Harang Discontinuity Observed by Multi-Instrument Satellites in the Topside Ionosphere During Substorms
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. The Harang Region’s Association with Substorms
3.2. Dawnside Harang Region and Clockwise Rotation Observed in Event 1
3.3. Duskside Harang Region and Anticlockwise Rotation Observed in Event 2
3.4. Duskside Harang Region and Clockwise Rotation Observed in Event 3
3.5. Duskside Harang Region and Clockwise Rotation Observed in Event 4
4. Discussion
5. Conclusions
- (1)
- It develops between the dusk and dawn cells, where one cell wraps around the other.
- (2)
- It depicts the reversals of zonal drift and underlying E-field components.
- (3)
- It depicts the discontinuity itself between the reversing drift/E-field components, where the N–S auroral arc rotated (i.e., just poleward of the substorm onset latitude) and became E–W-directed by following the discontinuity.
- (4)
- It accommodates Earthward electromagnetic energy deposition according to the following:
- Local maximization within the regimes of auroral electrojets (since the accumulated magnetic energy is released into the coupled M–I system during the expansion phase [43]);
- Local minimization or absence within the regime of discontinuity.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AMPERE | Active Magnetosphere and Planetary Electrodynamics Response Experiment |
ASI | All-sky imager |
DMSP | Defense Meteorological Satellite Program |
EEJ | Eastward electrojet |
E-field | Electric field |
ERAM | Along-the-track ram electric field |
EVER | Cross-track vertical or radial electric field |
E–W | East–west |
FACs | Field-aligned currents |
GOESs | Geostationary Operational Environmental Satellites |
HD | Harang Discontinuity |
H–M | Heppner–Maynard |
JH | Hall currents |
JP | Pedersen currents |
M–I | Magnetosphere–Ionosphere |
MLT | Magnetic local time |
N–S | North–south |
R1 | Region 1 |
R2 | Region 2 |
S|| | Poynting flux |
SAID | Subauroral ion drifts |
SAPS | Subauroral polarization streams |
SSUSI | Special Sensor Ultraviolet Spectrographic Imager |
SuperDARN | Super Dual Auroral Radar Network |
VHOR | Cross-track horizontal drift velocity |
WEJ | Westward electrojet |
References
- Heppner, J.P. The Harang discontinuity in auroral belt; Ionospheric currents. Geofys. Publ. 1972, 29, 105–120. [Google Scholar]
- Maynard, N.C. Electric field measurements across the Harang discontinuity. J. Geophys. Res. 1974, 79, 4620–4631. [Google Scholar] [CrossRef]
- Harang, L. The mean field of disturbance of polar geomagnetic storms. Terr. Magn. Atmos. Electr. 1946, 51, 353–380. [Google Scholar] [CrossRef]
- Rodger, A.S.; Cowley, S.W.H.; Brown, M.J.; Pinnock, M.; Simmons, D.A. Dawn-dusk (y) component of the interplanetary magnetic field and the local time of the Harang discontinuity. Planet. Space Sci. 1984, 32, 1021–1027. [Google Scholar] [CrossRef]
- Kauristie, K.; Syrjäsuo, M.; Amm, O.; Viljanen, A.; Pulkkinen, T.; Opgenoorth, H. A statistical study of evening sector arcs and electrojets. Adv. Space Res. 2001, 28, 1605–1610. [Google Scholar] [CrossRef]
- Dungey, J.W. Interplanetary magnetic field and the auroral zones. Phys. Rev. Lett. 1961, 6, 47–48. [Google Scholar] [CrossRef]
- Heppner, J.P. Empirical models of high-latitude electric fields. J. Geophys. Res. 1977, 82, 1115–1125. [Google Scholar] [CrossRef]
- Kamide, Y. On current continuity at the Harang discontinuity. Planet. Space Sci. 1978, 26, 237–244. [Google Scholar] [CrossRef]
- Madsen, M.M.; Iversen, I.B.; D’Angelo, N. Measurements of high-latitude ionospheric electric fields by means of balloon-borne sensors. J. Geophys. Res. 1976, 81, 3821–3824. [Google Scholar] [CrossRef]
- Koskinen, H.E.J.; Pulkkinen, T.I. Midnight velocity shear zone and the concept of Harang discontinuity. J. Geophys. Res. 1995, 100, 9539–9547. [Google Scholar] [CrossRef]
- Erickson, G.M.; Spiro, R.W.; Wolf, R.A. The physics of the Harang discontinuity. J. Geophys. Res. 1991, 96, 1633–1645. [Google Scholar] [CrossRef]
