The Geogenic Radon Potential in the Eastern Part of the Poiana Ruscă Mountains (Southern Carpathians, Romania)
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Determination of Geogenic Radon Potential
2.3. Data Analysis
3. Results and Discussion
3.1. Radon Activity Concentration in Soil and Soil Permeability
3.2. Geogenic Radon Potential
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization (WHO). Handbook on Indoor Radon: A Public Health Perspective; World Health Organization: Geneva, Switzerland, 2009; ISBN 9789241547673. [Google Scholar]
- Gruber, V.; Bossew, P.; De Cort, M.; Tollefsen, T. The European map of the geogen radon potential. J. Radiol. Prot. 2013, 33, 51–60. [Google Scholar] [CrossRef] [PubMed]
- Ciotoli, G.; Voltaggio, M.; Tuccimei, P.; Soligo, M.; Pasculli, A.; Beaubien, S.E.; Bigi, S. Geographically Weighted 298 Regression and Geostatistical Techniques to Construct the Geogenic Radon Potential Map of the Lazio Region: 299 A Methodological Proposal for the European Atlas of Natural Radiation. J. Environ. Radioact. 2017, 166, 355–375. [Google Scholar] [CrossRef]
- Kemski, J.; Siehl, A.; Stegemann, R.; Valdivia-Manchego, B.A.; Kemski, M.; Veerhoff, K. Mapping the Geogenic 293 Radon Potential in Germany. Sci. Total Environ. 2001, 272, 217–230. [Google Scholar] [CrossRef] [PubMed]
- Kemski, J.; Klingel, R.; Siehl, A.; Stegemann, R. Radon Transfer from Ground to Houses and Prediction of Indoor 295 Radon in Germany Based on Geological Information. Radioact. Environ. 2005, 7, 820–832. [Google Scholar] [CrossRef]
- Burghele, B.; Ţenter, A.; Cucoş, A.; Dicu, T.; Moldovan, M.; Papp, B.; Szacsvai, K.; Neda, T.; Suciu, L.; Lupulescu, A.; et al. The FIRST large-scale mapping of radon concentration in soil gas and water in Romania. Sci. Total Environ. 2019, 669, 887–892. [Google Scholar] [CrossRef]
- Kemski, J.; Klingel, R.; Siehl, A. Classification and mapping of radon-affected areas in Germany. Environ. Int. 1996, 22, 789–798. [Google Scholar] [CrossRef]
- Kuske, T.; Kerker, S.; Breckow, J.; Lehné, R.; Laupenmühlen, T.; Jedmowski, L. Radon soil-gas measurement campaign in Hessen: An approach to identifying areas with enhanced geogen radon. Nukleonika 2020, 65, 139–144. [Google Scholar] [CrossRef]
- Mikšová, J.; Barnet, I. Geological support to the national radon programme (Czech Republic). Bull. Czech Geol. Surv. 2002, 77, 13–22. [Google Scholar]
- Neznal, M.; Neznal, M.; Matolin, M.; Barnet, I.; Miksova, J. The New Method for Assessing the Radon Risk of Building 307 Sites; Czech Geological Survey: Praga, Czech Republic, 2004. [Google Scholar]
- Barnet, I.; Pacherova, P.; Neznal, M.; Neznal, M. Radon in Geological Environment—Czech Experiences; Special Papers No. 19; Czech Geological Survey: Praga, Czech Republic, 2008. [Google Scholar]
- Barnet, I.; Pacherová, P.; Preusse, W.; Stec, B. Cross-border radon index map 1:100 000 Lausitz—Jizera—Karkonosze—Region (northern part of the Bohemian Massif). J. Environ. Radioact. 2010, 101, 809–812. [Google Scholar] [CrossRef]
