. Stepwise Regression
4. Discussion
5. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ustrnul, Z.; Wypych, A.; Winkler, A.J.; Czekierda, D. Late spring freezes in Poland in relation to atmospheric circulation. Quaest. Geogr. 2014, 33, 165–172. [Google Scholar] [CrossRef][Green Version]
- Lamb, H.H. British Isles Weather Types and a Register of Daily Sequence of Circulation Patterns, 1861–1971; Stationery Office Books: London, UK, 1972; p. 88. [Google Scholar]
- Jenkinson, A.F.; Collison, F.P. An initial climatology of gales over the North Sea. Synop. Climatol. Branch Memo. 1977, 62, 18. [Google Scholar]
- Jones, P.D.; Hulme, M.; Briffa, K.R. A comparison of Lamb circulation types with an objective classification scheme. Int. J. Climatol. 1993, 13, 655–663. [Google Scholar]
- Fernández-Granja, J.A.; Brands, S.; Bedia, J.; Casanueva, A.; Fernández, J. Exploring the limits of the Jenkinson–Collison weather types classification scheme: A global assessment based on various reanalyses. Clim. Dyn. 2023, 61, 1829–1845. [Google Scholar] [CrossRef]
- Huth, R.; Beck, C.; Philipp, A.; Demuzere, M.; Ustrnul, Y.; Cahynová, M.; Kyselý, J.; Tveito, O.E. Classifications of atmospheric circulation patterns: Recent advances and applications. Ann. N. Y. Acad. Sci. 2008, 1146, 105–152. [Google Scholar] [PubMed]
- Sheridan, C.S.; Lee, C.C. The self-organizing map in synoptic climatological research. Prog. Phys. Geog. 2011, 35, 109–119. [Google Scholar]
- Jiang, N.; Cheung, K.; Luo, K.; Beggs, P.J.; Zhou, W. On two different objective procedures for classifying synoptic weather types over east Australia. Int. J. Climatol. 2012, 32, 1475–1494. [Google Scholar]
- Mittermeier, M.; Weigert, M.; Rügamer, D.; Küchenhoff, H.; Ludwig, R. A deep learning based classification of atmospheric circulation types over Europe: Projection of future changes in a CMIP6 large ensemble. Environ. Res. Lett. 2022, 17, 084021. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021; 2391p. [Google Scholar]
- Kyselý, J. Temporal fluctuations in heat waves at Prague–Klementinum, the Czech Republic, from 1901–1997, and their relationships to atmospheric circulation. Int. J. Climatol. 2002, 22, 33–50. [Google Scholar]
- Domonkos, P.; Kyselý, J.; Piotrowicz, K.; Petrovic, P.; Likso, T. Variability of extreme temperature events in south-central Europe during the 20th century and its relationship with large scale circulation. Int. J. Climatol. 2003, 23, 987–1010. [Google Scholar]
- Corte-Real, J.; Zhang, X.; Wang, X. Large-scale circulation regimes and surface climatic anomalies over the Mediterranean. Int. J. Climatol. 1995, 15, 1135–1150. [Google Scholar] [CrossRef]
- Kutiel, H.; Maheras, P. Variations in the Temperature Regime Across the Mediterranean During the Last Century and their Relationship with Circulation Indices. Theor. Appl. Climatol. 1998, 61, 39–53. [Google Scholar] [CrossRef]