- Lezniak, T.; Winckler, J. Experimental study of magnetospheric motions and the acceleration of energetic electrons during substorms. J. Geophys. Res. 1970, 75, 7075–7098. [Google Scholar] [CrossRef]
- Akasofu, S.I. Auroral Substorms: Search for Processes Causing the Expansion Phase in Terms of the Electric Current Approach. Space Sci. Rev. 2017, 212, 341–381. [Google Scholar] [CrossRef]
- Lyons, L.R.; Zesta, E.; Samson, J.C.; Reeves, G.D. Auroral disturbances during the January 10, 1997 magnetic storm. Geophys. Res. Lett. 2000, 27, 3237–3240. [Google Scholar] [CrossRef]
- Lyons, L.R.; Nagai, T.; Blanchard, G.T.; Samson, J.C.; Yamamoto, T.; Mukai, T.; Nishida, A.; Kokubun, S. Association between Geotail plasma flows and auroral poleward boundary intensifications observed by CANOPUS photometers. J. Geophys. Res. 1999, 104, 4485–4500. [Google Scholar] [CrossRef]
- Sergeev, V.A.; Sauvaud, J.-A.; Popescu, D.; Kovrazhkin, R.A.; Liou, K.; Newell, P.T.; Brittnacher, M.; Parks, G.; Nakamura, R.; Mukai, T.; et al. Multiple-spacecraft observation of a narrow transient plasma jet in the Earth’s plasma sheet. Geophys. Res. Lett. 2000, 27, 851–854. [Google Scholar] [CrossRef]
- Nakamura, R.; Baumjohann, W.; Schödel, R.; Brittnacher, M.; Sergeev, V.A.; Kubyshkina, M.; Mukai, T.; Liou, K. Earthward flow bursts, auroral streamers, and small expansions. J. Geophys. Res. 2001, 106, 10791–10802. [Google Scholar] [CrossRef]
- Zesta, E.; Lyons, L.; Wang, C.-P.; Donovan, E.; Frey, H.; Nagai, T. Auroral poleward boundary intensifications (PBIS): Their two-dimensional structure and associated dynamics in the plasma sheet. J. Geophys. Res. 2006, 111, A05201. [Google Scholar] [CrossRef]
- Weygand, J.M.; McPherron, R.L.; Frey, H.; Amm, O.; Kauristie, K.; Viljanen, A.T.; Koistinen, A. Relation of substorm onset to Harang discontinuity. J. Geophys. Res. 2008, 113, A04213. [Google Scholar] [CrossRef]
- Zou, S.; Lyons, L.R.; Nicolls, M.J.; Heinselman, C.J.; Mende, S.B. Nightside ionospheric electrodynamics associated with substorms: PFISR and THEMIS ASI observations. J. Geophys. Res. Space Phys. 2009, 114, A12301. [Google Scholar] [CrossRef]
- Zou, S.; Lyons, L.R.; Wang, C.-P.; Boudouridis, A.; Ruohoniemi, J.M.; Anderson, P.C.; Dyson, P.L.; Devlin, J.C. On the coupling between the Harang reversal evolution and substorm dynamics: A synthesis of SuperDARN, DMSP, and IMAGE observations. J. Geophys. Res. 2009, 114, A01205. [Google Scholar] [CrossRef]
- Nishimura, Y.; Lyons, L.; Zou, S.; Angelopoulos, V.; Mende, S. Substorm triggering by new plasma intrusion: THEMIS all-sky imager observations. J. Geophys. Res. 2010, 115, A07222. [Google Scholar] [CrossRef]
- Horvath, I.; Lovell, B.C. Magnetosphere–Ionosphere Conjugate Harang Discontinuity and Sub-Auroral Polarization Streams (SAPS) Phenomena Observed by Multipoint Satellites. Atmosphere 2024, 15, 1462. [Google Scholar] [CrossRef]
- Lyons, L.R.; Lee, D.-Y.; Wang, C.-P.; Mende, S.B. Relation of substorm disturbances triggered by abrupt solar-wind changes to physics of plasma sheet transport. In International Conference on Substorms-8; Syrjasuo, M., Donovan, E., Eds.; Institute for Space Research, University of Calgary: Calgary, AB, Canada, 2006; p. 165. [Google Scholar]
- Gkioulidou, M.; Wang, C.-P.; Lyons, L.R.; Wolf, R.A. Formation of the Harang reversal and its dependence on plasma sheet conditions: Rice convection model simulations. J. Geophys. Res. 2009, 114, A07204. [Google Scholar] [CrossRef]
- Rich, F.J.; Hairston, M. Large-scale convection patterns observed by DMSP. J. Geophys. Res. 1994, 99, 3827–3844. [Google Scholar] [CrossRef]
- Kilcommons, L.M.; Knipp, D.J.; Hairston, M.; Coley, W.R. DMSP Poynting flux: Data processing and inter-spacecraft comparisons. J. Geophys. Res. Space Phys. 2022, 127, e2022JA030299. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.Y.; Burke, W.J. Transient sheets of field-aligned current observed by DMSP during the main phase of a magnetic superstorm. J. Geophys. Res. 2004, 109, A06303. [Google Scholar] [CrossRef]