- Planinić, J.; Vuković, B.; Radolić, V.; Stanić, D. Radon in soil and homes of Osijek. In Proceedings of the European IRPA Congress, Florence, Italy, 14–15 October 2002; p. 37, ISBN 88-88648-09-7. [Google Scholar]
- Chalupnik, S.; Wysocka, M. Measurement of Radon Exhalation from Soil—Development of the Method and Preliminary Results. J. Min. Sci. 2003, 39, 191–198. [Google Scholar] [CrossRef]
- Swakoń, J.; Kozak, K.; Paszkowski, M.; Gradziński, R.; Łoskiewicz, J.; Mazur, J.; Janik, M.; Bogacz, J.; Horwacik, T.; Olko, P. Radon concentration in soil gas around local disjunctive tectonic zones in the Krakow area. J. Environ. Radioact. 2005, 78, 137–149. [Google Scholar] [CrossRef] [PubMed]
- Petersell, V.; Åkerblom, G.; Ek, B.M.; Enel, M.; Mõttus, V.; Täht, K. Radon Risk Map of Estonia; Geological Surveys of Estonia and Sweden, Swedish Radiation Protection Authority: Stockholm, Sweden, 2005. [Google Scholar]
- Petersell, V.; Täht-Kok, K.; Karimov, M.; Milvek, H.; Nirgi, S.; Raha, M.; Saarik, K. Radon in the soil air of Estonia. J. Environ. Radioact. 2017, 166, 235–241. [Google Scholar] [CrossRef]
- Gruber, V.; Baumgartner, A.; Seidel, C.; Maringer, F.J. Radon risk in Alpine regions in Austria: Risk assessment as a settlement planning strategy. Radiat. Prot. Dosim. 2008, 130, 88–91. [Google Scholar] [CrossRef] [PubMed]
- Friedmann, H.; Baumgartner, A.; Bernreiter, M.; Gräser, J.; Gruber, V.; Kabrt, F.; Kaineder, H.; Maringer, F.J.; Ringer, W.; Seidel, C.; et al. Indoor radon, geogen radon surrogates and geology—Investigations on their correlation. J. Environ. Radioact. 2017, 166, 382–389. [Google Scholar] [CrossRef]
- Ielsch, G.; Cushing, M.E.; Combes, P.; Cuney, M. Mapping of the geogenic radon potential in France to improve radon risk management: Methodology and first application to region Bourgogne. J. Environ. Radioact. 2010, 101, 813–820. [Google Scholar] [CrossRef] [PubMed]
- Buttafuoco, G.; Tallarico, A.; Falcone, G. Mapping soil gas radon concentration: A comparative study of geostatistical methods. Environ. Monit. Assess. 2007, 131, 135–151. [Google Scholar] [CrossRef]
- Buttafuoco, G.; Tallarico, A.; Falcone, G.; Guagliardi, I. A geostatistical approach for mapping and uncertainty assessment of geogenic radon gas in soil in an area of southern Italy. Environ. Earth Sci. 2010, 61, 491–505. [Google Scholar] [CrossRef]
- Giustini, F.; Ciotoli, G.; Rinaldini, A.; Ruggiero, L.; Voltaggio, M. Mapping the geogenic radon potential and radon risk by using Empirical Bayesian Kriging regression: A case study from a volcanic area of central Italy. Sci. Total Environ. 2019, 661, 449–464. [Google Scholar] [CrossRef]
- Giustini, F.; Ruggiero, L.; Sciarra, A.; Beaubien, S.E.; Graziani, S.; Galli, G.; Pizzino, L.; Tartarello, M.C.; Lucchetti, C.; Sirianni, P.; et al. Radon Hazard in Central Italy: Comparison among Areas with Different Geogenic Radon Potential. Int. J. Environ. Res. Public Health 2022, 19, 666. [Google Scholar] [CrossRef]
- Guida, D.; Cuomo, V.; Peluso, F.; Roca, V.; Tranfaglia, G. A Multiscale and Adaptive Methodology for the Geogenic Radon Potential Mapping: The Case Study of the Campania Region (Southern Italy). Geosciences 2013, 3, 566–591. [Google Scholar]
