Vertical Profiling of PM1 and PM2.5 Dynamics: UAV-Based Observations in Seasonal Urban Atmosphere
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. UAV Observations
2.3. Backward Trajectory Using the HYSPLIT Model
2.4. Synoptic Systems and Boundary Layer Analysis
2.5. Data Processing and Analysis
3. Results and Discussion
3.1. Temporal Variability in PM Distribution
3.2. Vertical Distribution Profiles of PM
3.3. Driving Factors of PM Spatial-Temporal Distribution
3.3.1. Long Distance Transport
3.3.2. Synoptic-Scale Meteorological Drivers
3.3.3. Synergistic Effects of Meteorological Factors
Temperature Stratification and Inversion Layers
Humidity Coupling Effect
Wind Speed Disturbance
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zheng, H.; Wu, D.; Wang, S.; Li, X.; Jin, L.N.; Zhao, B.; Li, S.; Sun, Y.; Dong, Z.; Wu, Q.; et al. Control of Toxicity of Fine Particulate Matter Emissions in China. Nature 2025, 643, 404–411. [Google Scholar] [CrossRef] [PubMed]
- Perrone, M.R.; Becagli, S.; Garcia Orza, J.A.; Vecchi, R.; Dinoi, A.; Udisti, R.; Cabello, M. The Impact of Long-Range-Transport on PM1 and PM2.5 at a Central Mediterranean Site. Atmos. Environ. 2013, 71, 176–186. [Google Scholar] [CrossRef]
- Li, Z.; Xu, W.; Zhou, W.; Lei, L.; Sun, J.; You, B.; Wang, Z.; Sun, Y. Insights into the Compositional Differences of PM1 and PM2.5 from Aerosol Mass Spectrometer Measurements in Beijing, China. Atmos. Environ. 2023, 301, 119709. [Google Scholar] [CrossRef]
- Geng, G.; Liu, Y.; Liu, Y.; Liu, S.; Cheng, J.; Yan, L.; Wu, N.; Hu, H.; Tong, D.; Zheng, B.; et al. Efficacy of China’s Clean Air Actions to Tackle PM2.5 Pollution between 2013 and 2020. Nat. Geosci. 2024, 17, 987–994. [Google Scholar] [CrossRef]
- Guan, Y.; Rong, B.; Kang, L.; Zhang, N.; Qin, C. Measuring the Urban-Rural and Spatiotemporal Heterogeneity of the Drivers of PM2.5-Attributed Health Burdens in China from 2008 to 2021 Using High-Resolution Dataset. J. Environ. Manag. 2023, 346, 118940. [Google Scholar] [CrossRef]
- Sun, X.; Luo, X.-S.; Xu, J.; Zhao, Z.; Chen, Y.; Wu, L.; Chen, Q.; Zhang, D. Spatio-Temporal Variations and Factors of a Provincial PM2.5 Pollution in Eastern China during 2013–2017 by Geostatistics. Sci. Rep. 2019, 9, 3613. [Google Scholar] [CrossRef]
- Zheng, T.; Li, B.; Li, X.-B.; Wang, Z.; Li, S.-Y.; Peng, Z.-R. Vertical and Horizontal Distributions of Traffic-Related Pollutants beside an Urban Arterial Road Based on Unmanned Aerial Vehicle Observations. Build. Environ. 2021, 187, 107401. [Google Scholar] [CrossRef]
- Liu, C.; Huang, J.; Wang, Y.; Tao, X.; Hu, C.; Deng, L.; Xu, J.; Xiao, H.-W.; Luo, L.; Xiao, H.-Y.; et al. Vertical Distribution of PM2.5 and Interactions with the Atmospheric Boundary Layer during the Development Stage of a Heavy Haze Pollution Event. Sci. Total Environ. 2020, 704, 135329. [Google Scholar] [CrossRef]
- Dubey, R.; Patra, A.K.; Nazneen. Vertical Profile of Particulate Matter: A Review of Techniques and Methods. Air Qual. Atmos. Health 2022, 15, 979–1010. [Google Scholar] [CrossRef]
- Hossein Motlagh, N.; Kortoçi, P.; Su, X.; Lovén, L.; Hoel, H.K.; Bjerkestrand Haugsvær, S.; Srivastava, V.; Gulbrandsen, C.F.; Nurmi, P.; Tarkoma, S. Unmanned Aerial Vehicles for Air Pollution Monitoring: A Survey. IEEE Internet Things J. 2023, 10, 21687–21704. [Google Scholar] [CrossRef]
