Current Status, Trends, and Future Directions in Chilean Air Quality: A Data-Driven Perspective
Abstract
:1. Introduction
2. Materials and Methods
2.1. Geography of Chile and Location of Monitoring Stations
2.2. The Chilean Air Quality Monitoring Network
2.3. Chilean Air Quality Legislation and Compliance
2.4. Industrial Zones
2.5. Statistical Analyses
3. Results
3.1. Series Completeness and a Glance at Daily Concentrations over the Years
3.2. Concentration Cycles
3.3. Industrial Zone Historical Concentrations
3.4. Trend Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PM | Particulate Matter (PM2.5 and PM10 refer to PM of diameters less than 2.5 or 10 µm diameter) |
SINCA | National Air Quality Information System |
MMA | Chilean Ministry of the Environment |
ClNAQS | Chilean Air Quality limit levels |
WHO | World Health Organisation |
References
- Lelieveld, J.; Pozzer, A.; Pöschl, U.; Fnais, M.; Haines, A.; Münzel, T. Loss of Life Expectancy from Air Pollution Compared to Other Risk Factors: A Worldwide Perspective. Cardiovasc. Res. 2020, 116, 1910–1917. [Google Scholar] [CrossRef]
- World Bank. The Global Health Cost of PM2.5 Air Pollution: A Case for Action Beyond 2021. International Development in Focus 2022. © Washington, DC. Available online: https://shorturl.at/JuFoS (accessed on 10 May 2025).
- OpenAQ. Open Air Quality Data: The Global Landscape 2024. Available online: https://tinyurl.com/28jxu3tk (accessed on 10 May 2025).
- World Bank and Institute for Health Metrics and Evaluation. The Cost of Air Pollution: Strengthening the Economic Case for Action 2016. Washington, DC World Bank. Available online: https://tinyurl.com/p272fuee (accessed on 10 May 2025).
- Riojas-Rodríguez, H.; da Silva, A.S.; Texcalac-Sangrador, J.L.; Moreno-Banda, G.L. Air Pollution Management and Control in Latin America and the Caribbean: Implications for Climate Change. Rev. Panam. Salud Publica 2016, 40, 150–159. [Google Scholar] [PubMed]
- Jorquera, H. Air Quality Management in Chile: Effectiveness of PM2.5 Regulations. Urban Clim. 2021, 35, 100764. [Google Scholar] [CrossRef]
- Hartinger, S.M.; Yglesias-González, M.; Blanco-Villafuerte, L.; Palmeiro-Silva, Y.K.; Lescano, A.G.; Stewart-Ibarra, A.; Rojas-Rueda, D.; Melo, O.; Takahashi, B.; Buss, D.; et al. The 2022 South America Report of The Lancet Countdown on Health and Climate Change: Trust the Science. Now That We Know, We Must Act. Lancet Reg. Health Am. 2023, 20, 100470. [Google Scholar] [CrossRef] [PubMed]
- Gouveia, N.; Kephart, J.L.; Dronova, I.; McClure, L.; Granados, J.T.; Betancourt, R.M.; O’Ryan, A.C.; Texcalac-Sangrador, J.L.; Martinez-Folgar, K.; Rodríguez, D.; et al. Ambient Fine Particulate Matter in Latin American Cities: Levels, Population Exposure, and Associated Urban Factors. Sci. Total Environ. 2021, 772, 145035. [Google Scholar] [CrossRef] [PubMed]
- IQAir. World Air Quality Report 2024. Available online: https://www.iqair.com/newsroom/waqr-2024-pr (accessed on 10 May 2025).