- Cosma, C.; Baciu, C. Radon dynamics. In The Municipality of Cluj-Napoca and Peri-Urban Area—Environmental Studies; Editura Accent: Cluj-Napoca, Romania, 2002. [Google Scholar]
- Niță, D.; Cosma, C.; Papp, B.; Moldovan, M. Soil radon measurements in Cluj-Napoca (Romania). Stud. Univ. Babeș-Bolyai Phys. LIV 2009, 1, 100–106. [Google Scholar]
- Papp, B.; Szakacs, A.; Neda, T.; Papp, S.Z.; Cosma, C. Soil radon and thoron studies near the mofettes at Harghita Bai (Romania) and their relation to the field location of fault zones. Geofluids 2010, 10, 586–593. [Google Scholar] [CrossRef]
- Cosma, C.; Cucoş-Dinu, A.; Papp, B.; Begy, R.; Sainz, C. Soil and building material as main sources of indoor radon in Băiţa-Ștei radon prone area (Romania). J. Environ. Radioact. 2013, 116, 174–179. [Google Scholar] [CrossRef]
- Moldovan, M.C.; Burghele, B.D.; Roba, C.A.; Sferle, T.L.; Buterez, C.; Mitrofan, H. The geogenic radon potential map of the aspiring “Buzău Land” Geopark. Radiat. Prot. Dosim. 2017, 177, 173–175. [Google Scholar] [CrossRef] [PubMed]
- Lupulescu, A.; Dicu, T.; Papp, B.; Cucos, A. Determination of the Monthly Variation of Radon Activity Concentration in Soil. Stud. Univ. Babeș-Bolyai Ambient. 2018, 63, 49–59. [Google Scholar] [CrossRef]
- Balintoni, I.; Iancu, V. Probleme de Metamorfism, Litostratigrafie Si Structura Ale Cristalinului Din Masivul Poiana Rusca (Problems of Metamorphism, Lithostratigraphy and Crystalline Structure from the Poiana Rusca Massif). Stud. Si Cercet. De Geol. Geofiz. Geogr. Ser. De Geol. 1986, 31, 51–67. [Google Scholar]
- Maier, O.; Solomon, I.; Zimmermann, P.; Zimmermann, V. Studiul Geologic Și Petrografic al Cristalinului Din Partea Sudică a Munților Poiana Ruscă (The Geological and Petrographic study of the Crystalline from the Southern Side of the Poiana Rusca Mountains). Anu. Institutului Geol. și Geofiz. 1975, XLIII, 65–189. [Google Scholar]
- Maier, O.; Lupu, M. Harta geologică Republica Socialistă România, Scara 1:50.000, Foaia 105a, Băuțar (Geological Map of the Socialist Republic of Romania, Scale 1:50000, Sheet 105a, Bautar); Institutul de Geologie și Geofizică: București, Romania, 1979. [Google Scholar]
- Codarcea, A.; Dimitrescu, R.; Gherasi, N.; Mureșan, M.; Mureșan, G.; Krautner, H.; Krautner, F.; Lupu, M.; Marinescu, F.; Savu, H.; et al. Harta Geologică a Republicii Socialiste România, Scara 1:200.000, L-34-XXIII 25, Deva (Geological Map of the Socialist Republic of Romania, Scale 1:200,000, Deva); Comitetul de Stat pentru Geologie. Institutul Geologic: București, Romania, 1968. [Google Scholar]
- Alonso, H.; Rubiano, J.G.; Guerra, J.G.; Arnedo, M.A.; Tejera, A.; Martel, P. Assessment of radon risk areas in the Eastern Canary Islands using soil radon gas concentration and gas permeability of soils. Sci. Total Environ. 2019, 664, 449–460. [Google Scholar] [CrossRef]
- Kunovska, B.; Ivanova, K.; Stojanovska, Z.; Vuchkov, D.; Zaneva, N. Measurements of radon concentration in soil gas of urban areas, Bulgaria. Rom. J. Phys. 2013, 58, 172–179. [Google Scholar]