- Maheras, P.; Kutiel, H. Spatial and temporal variations in the themerature regime in the Mediterranean and their relationship with circulation during the last century. Int. J. Climatol. 1999, 19, 745–764. [Google Scholar] [CrossRef]
- Maheras, P.; Xoplaki, E.; Kutiel, H. Wet and dry monthly anomalies across the Mediterranean basin and their relationship with circulation, 1860–1990. Theor. Appl. Climatol. 1999, 64, 189–199. [Google Scholar] [CrossRef]
- Feidas, H.; Makrogiannis, T.; Bora-Senta, E. Trend analysis of air temperature time series in Greece and their relationship with circulation using surface and satellite data: 1955–2001. Theor. Appl. Climatol. 2004, 79, 185–208. [Google Scholar] [CrossRef]
- Peña-Angulo, D.; Trigo, R.M.; Cortesi, N.; González-Hidalgo, J.C. The influence of weather types on the monthly average maximum and minimum temperatures in the Iberian Peninsula. Atmos. Res. 2016, 178-179, 217–230. [Google Scholar] [CrossRef]
- Pérez, I.A.; García, Á. Climate change in the Iberian Peninsula by weather types and temperature. Atmos. Res. 2023, 284, 106596. [Google Scholar] [CrossRef]
- Vera, C.; Vigliarolo, K.P. A Diagnostic Study of Cold-Air Outbreaks over South America. Mon. Weather Rev. 2000, 128, 3–24. [Google Scholar] [CrossRef]
- Vera, C.; Vigliarolo, K.P.; Berbery, H.E. Cold season synoptic-scale waves over subtropical South America. Mon. Weather Rev. 2002, 130, 684–699. [Google Scholar] [CrossRef]
- Solman, S.A.; Menéndez, C.G. Weather regimes in the South American sector and neighbouring oceans during winter. Clim. Dyn. 2003, 21, 91–104. [Google Scholar] [CrossRef]
- Espinoza, C.J.; Ronchail, J.; Lengaigne, M.; Quispe, N.; Silva, Y.; Bettolli, L.M.; Avalos, G.; Llacza, A. Revisiting wintertime cold air intrusions at the east of the Andes: Propagating features from subtropical Argentina to Peruvian Amazon and relationship with large-scale circulation patterns. Clim. Dyn. 2013, 41, 1983–2002. [Google Scholar] [CrossRef]
- Unkašević, M.; Tošić, I. The maximum temperatures and heat waves in Serbia during the summer of 2007. Clim. Change 2011, 108, 207–223. [Google Scholar] [CrossRef]
- Unkašević, M.; Tošić, I. Trends in temperature indices over Serbia: Relationships to large-scale circulation patterns. Int. J. Climatol. 2013, 33, 3152–3161. [Google Scholar] [CrossRef]
- Ruml, M.; Gregorić, E.; Vujadinović, M.; Radovanović, S.; Matović, G.; Vuković, A.; Počuča, V.; Stojičić, Đ. Observed changes of temperature extremes in Serbia over the period 1961−2010. Atmos. Res. 2017, 183, 26–41. [Google Scholar] [CrossRef]
- Tošić, I.; Putniković, S.; Tošić, M.; Lazić, I. Extreme Temperature Events in Serbia in Relation to Atmospheric Circulation. Atmosphere 2021, 12, 1584. [Google Scholar] [CrossRef]
- Putniković, S.; Tošić, I.; Ðurđević, V. Circulation weather types and their influence on precipitation in Serbia. Meteorol. Atmos. Phys. 2016, 128, 649–662. [Google Scholar] [CrossRef]
- Putniković, S.; Tošić, I. Relationship between atmospheric circulation weather types and seasonal precipitation in Serbia. Meteorol. Atmos. Phys. 2018, 130, 393–403. [Google Scholar] [CrossRef]