- Lillo, D.; Salazar, C.; Jaime, M.; Chávez, C. Perceptions of Problems and Preferences for Solutions: The Case of Poor Air Quality in Central-Southern Chile. Energy Sustain. Dev. 2022, 66, 79–91. [Google Scholar] [CrossRef]
- Reyes, R.; Schueftan, A.; Ruiz, C.; González, A.D. Controlling Air Pollution in a Context of High Energy Poverty Levels in Southern Chile: Clean Air but Colder Houses? Energy Policy 2019, 124, 301–311. [Google Scholar] [CrossRef]
- Molina, C.; Toro, R.; Morales, R.; Manzano, C.; Leiva-Guzmán, M.A. Particulate Matter in Urban Areas of South-Central Chile Exceeds Air Quality Standards. Air Qual. Atmos. Health 2017, 10, 653–667. [Google Scholar] [CrossRef]
- Huneeus, N.; Urquiza, A.; Gayo, E.; Osses, M.; Arriagada, R.; Valdés, M.; Álamos, N.; Amigo, C.; Arrieta, D.; Basoa, K.; et al. El Aire que Respiramos: Pasado, Presente y Futuro—Contaminación Atmosférica por MP2.5 en el Centro y Sur de Chile; Centro de Ciencia del Clima y la Resiliencia (CR)2: Santiago, Chile, 2020; 102p, Available online: https://www.cr2.cl/contaminacion/ (accessed on 10 May 2025).
- Barraza, F.; Lambert, F.; Jorquera, H.; Villalobos, A.M.; Gallardo, L. Temporal Evolution of Main Ambient PM2.5 Sources in Santiago, Chile, from 1998 to 2012. Atmos. Chem. Phys. 2017, 17, 10093–10107. [Google Scholar] [CrossRef]
- Gallardo, L.; Barraza, F.; Ceballos, A.; Galleguillos, M.; Huneeus, N.; Lambert, F.; Ibarra, C.; Munizaga, M.; O’Ryan, R.; Osses, M.; et al. Evolution of Air Quality in Santiago: The Role of Mobility and Lessons from the Science–Policy Interface. Elem. Sci. Anthr. 2018, 6, 38. [Google Scholar] [CrossRef]
- Seguel, R.J.; Gallardo, L.; Fleming, Z.L.; Landeros, S. Two Decades of Ozone Standard Exceedances in Santiago de Chile. Air Qual. Atmos. Health 2020, 13, 593–605. [Google Scholar] [CrossRef]
- Seguel, R.J.; Castillo, L.; Opazo, C.; Rojas, N.Y.; Nogueira, T.; Cazorla, M.; Gavidia-Calderón, M.; Gallardo, L.; Garreaud, R.; Carrasco-Escaff, T.; et al. Changes in South American Surface Ozone Trends: Exploring the Influences of Precursors and Extreme Events. Atmos. Chem. Phys. 2024, 24, 8225–8242. [Google Scholar] [CrossRef]
- González-Rojas, C.H.; Leiva-Guzmán, M.A.; Manzano, C.A.; Araya, R.T. Short-Term Air Pollution Events in the Atacama Desert, Chile. J. S. Am. Earth Sci. 2021, 105, 103010. [Google Scholar] [CrossRef]
- Osses, M.; Rojas, N.; Ibarra, C.; Valdebenito, V.; Laengle, I.; Pantoja, N.; Osses, D.; Basoa, K.; Tolvett, S.; Huneeus, N.; et al. High-Resolution Spatial-Distribution Maps of Road Transport Exhaust Emissions in Chile, 1990–2020. Earth Syst. Sci. Data 2022, 14, 1359–1376. [Google Scholar] [CrossRef]
- Alamos, N.; Huneeus, N.; Opazo, M.; Osses, M.; Puja, S.; Pantoja, N.; Denier van der Gon, H.; Schueftan, A.; Reyes, R.; Calvo, R. High-Resolution Inventory of Atmospheric Emissions from Transport, Industrial, Energy, Mining and Residential Activities in Chile. Earth Syst. Sci. Data 2022, 14, 361–379. [Google Scholar] [CrossRef]
- Olivares, G.; Gallardo, L.; Langner, J.; Aarhus, B. Regional Dispersion of Oxidized Sulfur in Central Chile. Atmos. Environ. 2002, 36, 3819–3828. [Google Scholar] [CrossRef]
- OECD. OECD Environmental Performance Reviews: Chile 2024; OECD Publishing: Paris, France, 2024. [Google Scholar] [CrossRef]
- Toro, R.A.; Campos, C.; Molina, C.; Morales, S.R.G.E.; Leiva-Guzmán, M.A. Accuracy and Reliability of Chile’s National Air Quality Information System for Measuring Particulate Matter: Beta Attenuation Monitoring Issue. Environ. Int. 2015, 82, 101–109. [Google Scholar] [CrossRef]