- Fang, B.; Zhong, Z.; Jiang, X. A High Accuracy and Large-Scale Detection for Fixed-Wing UAV Autonomous Ground Landing with GNSS-Denied. IEEE Access 2025, 13, 45898–45911. [Google Scholar] [CrossRef]
- Chen, Q.; Li, X.-B.; Song, R.; Wang, H.-W.; Li, B.; He, H.-D.; Peng, Z.-R. Development and Utilization of Hexacopter Unmanned Aerial Vehicle Platform to Characterize Vertical Distribution of Boundary Layer Ozone in Wintertime. Atmos. Pollut. Res. 2020, 11, 1073–1083. [Google Scholar] [CrossRef]
- Vishal; Sharma, M.; Jain, S. Unmanned Aerial Vehicles and Low-Cost Sensors for Air Quality Monitoring: A Comprehensive Review of Applications across Diverse Emission Sources. Sustain. Cities Soc. 2025, 127, 106409. [Google Scholar] [CrossRef]
- Hedworth, H.; Page, J.; Sohl, J.; Saad, T. Investigating Errors Observed during UAV-Based Vertical Measurements Using Computational Fluid Dynamics. Drones 2022, 6, 253. [Google Scholar] [CrossRef]
- Rößler, T.; Stein, O.; Heng, Y.; Baumeister, P.; Hoffmann, L. Trajectory Errors of Different Numerical Integration Schemes Diagnosed with the MPTRAC Advection Module Driven by ECMWF Operational Analyses. Geosci. Model Dev. 2018, 11, 575–592. [Google Scholar] [CrossRef]
- Pan, Y.; Zheng, J.; Fang, F.; Liang, F.; Yang, M.; Tong, L.; Xiao, H. Unveiling PM2.5 Transport Pathways: A Trajectory-Channel Model Framework for Spatiotemporally Quantitative Source Apportionment. Atmosphere 2025, 16, 883. [Google Scholar] [CrossRef]
- Tran, N.; Fujii, Y.; Khan, M.F.; Hien, T.T.; Minh, T.H.; Okochi, H.; Takenaka, N. Source Apportionment of Ambient PM2.5 in Ho Chi Minh City, Vietnam. Asian J. Atmos. Environ. 2024, 18, 1. [Google Scholar] [CrossRef]
- Shikhovtsev, M.Y.; Obolkin, V.A.; Khodzher, T.V.; Molozhnikova, Y.V. Variability of the Ground Concentration of Particulate Matter PM1–PM10 in the Air Basin of the Southern Baikal Region. Atmos. Ocean. Opt. 2023, 36, 655–662. [Google Scholar] [CrossRef]
- Yao, R.; Li, Z.; Zhang, Y.; Wang, J.; Zhang, S.; Xu, H. Spatiotemporal Evolution of PM2.5 Concentrations and Source Apportionment in Henan Province, China. Pol. J. Environ. Stud. 2021, 30, 4815–4826. [Google Scholar] [CrossRef]
- Wang, Q.; Zhao, T.; Wang, R.; Zhang, L. Backward Trajectory and Multifractal Analysis of Air Pollution in Zhengzhou Region of China. Math. Probl. Eng. 2022, 2022, 2226565. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 Global Reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Maltare, N.N.; Vahora, S.; Jani, K. Seasonal Analysis of Meteorological Parameters and Air Pollutant Concentrations in Kolkata: An Evaluation of Their Relationship. J. Clean. Prod. 2024, 436, 140514. [Google Scholar] [CrossRef]
- Zhang, Q.; Shen, Z.; Cao, J.; Zhang, R.; Zhang, L.; Huang, R.-J.; Zheng, C.; Wang, L.; Liu, S.; Xu, H.; et al. Variations in PM2.5, TSP, BC, and Trace Gases (NO2, SO2, and O3) between Haze and Non-Haze Episodes in Winter over Xi’an, China. Atmos. Environ. 2015, 112, 64–71. [Google Scholar] [CrossRef]
- Cheng, J.; Tong, D.; Zhang, Q.; Liu, Y.; Lei, Y.; Yan, G.; Yan, L.; Yu, S.; Cui, R.Y.; Clarke, L.; et al. Pathways of China’s PM2.5 Air Quality 2015–2060 in the Context of Carbon Neutrality. Natl. Sci. Rev. 2021, 8, nwab078. [Google Scholar] [CrossRef]
- WHO Global Air Quality Guidelines: Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide. Available online: https://pubmed.ncbi.nlm.nih.gov/34662007/ (accessed on 13 July 2025).