- Unkašević, M.; Tošić, I. Changes in extreme daily winter and summer temperatures in Belgrade. Theor. Appl. Clim. 2009, 95, 27–38. [Google Scholar] [CrossRef]
- Mihailović, D.T.; Lalić, B.; Drešković, N.; Mimić, G.; Djurdjević, V.; Jančić, M. Climate change effects on crop yields in Serbia and related shifts of Köppen climate zones under the SRES-A1B and SRES-A2. Int. J. Clim. 2015, 35, 3320–3334. [Google Scholar] [CrossRef]
- Alexandersson, H. A homogeneity test applied to precipitation data. J. Climatol. 1986, 6, 661–675. [Google Scholar] [CrossRef]
- Jones, P.D.; Harpham, C.; Briffa, K.R. Lamb weather types derived from Reanalysis products. Int. J. Climatol. 2013, 33, 1129–1139. [Google Scholar] [CrossRef]
- Ramos, A.; Sprenger, M.; Wernli, H.; Duran-Quesada, A.; Lorenzo, M.; Gimeno, L. A new circulation type classification based upon Lagrangian air trajectories. Front. Earth Sci. 2014, 2, 29. [Google Scholar] [CrossRef]
- Kalnay, E.; Kanamitsu, M.; Collins, W.; Deaven, D.; Gandin, L.; Iredell, M.; Sahs, S.; White, G.; Woollen, J.; Leetmaa, Z.A.; et al. The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteorol. Soc. 1996, 77, 437–470. [Google Scholar] [CrossRef]
- Huth, R. Statistical downscaling in central Europe: Evaluation of methods and potential predictors. Clim. Res. 1999, 13, 91–101. [Google Scholar] [CrossRef]
- Goyal, M.R.; Ojha, C.S.P. Evaluation of various linear regression methods for downscaling of mean monthly precipitation in arid Pichola watershed. Nat. Resour. 2010, 1, 11–18. [Google Scholar] [CrossRef]
- Trigo, R.M.; DaCamara, C.C. Circulation weather types and their influence on the precipitation regime in Portugal. Int. J. Climatol. 2000, 20, 1559–1581. [Google Scholar] [CrossRef]
- Linderson, M.L. Objective classification of atmospheric circulation over southern Scandinavia. Int. J. Climatol. 2001, 21, 155–169. [Google Scholar] [CrossRef]
- Spellman, G. An assessment of the Jenkinson and Collison synoptic classification to a continental mid-latitude location. Theor. Appl. Climatol. 2017, 128, 731–744. [Google Scholar] [CrossRef]
- Radinović, Ð. Weather and climate in Yugoslavia; IRO Građevinska knjiga: Belgrade, Serbia, 1981; p. 423. (In Serbian) [Google Scholar]
- Unkašević, M.; Vujović, D.; Tošić, I. Trends in extreme summer temperatures at Belgrade. Theor. Appl. Climatol. 2005, 82, 99–205. [Google Scholar] [CrossRef]
- Tošić, I.; Tošić, M.; Lazić, I.; Aleksandrov, N.; Putniković, S.; Djurdjević, V. Spatio-temporal changes in the mean and extreme temperature indices for Serbia. Int. J. Climatol. 2023, 43, 2391–2410. [Google Scholar] [CrossRef]
- Przybylak, R.; Maszewski, R. Influence of atmospheric circulation on air temperature and precipitation in the Bydgoszcz–Toruń region in the period from 1921 to 2000. Bull. Geog. Phys. Geog. Ser. 2009, 1, 19–37. [Google Scholar] [CrossRef][Green Version]