- Quinteros, M.E.; Blanco, E.; Sanabria, J.; Rozas-Díaz, F.; Blázquez, C.; Ayala, S.; Cárdenas, J.P.; Stone, E.A.; Sybesma, K.; Delgado-Saborit, J.M.; et al. Spatio-Temporal Distribution of Particulate Matter and Wood-Smoke Tracers in Temuco, Chile: A City Heavily Impacted by Residential Wood-Burning. Atmos. Environ. 2023, 294, 119529. [Google Scholar] [CrossRef]
- Manzano, C.A.; Jácome, M.; Syn, T.; Molina, C.; Toro Araya, R.; Leiva-Guzmán, M.A. Local Air Quality Issues and Research Priorities through the Lenses of Chilean Experts: An Ontological Analysis. Integr. Environ. Assess. Manag. 2021, 17, 273–281. [Google Scholar] [CrossRef]
- Villacura, L.; Sánchez, L.F.; Catalán, F.; Toro-Araya, R.; Leiva-Guzmán, M.A. An Overview of Air Pollution Research in Chile: Bibliometric Analysis and Scoping Review, Challenges and Future Directions. Heliyon 2024, 10, e25431. [Google Scholar] [CrossRef]
- Gallardo, L.; Olivares, G.; Langner, J.; Aarhus, B. Coastal Lows and Sulfur Air Pollution in Central Chile. Atmos. Environ. 2002, 36, 3829–3841. [Google Scholar] [CrossRef]
- MMA. Decreto 39: Aprueba Reglamento para la Dictación de Planes de Prevención y de Descontaminación; Ministerio del Medio Ambiente: Santiago, Chile, 2013; Available online: https://www.bcn.cl/leychile/navegar?idnorma=1053037&idparte=&idversion= (accessed on 10 May 2025).
- Zanetta-Colombo, N.C.; Fleming, Z.L.; Gayo, E.M.; Manzano, C.A.; Panagi, M.; Valdés, J.; Siegmund, A. Impact of Mining on the Metal Content of Dust in Indigenous Villages of Northern Chile. Environ. Int. 2022, 169, 107490. [Google Scholar] [CrossRef] [PubMed]
- García, D.; Tapia, J.; Aguilera, J.; Vega, C.; Zúñiga, P.; Lavín, P.; Rojas, L.; Valdés, J. Contamination of Urban Soils in a Historical Mining Town of Northern Chile. Environ. Earth Sci. 2024, 83, 11445. [Google Scholar] [CrossRef]
- Toro, R.; Claramunt, T.; González, F.; Ávila, S.; Leiva-Guzmán, M.A. Long-Term Assessment and Acute Air Pollution Events in a Mega-Industrial Area in Central Chile. Urban Clim. 2024, 55, 101880. [Google Scholar] [CrossRef]
- Seguel, R.J.; Garreaud, R.; Muñoz, R.; Bozkurt, D.; Gallardo, L.; Opazo, C.; Jorquera, H.; Castillo, L.; Menares, C. Volatile Organic Compounds Measured by Proton Transfer Reaction Mass Spectrometry over the Complex Terrain of Quintero Bay, Central Chile. Environ. Pollut. 2023, 330, 121759. [Google Scholar] [CrossRef] [PubMed]
- Seguel, R.J.; Gallardo, L.; Osses, M.; Rojas, N.Y.; Nogueira, T.; Menares, C.; de Fatima Andrade, M.; Belalcázar, L.C.; Carrasco, P.; Eskes, H.; et al. Photochemical Sensitivity to Emissions and Local Meteorology in Bogotá, Santiago, and São Paulo: An Analysis of the Initial COVID-19 Lockdowns. Elem. Sci. Anthr. 2022, 10, 00044. [Google Scholar] [CrossRef]
- Schreck, E.; Le Goff, L.; Calas, A.; Fleming, Z.L.; Bosch, C.; Yettou, A.; Mesas, M.; Martínez-Lladó, X.; Vallejos-Romero, A.; Blot, F.; et al. An Interdisciplinary Approach for Air Quality Assessment: Biomonitoring Using Tillandsia bergeri and Risk Perceptions in the Environmentally Sacrificed Province of Chacabuco, Chile. Environ. Geochem. Health 2025, 47, 99. [Google Scholar] [CrossRef]
- Solis, R.; Toro, R.; Gomez, L.; Vélez, A.M.; López, M.; Fleming, Z.L.; Fierro, N.; Leiva, M. Long-Term Airborne Particle Pollution Assessment in the City of Coyhaique, Patagonia, Chile. Urban Clim. 2022, 43, 101144. [Google Scholar] [CrossRef]