- Kikaj, D.; Jeran, Z.; Bahtijari, M.; Stegnar, P. Radon in soil gas in Kosovo. J. Environ. Radioact. 2016, 164, 245–252. [Google Scholar] [CrossRef]
- Dogjani, S.; Muceku, Y.; Lazo, P. Evaluation of Radon Concentration in the Urban Area Foundation of Tirana, Albania. Period. Polytech. Chem. Eng. 2017, 62, 236. [Google Scholar] [CrossRef]
- Elío, J.; Crowley, Q.; Scanlon, R.; Hodgson, J.; Long, S. Rapid radon potential classification using soil-gas radon measurements in the Cooley Peninsula, County Louth, Ireland. Environ. Earth Sci. 2019, 78, 359. [Google Scholar] [CrossRef]
- Cinelli, G.; Tositti, L.; Capaccioni, B.; Brattich, E.; Mostacci, D. Soil gas radon assessment and development of a radon risk map in Bolsena, Central Italy. Environ. Geochem. Health 2015, 37, 305–319. [Google Scholar] [CrossRef] [PubMed]
- Cosma, C.; Papp, B.; Moldovan, M.; Cosma, V.; Cindea, C.; Suciu, L.; Apostu, A. Measurement of radon potential from soil using a special method of sampling. Acta Geophys. 2010, 58, 947–956. [Google Scholar] [CrossRef]
- Florică, Ş.; Burghele, B.D.; Bican-Brişan, N.; Begy, R.; Codrea, V.; Cucoş, A.; Catalina, T.; Dicu, T.; Dobrei, G.; Istrate, A.; et al. The path from geology to indoor radon. Environ. Geochem. Health 2020, 42, 2655–2665. [Google Scholar] [CrossRef]
- Pásztor, L.; Szabó, K.Z.; Szatmári, G.; Laborczi, A.; Horváth, Á. Mapping geogen radon potential by regression kriging. Sci. Total Environ. 2016, 544, 883–891. [Google Scholar] [CrossRef]
- Szabó, K.Z.; Jordan, G.; Horváth, Á.; Szabó, C. Mapping the geogen radon potential: Methodology and spatial analysis for central Hungary. J. Environ. Radioact. 2014, 129, 107–120. [Google Scholar] [CrossRef]
Code | Geological Formations |
---|---|
1 | Dăbâca Series—Sericite Quartzite Schist Formation |
2 | Dăbâca Series—Micaceous Schist Formation with amphibolite Intercalations |
3 | Sebes–Lotru Series—Almandine Mica Schist Subseries |
4 | Rusca Montana Dep. sedimentary cover |
5 | Băuțar Formation |
6 | Voislova Formation |
7 | Alluvial sediments |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lupulescu, A.; Florică, Ș.; Cucoș, A.; Dicu, T.; Baciu, C. The Geogenic Radon Potential in the Eastern Part of the Poiana Ruscă Mountains (Southern Carpathians, Romania). Atmosphere 2025, 16, 596. https://doi.org/10.3390/atmos16050596
Lupulescu A, Florică Ș, Cucoș A, Dicu T, Baciu C. The Geogenic Radon Potential in the Eastern Part of the Poiana Ruscă Mountains (Southern Carpathians, Romania). Atmosphere. 2025; 16(5):596. https://doi.org/10.3390/atmos16050596
Chicago/Turabian StyleLupulescu, Alexandru, Ștefan Florică, Alexandra Cucoș, Tiberius Dicu, and Călin Baciu. 2025. "The Geogenic Radon Potential in the Eastern Part of the Poiana Ruscă Mountains (Southern Carpathians, Romania)" Atmosphere 16, no. 5: 596. https://doi.org/10.3390/atmos16050596
APA StyleLupulescu, A., Florică, Ș., Cucoș, A., Dicu, T., & Baciu, C. (2025). The Geogenic Radon Potential in the Eastern Part of the Poiana Ruscă Mountains (Southern Carpathians, Romania). Atmosphere, 16(5), 596. https://doi.org/10.3390/atmos16050596