- Buishand, A.; Brandsma, T. Comparison of circulation classification schemes for predicting temperature and precipitation in the Netherlands. Int. J. Climatol. 1997, 17, 875–889. [Google Scholar] [CrossRef]
- Xoplaki, E.; González-Rouco, J.; Luterbacher, J.; Wanner, H. Mediterranean summer air temperature variability and its connection to the large-scale atmospheric circulation and SSTs. Clim. Dyn. 2003, 20, 723–739. [Google Scholar] [CrossRef]
- Wilks, D.S. Statistical Methods in the Atmospheric Sciences, 3rd ed.; Academic Press: San Diego, CA, USA, 2011; p. 676. [Google Scholar]
Abbreviation | Station Name | Longitude | Latitude | Altitude (m) |
---|---|---|---|---|
BG | Belgrade | 20°28′ E | 44°48′ N | 132 |
NI | Niš | 21°54′ E | 43°20′ N | 204 |
LO | Loznica | 19°14′ E | 44°33′ N | 121 |
Zl | Zlatibor | 19°43′ E | 43°44′ N | 1028 |
ZR | Zrenjanin | 20°25′ E | 45°22′ N | 80 |
NE | Negotin | 22°33′ E | 44°14′ N | 42 |
Circulation Types | Winter | Spring | Summer | Autumn |
---|---|---|---|---|
A | 26.18 | 19.30 | 25.20 | 31.54 |
C | 16.64 | 18.67 | 11.41 | 11.49 |
E | 13.12 | 8.39 | 15.11 | 12.55 |
NE | 5.90 | 9.87 | 21.33 | 7.74 |
N | 3.37 | 7.48 | 12.33 | 4.28 |
NW | 3.19 | 6.85 | 4.54 | 2.20 |
W | 5.19 | 6.96 | 2.26 | 3.56 |
SW | 6.27 | 6.13 | 1.80 | 7.41 |
S | 7.09 | 7.15 | 2.33 | 8.09 |
SE | 13.05 | 9.20 | 3.69 | 11.14 |
Circulation Type | Winter | Spring | Summer | Autumn |
---|---|---|---|---|
A | 0.0367 | −0.0204 | −0.2180 * | −0.1984 |
C | −0.1118 | −0.1445 | −0.0580 | 0.0253 |
E | −0.0433 | 0.1527 | 0.4171 | 0.0269 |
NE | −0.0008 | 0.1167 | 0.0955 | −0.0792 |
N | −0.1984 | −0.1788 | −0.2816 | −0.0824 |
NW | 0.0041 | −0.2522 | −0.3061 | −0.2098 |
W | −0.0498 | −0.1706 | −0.5151 | −0.3371 |
SW | −0.1755 | −0.1902 | −0.3388 | −0.1461 |
S | −0.2114 | −0.1200 | −0.2555 | −0.0106 |
SE | −0.1069 | 0.0890 | 0.0171 | 0.0318 |
Winter | Spring | Summer | Autumn | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
T | T | T | T | |||||||||
Belgrade | 0.190 | 0.194 * | 0.134 | 0.278 | 0.277 | 0.162 | 0.409 | 0.301 | 0.159 | 0.071 | 0.056 | 0.110 |
Nis | 0.170 | 0.226 | 0.039 | 0.177 | 0.200 | 0.105 | 0.342 | 0.228 | 0.218 | 0.022 | 0.032 | 0.024 |
Loznica | 0.189 | 0.337 | 0.068 | 0.260 | 0.197 | 0.102 | 0.461 | 0.161 | 0.246 | 0.061 | −0.030 | 0.130 |
Zlatibor | 0.219 | 0.277 | 0.131 | 0.224 | 0.317 | 0.143 | 0.409 | 0.345 | 0.117 | −0.009 | 0.043 | 0.079 |
Zrenjanin | 0.219 | 0.196 | 0.070 | 0.260 | 0.229 | 0.157 | 0.370 | 0.242 | 0.141 | 0.118 | −0.050 | 0.118 |
Negotin | 0.220 | 0.259 | 0.133 | 0.383 | 0.240 | 0.224 | 0.452 | 0.223 | 0.207 | 0.088 | 0.000 | 0.131 |
Circulation Type | T | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Bg | Ni | Lo | Zl | Zr | Ne | Bg | Ni | Lo | Zl | Zr | Ne | Bg | Ni | Lo | Zl | Zr | Ne | |
A | 2.1 | 0.2 | 1.3 | −1.7 | 0.5 | 0.9 | 5.9 | 5.3 | 6.9 | 2.7 | 4.3 | 5.6 | −1.4 | −3.7 * | −3.0 | −6.0 | −3.5 | −3.5 |
C | 1.9 | 2.9 | 1.3 | −1.9 | 0.9 | 1.8 | 5.3 | 7.4 | 5.0 | 2.3 | 4.1 | 4.6 | 0.1 | 0.2 | −0.7 | −4.0 | −1.1 | −0.9 |