- Mardones, C. Contribution of the Carbon Tax, Phase-Out of Thermoelectric Power Plants, and Renewable Energy Subsidies for the Decarbonization of Chile—A CGE Model and Microsimulations Approach. J. Environ. Manag. 2024, 352, 120017. [Google Scholar] [CrossRef]
- Rueda-Holgado, F.; Palomo-Marín, M.R.; Calvo-Blázquez, L.; Cereceda-Balic, F.; Pinilla-Gil, E. Fractionation of Trace Elements in Total Atmospheric Deposition by Filtrating-Bulk Passive Sampling. Talanta 2014, 125, 125–130. [Google Scholar] [CrossRef]
- Gayo, E.M.; Muñoz, A.A.; Maldonado, A.; Lavergne, C.; François, J.P.; Rodríguez, D.; Klock-Barría, K.; Sheppard, P.R.; Aguilera-Betti, I.; Alonso-Hernández, C.; et al. A Cross-Cutting Approach for Relating Anthropocene, Environmental Injustice and Sacrifice Zones. Earth’s Future 2022, 10, e2021EF002217. [Google Scholar] [CrossRef]
- Tapia-Gatica, J.; González-Miranda, I.; Salgado, E.; Bravo, M.A.; Tessini, C.; Dovletyarova, E.A.; Paltseva, A.A.; Neaman, A. Advanced Determination of the Spatial Gradient of Human Health Risk and Ecological Risk from Exposure to As, Cu, Pb, and Zn in Soils near the Ventanas Industrial Complex (Puchuncaví, Chile). Environ. Pollut. 2020, 258, 113488. [Google Scholar] [CrossRef] [PubMed]
- Cereceda-Balic, F.; Gala-Morales, M.; Palomo-Marín, R.; Fadic, X.; Vidal, V.; Funes, M.; Rueda-Holgado, F.; Pinilla-Gil, E. Spatial Distribution, Sources, and Risk Assessment of Major Ions and Trace Elements in Rainwater at Puchuncaví Valley, Chile: The Impact of Industrial Activities. Atmos. Pollut. Res. 2020, 11, 99–109. [Google Scholar] [CrossRef]
- Gorena, T.; Fadic, X.; Cereceda-Balic, F. Cupressus macrocarpa Leaves for Biomonitoring the Environmental Impact of an Industrial Complex: The Case of Puchuncaví–Ventanas in Chile. Chemosphere 2020, 260, 127521. [Google Scholar] [CrossRef]
- Muñoz, A.A.; Klock-Barría, K.; Sheppard, P.R.; Aguilera-Betti, I.; Toledo-Guerrero, I.; Christie, D.A.; Gorena, T.; Gallardo, L.; González-Reyes, Á.; Lara, A.; et al. Multidecadal Environmental Pollution in a Mega-Industrial Area in Central Chile Registered by Tree Rings. Sci. Total Environ. 2019, 696, 133915. [Google Scholar] [CrossRef] [PubMed]
- Tume, P.; Acevedo, V.; Roca, N.; Ferraro, F.X.; Bech, J. Potentially Toxic Elements Concentrations in Schoolyard Soils in the City of Coronel, Chile. Environ. Geochem. Health 2022, 44, 1521–1535. [Google Scholar] [CrossRef]
- Hamed, K.H.; Rao, A.R. A Modified Mann–Kendall Trend Test for Autocorrelated Data. J. Hydrol. 1998, 204, 182–196. [Google Scholar] [CrossRef]
- Van der Walt, S.; Colbert, S.C.; Varoquaux, G. The NumPy Array: A Structure for Efficient Numerical Computation. Comput. Sci. Eng. 2011, 13, 22–30. [Google Scholar] [CrossRef]
- McKinney, W. Data Structures for Statistical Computing in Python. In Proceedings of the 9th Python in Science Conference, Austin, TX, USA, 28 June–3 July 2010; van der Walt, S., Millman, J., Eds.; SciPy: Austin, TX, USA, 2010; pp. 51–56. [Google Scholar]
- Hunter, J.D. Matplotlib: A 2D Graphics Environment. Comput. Sci. Eng. 2007, 9, 90–95. [Google Scholar] [CrossRef]
- Harris, C.R.; Millman, K.J.; van der Walt, S.J.; Gommers, R.; Virtanen, P.; Cournapeau, D.; Wieser, E.; Taylor, J.; Berg, S.; Smith, N.J.; et al. Array Programming with NumPy. Nature 2020, 585, 357–362. [Google Scholar] [CrossRef]
- Reitz, K. Requests: HTTP for Humans. 2013. Available online: https://docs.python-requests.org/ (accessed on 10 May 2025).