- Biancardi, M.; Zhou, Y.; Kang, W.; Xiao, T.; Grubesic, T.; Nelson, J.; Liang, L. Exploring Spatiotemporal Dynamics, Seasonality, and Time-of-Day Trends of PM2.5 Pollution with a Low-Cost Sensor Network: Insights from Classic and Spatially Explicit Markov Chains. Appl. Geogr. 2024, 172, 103414. [Google Scholar] [CrossRef]
- Zhang, Y.-L.; Cao, F. Fine Particulate Matter (PM2.5) in China at a City Level. Sci. Rep. 2015, 5, 14884. [Google Scholar] [CrossRef] [PubMed]
- Zong, L.; Yang, Y.; Gao, M.; Wang, H.; Wang, P.; Zhang, H.; Wang, L.; Ning, G.; Liu, C.; Li, Y.; et al. Large-Scale Synoptic Drivers of Co-Occurring Summertime Ozone and PM2.5 Pollution in Eastern China. Atmos. Chem. Phys. 2021, 21, 9105–9124. [Google Scholar] [CrossRef]
- Wang, K.; Wang, W.; Li, L.; Li, J.; Wei, L.; Chi, W.; Hong, L.; Zhao, Q.; Jiang, J. Seasonal Concentration Distribution of PM1.0 and PM2.5 and a Risk Assessment of Bound Trace Metals in Harbin, China: Effect of the Species Distribution of Heavy Metals and Heat Supply. Sci. Rep. 2020, 10, 8160. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Martin, R.V.; van Donkelaar, A.; Jimenez, J.L.; Zhang, Q.; Turner, J.R.; Liu, X.; Rowe, M.; Meng, J.; Yu, W.; et al. Estimates of Submicron Particulate Matter (PM1) Concentrations for 1998–2022 across the Contiguous USA: Leveraging Measurements of PM1 with Nationwide PM2.5 Component Data. Lancet Planet. Heath 2025, 9, e491–e502. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Ding, S.; Liu, D. Exploring the Spatiotemporal Pattern of PM2.5 Distribution and Its Determinants in Chinese Cities Based on a Multilevel Analysis Approach. Sci. Total Environ. 2019, 659, 1513–1525. [Google Scholar] [CrossRef]
- Luo, J.; Du, P.; Samat, A.; Xia, J.; Che, M.; Xue, Z. Spatiotemporal Pattern of PM2.5 Concentrations in Mainland China and Analysis of Its Influencing Factors Using Geographically Weighted Regression. Sci. Rep. 2017, 7, 40607. [Google Scholar] [CrossRef] [PubMed]
- Miao, Y.; Li, J.; Miao, S.; Che, H.; Wang, Y.; Zhang, X.; Zhu, R.; Liu, S. Interaction between Planetary Boundary Layer and PM2.5 Pollution in Megacities in China: A Review. Curr. Pollut. Rep. 2019, 5, 261–271. [Google Scholar] [CrossRef]
- Zhu, J.; Chen, L.; Liao, H.; Dang, R. Correlations between PM2.5 and Ozone over China and Associated Underlying Reasons. Atmosphere 2019, 10, 352. [Google Scholar] [CrossRef]
- Su, L.; Yuan, Z.; Fung, J.C.H.; Lau, A.K.H. A Comparison of HYSPLIT Backward Trajectories Generated from Two GDAS Datasets. Sci. Total Environ. 2015, 506–507, 527–537. [Google Scholar] [CrossRef]
- Feng, X.; Wei, S.; Wang, S. Temperature Inversions in the Atmospheric Boundary Layer and Lower Troposphere over the Sichuan Basin, China: Climatology and Impacts on Air Pollution. Sci. Total Environ. 2020, 726, 138579. [Google Scholar] [CrossRef] [PubMed]
- Archer, C.L.; Caldeira, K. Global Assessment of High-Altitude Wind Power. Energies 2009, 2, 307–319. [Google Scholar] [CrossRef]