E | −1.5 | −1.7 | −18 | −6.6 | −2.6 | −1.4 | 0.8 | 1.1 | 1.0 | −3.7 | 0.4 | 1.7 | −3.2 | −3.7 | −3.8 | −8.3 | −5.3 | −3.9 |
NE | −0.0 | −0.7 | 0.1 | −5.4 | −1.1 | 0.9 | 2.5 | 2.0 | 3.4 | −2.2 | 2.2 | 4.2 | −1.9 | −2.7 | −2.3 | −7.3 | −3.9 | −1.6 |
N | 2.9 | 1.8 | 3.1 | −2.4 | 1.8 | 4.0 | 5.8 | 5.3 | 7.1 | 0.9 | 5.3 | 7.0 | 0.6 | −0.9 | −0.0 | −4.7 | −1.0 | 0.8 |
NW | 6.5 | 4.0 | 5.6 | 1.6 | 4.9 | 6.8 | 10.6 | 9.9 | 11.9 | 6.1 | 9.0 | 11.7 | 2.9 | −0.8 | 1.1 | −2.0 | 1.2 | 0.9 |
W | 7.8 | 6.5 | 7.3 | 3.6 | 5.2 | 3.8 | 12.3 | 12.2 | 13.4 | 7.8 | 9.4 | 8.7 | 3.8 | 0.8 | 1.9 | −0.2 | 1.7 | −1.4 |
SW | 8.6 | 7.3 | 7.8 | 5.0 | 6.0 | 1.2 | 12.4 | 12.5 | 13.5 | 8.6 | 9.6 | 4.6 | 4.1 | 1.1 | 1.7 | 1.1 | 2.0 | −2.3 |
S | 3.9 | 4.1 | 3.1 | 2.8 | 2.7 | −0.6 | 7.2 | 8.2 | 7.4 | 6.3 | 5.9 | 1.6 | 0.9 | −0.5 | −1.1 | −1.5 | −0.8 | −3.3 |
SE | −0.7 | −0.2 | −1.3 | −4.1 | −1.6 | −2.5 | 2.0 | 3.2 | 1.4 | −0.7 | 1.5 | 0.3 | −2.8 | −3.1 | −3.5 | −6.7 | −4.7 | −5.0 |
Circulation Type | T | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Bg | Ni | Lo | Zl | Zr | Ne | Bg | Ni | Lo | Zl | Zr | Ne | Bg | Ni | Lo | Zl | Zr | Ne | |
A | 23.2 | 21.9 | 21.9 | 18.1 | 22.3 | 22.3 | 29.2 | 29.7 | 29.6 | 23.4 | 29.0 | 29.5 | 16.1 | 13.3 * | 13.9 | 11.6 | 14.2 | 14.1 |
C | 19.6 | 20.6 | 18.6 | 14.5 | 19.3 | 21.0 | 25.0 | 27.6 | 24.1 | 19.7 | 24.8 | 26.9 | 16.2 | 15.5 | 15.1 | 11.4 | 15.3 | 16.0 |
E | 23.2 | 22.6 | 21.7 | 17.5 | 22.4 | 23.0 | 28.9 | 29.9 | 28.5 | 22.4 | 29.1 | 29.6 | 17.6 | 15.5 | 15.7 | 13.0 | 15.4 | 16.2 |
NE | 20.9 | 20.5 | 20.0 | 15.1 | 20.2 | 22.0 | 26.1 | 26.9 | 25.8 | 19.8 | 26.3 | 27.9 | 16.3 | 15.1 | 15.3 | 11.6 | 14.7 | 16.5 |
N | 19.3 | 18.9 | 18.8 | 13.8 | 18.7 | 20.6 | 24.2 | 25.0 | 24.3 | 18.6 | 24.3 | 25.7 | 15.2 | 14.3 | 14.5 | 10.2 | 14.1 | 15.7 |
NW | 20.8 | 20.7 | 20.0 | 15.8 | 20.0 | 21.5 | 26.6 | 28.0 | 26.9 | 21.4 | 26.2 | 28.0 | 15.8 | 13.9 | 14.4 | 11.1 | 14.5 | 14.7 |
W | 23.0 | 22.8 | 21.6 | 17.9 | 21.8 | 22.5 | 29.2 | 30.7 | 29.1 | 23.6 | 28.5 | 29.8 | 17.3 | 14.4 | 15.0 | 12.7 | 15.6 | 14.7 |
SW | 23.9 | 23.7 | 22.7 | 18.6 | 22.9 | 22.8 | 30.2 | 30.9 | 29.9 | 24.1 | 29.5 | 29.8 | 18.0 | 14.8 | 15.4 | 13.0 | 16.6 | 14.4 |
S | 24.1 | 23.8 | 22.3 | 18.8 | 23.2 | 22.4 | 29.8 | 30.9 | 29.8 | 24.3 | 29.2 | 28.9 | 18.3 | 15.8 | 15.2 | 13.5 | 16.8 | 14.7 |
SE | 23.0 | 22.6 | 21.3 | 17.3 | 22.4 | 21.7 | 28.6 | 29.6 | 28.1 | 22.3 | 28.3 | 28.3 | 17.6 | 15.5 | 15.2 | 12.7 | 15.5 | 14.9 |
Circulation Type | T | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Bg | Ni | Lo | Zl | Zr | Ne | Bg | Ni | Lo | Zl | Zr | Ne | Bg | Ni | Lo | Zl | Zr | Ne | |
A | 0.05 | −1.30 | −0.22 | 0.07 | −0.22 | 0.26 | 0.50 | −0.48 | 1.10 | 0.73 | 0.21 | 1.45 | −0.81 | −1.74 * | −1.16 | −1.16 | −1.07 | −0.79 |
C | −0.22 | 1.42 | −0.20 | −0.08 | 0.21 | 1.11 | −0.04 | 1.65 | −0.82 | 0.34 | −0.02 | 0.42 | 0.74 | 2.18 | 1.08 | 0.86 | 1.32 | 1.79 |
E | −3.61 | −3.22 | −3.31 | −4.84 | −3.30 | −2.05 | −4.55 | −4.61 | −4.75 | −5.68 | −3.77 | −2.46 | −2.61 | −1.74 | −1.99 | −3.47 | −2.80 | −1.21 |