- Richardson, L. Beautiful Soup Documentation. 2017. Available online: https://tinyurl.com/y64ubcw8 (accessed on 10 May 2025).
- Jordahl, K.; Wasserman, J.; McBride, J.; Wilson, J.; Arribas-Bel, D.; Gerard, J. GeoPandas: Python Tools for Geographic Data [Computer software]. 2020. Available online: https://github.com/geopandas/geopandas (accessed on 10 May 2025).
- Gillies, S. Shapely: Manipulation and Analysis of Geometric Objects in the Cartesian Plane [Computer software]. 2007. Available online: https://github.com/shapely/shapely (accessed on 10 May 2025).
- Hussain, M.; Mahmud, I.; Bellouin, N. pyMannKendall: A Python Package for Nonparametric Mann–Kendall Family of Trend Tests. J. Open Source Softw. 2019, 4, 1556. [Google Scholar] [CrossRef]
- World Health Organization. WHO Global Air Quality Guidelines: Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide; World Health Organization: Geneva, Switzerland, 2021; Available online: https://www.who.int/publications/i/item/9789240034228 (accessed on 10 May 2025).
- MMA. Decreto 40: Establece Norma Primaria de Calidad de aire Para Dióxido de Nitrógeno (NO2); Ministerio del Medio Ambiente: Santiago, Chile, 2024; Available online: https://www.bcn.cl/leychile/navegar?idNorma=1206820 (accessed on 10 May 2025).
- MMA. Decreto 104: Establece Norma Primaria de Calidad de aire para Dióxido de Azufre (SO2); Ministerio del Medio Ambiente: Santiago, Chile, 2019; Available online: https://www.bcn.cl/leychile/navegar?idNorma=1131641 (accessed on 10 May 2025).
- MMA. Decreto 115: Establece Norma Primaria de Calidad de aire Para Monóxido de Carbono (CO); Ministerio del Medio Ambiente: Santiago, Chile, 2022; under revision 2025; Available online: https://www.bcn.cl/leychile/navegar?idNorma=202437 (accessed on 10 May 2025).
- Decreto 112: Establece Norma Primaria de Calidad de Aire Para Ozono (O3); Ministerio del Medio Ambiente: Santiago, Chile, 2003; under revision 2025; Available online: https://www.bcn.cl/leychile/navegar?idNorma=208198 (accessed on 10 May 2025).
- Decreto 12: Establece Norma Primaria de Calidad de Aire Para Material Particulado Respirable (MP10); Ministerio del Medio Ambiente: Santiago, Chile, 2022; Available online: https://www.bcn.cl/leychile/navegar?idNorma=1176988 (accessed on 10 May 2025).
- MMA. Decreto 12: Establece Norma Primaria de Calidad de Aire Para Material Particulado Fino Respirable (MP2.5); Ministerio del Medio Ambiente: Santiago, Chile, 2011; under revision 2024–2025; Available online: https://www.bcn.cl/leychile/navegar?idNorma=1025202 (accessed on 10 May 2025).