- Ji, X.; Hu, Q.; Hu, B.; Wang, S.; Liu, H.; Xing, C.; Lin, H.; Lin, J. Vertical Structure of Air Pollutant Transport Flux as Determined by Ground-Based Remote Sensing Observations in Fen-Wei Plain, China. Remote Sens. 2021, 13, 3664. [Google Scholar] [CrossRef]
- Yang, K.; Cai, W.; Huang, G.; Hu, K.; Ng, B.; Wang, G. Increased Variability of the Western Pacific Subtropical High under Greenhouse Warming. Proc. Natl. Acad. Sci. USA 2022, 119, e2120335119. [Google Scholar] [CrossRef]
- Pernov, J.B.; Beddows, D.; Thomas, D.C.; Dall’Osto, M.; Harrison, R.M.; Schmale, J.; Skov, H.; Massling, A. Increased Aerosol Concentrations in the High Arctic Attributable to Changing Atmospheric Transport Patterns. npj Clim. Atmos. Sci. 2022, 5, 62. [Google Scholar] [CrossRef]
- Bai, Y.; Zhao, T.; Meng, K.; Zhou, Y.; Xiong, J.; Sun, X.; Shen, L.; Yue, Y.; Zhu, Y.; Hu, W.; et al. Quasi-Weekly Oscillation of Regional PM2.5 Transport over China Driven by the Synoptic-Scale Disturbance of the East Asian Winter Monsoon Circulation. Atmos. Chem. Phys. 2025, 25, 1273–1287. [Google Scholar] [CrossRef]
- Shao, M.; Xu, C.; Lv, S.; Jin, X.; Mu, Q.; Zhu, J. Mechanisms of O3 and PM2.5 Evolution along the Cold Wave Passage in Eastern China. npj Clim. Atmos. Sci. 2025, 8, 199. [Google Scholar] [CrossRef]
- Shi, X.; Liu, Y.; Chen, J.; Chen, H.; Wang, Y.; Lu, Z.; Wang, R.-Q.; Fung, J.C.-H.; Ng, C.W.W. Escalating Tropical Cyclone Precipitation Extremes and Landslide Hazards in South China under Global Warming. npj Clim. Atmos. Sci. 2024, 7, 107. [Google Scholar] [CrossRef]
- Li, T.; Wu, N.; Chen, J.; Chan, P.; Tang, J.; Wang, N. Vertical Exchange and Cross-Regional Transport of Lower-Tropospheric Ozone over Hong Kong. Atmos. Res. 2023, 292, 106877. [Google Scholar] [CrossRef]
- Zhou, B.; Zhai, P.; Chen, Y. Contribution of Changes in Synoptic-Scale Circulation Patterns to the Past Summer Precipitation Regime Shift in Eastern China. Geophys. Res. Lett. 2020, 47, e2020GL087728. [Google Scholar] [CrossRef]
- An, X.; Chen, W.; Hu, P.; Chen, S.; Sheng, L. Intraseasonal Variation of the Northeast Asian Anomalous Anticyclone and Its Impacts on PM2.5 Pollution in the North China Plain in Early Winter. Atmos. Chem. Phys. 2022, 22, 6507–6521. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, X.; Zhong, S.; Dai, Z.; Yu, L. Comprehensive Analyses Linking PM2.5 to Its Precursors and Meteorological Conditions across Regions and Time Scale in China. Atmos. Pollut. Res. 2025, 16, 102469. [Google Scholar] [CrossRef]
- Bai, X.; Tian, H.; Liu, X.; Wu, B.; Liu, S.; Hao, Y.; Luo, L.; Liu, W.; Zhao, S.; Lin, S.; et al. Spatial-Temporal Variation Characteristics of Air Pollution and Apportionment of Contributions by Different Sources in Shanxi Province of China. Atmos. Environ. 2021, 244, 117926. [Google Scholar] [CrossRef]