NE | −2.12 | −2.24 | −1.39 | −3.63 | −1.85 | 0.22 | −2.87 | −3.76 | −2.41 | −4.23 | −1.98 | 0.02 | −1.31 | −0.76 | −0.46 | −2.42 | −1.44 | 1.12 |
N | 0.86 | 0.32 | 1.56 | −0.55 | 1.05 | 3.29 | 0.48 | −0.47 | 1.31 | −1.10 | 1.19 | 2.80 | 1.26 | 1.02 | 1.79 | 0.17 | 1.49 | 3.48 |
NW | 4.39 | 2.47 | 4.06 | 3.44 | 4.12 | 6.14 | 5.26 | 4.17 | 6.11 | 4.11 | 4.91 | 7.51 | 3.54 | 1.15 | 2.95 | 2.87 | 3.70 | 3.60 |
W | 5.71 | 5.04 | 5.80 | 5.37 | 4.52 | 3.16 | 6.95 | 6.49 | 7.63 | 5.79 | 5.25 | 4.51 | 4.47 | 2.72 | 3.71 | 4.69 | 4.16 | 1.29 |
SW | 6.48 | 5.76 | 6.28 | 6.79 | 5.24 | 0.55 | 7.08 | 6.78 | 7.73 | 6.59 | 5.48 | 0.44 | 4.67 | 2.99 | 3.49 | 5.97 | 4.46 | 0.34 |
S | 1.78 | 2.57 | 1.61 | 4.66 | 2.00 | −1.28 | 1.86 | 2.49 | 1.66 | 4.27 | 1.72 | −2.60 | 1.47 | 1.45 | 0.71 | 3.37 | 1.70 | −0.62 |
SE | −2.76 | −1.72 | −2.86 | −2.27 | −2.33 | −3.15 | −3.35 | −2.55 | −4.43 | −2.67 | −2.64 | −3.90 | −2.16 | −1.17 | −1.67 | −1.78 | −2.32 | −2.29 |
Seasons | Temperature | Coefficient | Bg | Ni | Lo | Zl | Zr | Ne |
---|---|---|---|---|---|---|---|---|
winter | T | Cor | 0.40 | 0.32 | 0.65 * | 0.64 | / | 0.44 |
NSE | −0.20 | −0.36 | 0.30 | 0.28 | / | −0.13 | ||
cor | 0.59 | 0.62 | 0.09 | −0.09 | 0.30 | 0.52 | ||
NSE | −0.47 | −0.76 | −1.66 | −0.90 | −1.18 | 0.19 | ||
cor | / | / | 0.24 | 0.40 | 0.03 | 0.39 | ||
NSE | / | / | 0.02 | −0.01 | −0.22 | 0.09 | ||
spring | T | cor | 0.40 | 0.24 | 0.29 | 0.27 | 0.16 | 0.18 |
NSE | −0.20 | −0.52 | −0.43 | −0.46 | −0.68 | −0.65 | ||
cor | −0.16 | / | −0.11 | −0.11 | −0.09 | / | ||
NSE | −0.92 | / | −0.59 | −0.84 | −0.66 | / | ||
cor | / | / | 0.02 | 0.12 | / | 0.08 | ||
NSE | / | / | −0.22 | −0.20 | / | −2.57 | ||
summer | T | cor | / | / | / | 0.37 | / | / |
NSE | / | / | / | −0.26 | / | / | ||
cor | 0.24 | 0.48 | / | 0.16 | 0.17 | 0.32 | ||
NSE | −1.36 | −1.08 | / | −0.62 | −0.67 | −0.42 | ||
cor | / | / | / | / | / | / | ||
NSE | / | / | / | / | / | / | ||
autumn | T | cor | 0.14 | 0.27 | 0.22 | 0.22 | 0.28 | −0.24 |
NSE | −0.72 | −0.47 | −0.55 | −0.57 | −0.43 | −1.48 | ||
cor | / | / | / | −0.02 | 0.04 | −0.01 | ||
NSE | / | / | / | −0.36 | −0.08 | −0.23 | ||
cor | / | 0.04 | −0.06 | / | / | −0.08 | ||
NSE | / | −0.14 | −0.86 | / | / | −0.61 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Putniković, S. Influence of Atmospheric Circulation on Seasonal Temperatures in Serbia. Atmosphere 2025, 16, 969. https://doi.org/10.3390/atmos16080969
Putniković S. Influence of Atmospheric Circulation on Seasonal Temperatures in Serbia. Atmosphere. 2025; 16(8):969. https://doi.org/10.3390/atmos16080969
Chicago/Turabian StylePutniković, Suzana. 2025. "Influence of Atmospheric Circulation on Seasonal Temperatures in Serbia" Atmosphere 16, no. 8: 969. https://doi.org/10.3390/atmos16080969
APA StylePutniković, S. (2025). Influence of Atmospheric Circulation on Seasonal Temperatures in Serbia. Atmosphere, 16(8), 969. https://doi.org/10.3390/atmos16080969