Region (from North to South) | Macro-Zone | Total Stations with Air Quality Data | Stations with Over 75% of Data Coverage in 2024 | Population (Using 2024 Census) | Area (km2) INE ** |
---|---|---|---|---|---|
Arica y Parinacota | Norte grande | 1 (1) | 1 | 244,569 | 16,873 |
Tarapacá | Norte grande | 1 (1) | 1 | 369,806 | 42,225 |
Antofagasta | Norte grande | 26 (34) | 14 | 635,416 | 126,049 |
Atacama | Norte grande | 24 (26) | 18 | 299,180 | 75,176 |
Coquimbo | Norte chico | 8 (16) | 6 | 832,864 | 40,579 |
Valparaíso | Norte chico | 35 (38) | 23 | 1,896,053 | 16,396 |
Metropolitana | Santiago | 13 (14) | 10 | 7,400,741 | 15,403 |
O’Higgins | Zona central | 13 (14) | 7 | 987,228 | 16,387 |
Maule | Zona central | 8 (9) | 5 | 1,123,008 | 30,296 |
Ñuble | Zona central | 6 (6) | 2 | 512,289 | 13,178 |
Biobío | Zona central | 32 (33) | 22 | 1,613,059 | 23,890 |
Araucanía | Zona sur | 6 (6) | 4 | 1,010,423 | 31,842 |
Los Ríos | Zona sur | 5 (7) | 2 | 398,230 | 18,429 |
Los Lagos | Zona sur | 8 (8) | 5 | 890,284 | 48,583 |
Aysén | Zona austral | 4 (4) | 4 | 100,745 | 108,494 |
Magallanes * | Zona austral | 1 (1) | 1 | 166,537 | 132,297 |
Total | - | 191 (218) | 125 | 18,480,432 | 756,102 |
Period | PM2.5 | O3 | NOx | ||||||
---|---|---|---|---|---|---|---|---|---|
2000–2024 | Trend | µg yr−1 | p-Value | Trend | ppbv yr−1 | p-Value | Trend | ppbv yr−1 | p-Value |
Cerrillos I | increasing | 4.64 | ~0 | decreasing | −1.13 | ~0 | increasing | 5.39 | ~0 |
Cerro Navia | no trend | −0.71 | 0.066 | increasing | 0.34 | ~0 | decreasing | −4.82 | 0.002 |
El Bosque | increasing | 0.61 | 0.016 | decreasing | −0.16 | 0.035 | decreasing | −6.61 | ~0 |
Independencia | no trend | ~0 | 0.449 | decreasing | −0.32 | 0.010 | decreasing | −5.96 | ~0 |
La Florida | decreasing | −1.84 | - | decreasing | −0.32 | 0.002 | decreasing | −3.77 | ~0 |
Las Condes | decreasing | −1.10 | - | decreasing | −0.91 | ~0 | decreasing | −0.49 | 0.050 |
Parque O’Higgins | decreasing | −3.03 | - | decreasing | −0.45 | ~0 | decreasing | −4.77 | ~0 |
Pudahuel | no trend | −0.31 | 0.145 | decreasing | −0.27 | 0.001 | no trend | −0.06 | 0.916 |
Puente Alto | decreasing | −0.78 | ~0 | increasing | 1.20 | ~0 | no trend | −1.42 | 0.066 |
Quilicura | no trend | −0.83 | 0.197 | ||||||
Quilicura I | increasing | 3.58 | 0.001 | decreasing | −2.60 | ~0 | no trend | −1.95 | 0.572 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Basoa, K.; Fleming, Z.L.; Leiva, M.A.; Concha, C.; Menares, C. Current Status, Trends, and Future Directions in Chilean Air Quality: A Data-Driven Perspective. Atmosphere 2025, 16, 733. https://doi.org/10.3390/atmos16060733
Basoa K, Fleming ZL, Leiva MA, Concha C, Menares C. Current Status, Trends, and Future Directions in Chilean Air Quality: A Data-Driven Perspective. Atmosphere. 2025; 16(6):733. https://doi.org/10.3390/atmos16060733
Chicago/Turabian StyleBasoa, Kevin, Zoё L. Fleming, Manuel A. Leiva, Carolina Concha, and Camilo Menares. 2025. "Current Status, Trends, and Future Directions in Chilean Air Quality: A Data-Driven Perspective" Atmosphere 16, no. 6: 733. https://doi.org/10.3390/atmos16060733
APA StyleBasoa, K., Fleming, Z. L., Leiva, M. A., Concha, C., & Menares, C. (2025). Current Status, Trends, and Future Directions in Chilean Air Quality: A Data-Driven Perspective. Atmosphere, 16(6), 733. https://doi.org/10.3390/atmos16060733