- Rose, C.; Collaud Coen, M.; Andrews, E.; Lin, Y.; Bossert, I.; Lund Myhre, C.; Tuch, T.; Wiedensohler, A.; Fiebig, M.; Aalto, P.; et al. Seasonality of the Particle Number Concentration and Size Distribution: A Global Analysis Retrieved from the Network of Global Atmosphere Watch (GAW) near-Surface Observatories. Atmos. Chem. Phys. 2021, 21, 17185–17223. [Google Scholar] [CrossRef]
- Li, R.; Wang, J.; Xue, K.; Fang, C. Spatial and Temporal Distribution Characteristics and Influencing Factors Analysis of Particulate Matter Pollution in Jinan City. Air Qual. Atmos. Health 2021, 14, 1267–1278. [Google Scholar] [CrossRef]
- Sun, M.; Xie, Z.; Yao, X.; Wang, S.; Dong, L. Multilayer Temperature Inversion Structures and Their Potential Impact on Atmospheric Pollution in Northwest China. Atmos. Environ. 2025, 343, 120998. [Google Scholar] [CrossRef]
- Zhou, X.; Zhang, C.; Li, Y.; Sun, J.; Chen, Z.; Li, L. Concurrence of Temperature and Humidity Inversions in Winter in Qingdao, China. Geophys. Res. Lett. 2024, 51, e2024GL108350. [Google Scholar] [CrossRef]
- Zhong, Y.; Gao, J.; Wang, Z.; Guo, Z. Influence of Particle Size Distribution on Agglomeration/Defluidization of Iron Powders at Elevated Temperature. ISIJ Int. 2017, 57, 649–655. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, J.; Huang, X. Simultaneous Inversion of Particle Size Distribution, Thermal Accommodation Coefficient, and Temperature of In-Flame Soot Aggregates Using Laser-Induced Incandescence. Materials 2024, 17, 634. [Google Scholar] [CrossRef]
- Hu, Q.; Moon, J.; Kim, H. Understanding the Driving Forces of Summer PM1 Composition in Seoul, Korea, with Explainable Machine Learning. ACS ES&T Air 2024, 1, 960–972. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, H.; Cai, X.; Song, Y.; Zhu, T. The Impacts of the Atmospheric Boundary Layer on Regional Haze in North China. npj Clim. Atmos. Sci. 2021, 4, 9. [Google Scholar] [CrossRef]
- Qiu, Y.; Wu, Z.; Man, R.; Zong, T.; Liu, Y.; Meng, X.; Chen, J.; Chen, S.; Yang, S.; Yuan, B.; et al. Secondary Aerosol Formation Drives Atmospheric Particulate Matter Pollution over Megacities (Beijing and Seoul) in East Asia. Atmos. Environ. 2023, 301, 119702. [Google Scholar] [CrossRef]
- Meng, H.; Huang, Y.; Yang, S.; Cui, S.; Wu, Y.; Zhang, N.; Feng, L.; Ge, X.; Chen, M.; Wang, J.; et al. Characteristics of Wintertime Atmospheric PM1 in a Megacity in the Yangtze River Delta, China: A Comparative Study of 2015 and 2022. Aerosol Sci. Eng. 2025, 1–11. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, R.; Yu, W. The Effects of PM2.5 Concentrations and Relative Humidity on Atmospheric Visibility in Beijing. J. Geophys. Res. Atmos. 2019, 124, 2235–2259. [Google Scholar] [CrossRef]
- Cheng, Y.; He, K.; Du, Z.; Zheng, M.; Duan, F.; Ma, Y. Humidity Plays an Important Role in the PM2.5 Pollution in Beijing. Environ. Pollut. 2015, 197, 68–75. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, H.; Qin, Y.; Xu, X.; He, G.; Liu, N.; Miao, S.; Lu, X.; Wang, H.; Fan, S. Measurement Report: Nocturnal Subsidence behind the Cold Front Enhances Surface Particulate Matter in Plains Regions: Observations from the Mobile Multi-Lidar System. Atmos. Chem. Phys. 2024, 24, 2267–2285. [Google Scholar] [CrossRef]
- Huang, T.; Yim, S.H.; Yang, Y.; Lee, O.S.; Lam, D.H.; Cheng, J.C.; Guo, J. Observation of Turbulent Mixing Characteristics in the Typical Daytime Cloud-Topped Boundary Layer over Hong Kong in 2019. Remote Sens. 2020, 12, 1533. [Google Scholar] [CrossRef]
- Sparks, N.; Toumi, R. Numerical Simulations of Daytime Temperature and Humidity Crossover Effects in London. Bound. Layer Meteorol. 2015, 154, 101–117. [Google Scholar] [CrossRef]
- Bhattarai, C.; Khlystov, A. Derivation of Particle-Size Changes from Polydisperse Size Distribution Measurements: Numerical and Experimental Verification. Aerosol Sci. Eng. 2021, 5, 214–222. [Google Scholar] [CrossRef]
- Yu, A.; Shen, X.; Ma, Q.; Lu, J.; Hu, X.; Zhang, Y.; Liu, Q.; Liang, L.; Liu, L.; Liu, S.; et al. Size-Resolved Hygroscopicity and Volatility Properties of Ambient Urban Aerosol Particles Measured by a Volatility Hygroscopicity Tandem Differential Mobility Analyzer System in Beijing. Atmos. Chem. Phys. 2025, 25, 3389–3412. [Google Scholar] [CrossRef]
- Fu, H.; Wang, Y.; Riemer, M.; Li, Q. Effect of Unidirectional Vertical Wind Shear on Tropical Cyclone Intensity Change—Lower-Layer Shear versus Upper-Layer Shear. J. Geophys. Res. Atmos. 2019, 124, 6265–6282. [Google Scholar] [CrossRef]
- Rogozovsky, I.; Ansmann, A.; Hofer, J.; Chudnovsky, A. Unveiling Atmospheric Layers: Vertical Pollution Patterns and Prospects for High-Resolution Aerosol Retrievals Using the Eastern Mediterranean as a Case Study. Environ. Sci. Technol. 2025, 59, 12181–12195. [Google Scholar] [CrossRef]
- Ndlovu, Z. Turbulent Diffusion and Air Pollution: A Comprehensive Review of Mechanisms, Impacts, and Modeling Approaches. World J. Adv. Res. Rev. 2024, 23, 1511–1525. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Z.; Pang, Y.; Qi, B.; Zhang, C.; Yang, M.; Ye, X. Vertical Profiling of PM1 and PM2.5 Dynamics: UAV-Based Observations in Seasonal Urban Atmosphere. Atmosphere 2025, 16, 968. https://doi.org/10.3390/atmos16080968
Zhao Z, Pang Y, Qi B, Zhang C, Yang M, Ye X. Vertical Profiling of PM1 and PM2.5 Dynamics: UAV-Based Observations in Seasonal Urban Atmosphere. Atmosphere. 2025; 16(8):968. https://doi.org/10.3390/atmos16080968
Chicago/Turabian StyleZhao, Zhen, Yuting Pang, Bing Qi, Chi Zhang, Ming Yang, and Xuezhu Ye. 2025. "Vertical Profiling of PM1 and PM2.5 Dynamics: UAV-Based Observations in Seasonal Urban Atmosphere" Atmosphere 16, no. 8: 968. https://doi.org/10.3390/atmos16080968
APA StyleZhao, Z., Pang, Y., Qi, B., Zhang, C., Yang, M., & Ye, X. (2025). Vertical Profiling of PM1 and PM2.5 Dynamics: UAV-Based Observations in Seasonal Urban Atmosphere. Atmosphere, 16(8), 968. https://doi.org/10.3390/atmos16080968