- Huang, C.Y.; Su, Y.; Sutton, E.K.; Weimer, D.R.; Davidson, R.L. Energy coupling during the August 2011 magnetic storm. J. Geophys. Res. Space Phys. 2014, 119, 1219–1232. [Google Scholar] [CrossRef]
- Paxton, L.J.; Meng, C.I.; Fountain, G.H.; Ogorzalek, B.S.; Darlington, E.H.; Goldsten, J.; Kusnierkiewicz, D.Y.; Lee, S.C.; Linstrom, L.A.; Maynard, J.J.; et al. Special Sensor UV Spectrographic Imager (SSUSI): An instrument description. In Instrumentation for Planetary and Terrestrial Atmospheric Remote Sensing; SPIE: Bellingham, WA, USA, 1992; Volume 1745, pp. 2–16. [Google Scholar] [CrossRef]
- Paxton, L.J.; Morrison, D.; Zhang, Y.; Kil, H.; Wolven, B.; Ogorzalek, B.S.; Humm, D.C.; Meng, C.-I. Validation of remote sensing products produced by the Special Sensor Ultraviolet Scanning Imager (SSUSI): A far UV-imaging spectrograph on DMSP F-16. In Optical Spectroscopic Techniques, Remote Sensing, and Instrumentation for Atmospheric and Space Research IV; SPIE: Bellingham, WA, USA, 2002; Volume 4485. [Google Scholar] [CrossRef]
- Anderson, B.J.; Korth, H.; Waters, C.L.; Green, D.L.; Merkin, V.G.; Barnes, R.J.; Dyrud, L.P. Development of large-scale birkeland currents determined from the active magnetosphere and planetary electrodynamics response experiment. Geophys. Res. Lett. 2014, 41, 3017–3025. [Google Scholar] [CrossRef]
- Anderson, B.J.; Olson, C.N.; Korth, H.; Barnes, R.J.; Waters, C.L.; Vines, S.K. Temporal and spatial development of global Birkeland currents. J. Geophys. Res. Space Phys. 2018, 123, 4785–4808. [Google Scholar] [CrossRef]
- Ruohoniemi, J.M.; Greenwald, R.A. Dependencies of high-latitude plasma convection: Consideration of interplanetary magnetic field, seasonal, and universal time factors in statistical patterns. J. Geophys. Res. 2005, 110, A09204. [Google Scholar] [CrossRef]
- Greenwald, R.A.; Bristow, W.A.; Sofko, G.J.; Senior, C.; Cerisier, J.C.; Szabo, A. Super dual auroral radar network radar imaging of dayside high-latitude convection under northward interplanetary magnetic field: Toward resolving the distorted two-cell versus multicell controversy. J. Geophys. Res. 1995, 100, 19661–19674. [Google Scholar] [CrossRef]
- Nishitani, N.; Ruohoniemi, J.M.; Lester, M.; Baker, J.B.H.; Koustov, A.V.; Shepherd, S.G.; Chisham, G.; Hori, T.; Thomas, E.G.; Makarevich, R.A.; et al. Review of the accomplishments of mid-latitude Super Dual Auroral Radar Network (SuperDARN) HF radars. Prog. Earth Planet. Sci. 2019, 6, 27. [Google Scholar] [CrossRef]
- Heppner, J.P.; Maynard, N.C. Empirical high-latitude electric field models. J. Geophys. Res. 1987, 92, 4467–4489. [Google Scholar] [CrossRef]
- Walach, M.-T.; Grocott, A.; Thomas, E.G.; Staples, F. Dusk-Dawn Asymmetries in SuperDARN Convection Maps. J. Geophys. Res. Space Phys. 2022, 127, e2022JA030906. [Google Scholar] [CrossRef]
- Imber, S.M.; Milan, S.E.; Lester, M. The Heppner-Maynard Boundary measured by SuperDARN as a proxy for the latitude of the auroral oval. J. Geophys. Res. Space Phys. 2013, 118, 685–697. [Google Scholar] [CrossRef]
- Sergeev, V.A.; Angelopoulos, V.; Kubyshkina, M.; Donovan, E.; Zhou, X.-Z.; Runov, A.; Singer, H.; McFadden, J.; Nakamura, R. Substorm growth and expansion onset as observed with ideal ground-spacecraft THEMIS coverage. J. Geophys. Res. 2011, 116, A00I26. [Google Scholar] [CrossRef]
- Petrukovich, A.A.; Artemyev, A.V.; Nakamura, R.; Panov, E.V.; Baumjohann, W. Cluster observations of dBz/dx during growth phase magnetotail stretching intervals. J. Geophys. Res. 2013, 118, 5720–5730. [Google Scholar] [CrossRef]
- Artemyev, A.V.; Angelopoulos, V.; Runov, A.; Petrukovich, A.A. Properties of current sheet thinning at x∼− 10 to− 12 RE. J. Geophys. Res. 2016, 121, 6718–6731. [Google Scholar] [CrossRef]
- Kokubun, S. Polar substorm and interplanetary magnetic field. Planet. Space Sci. 1971, 19, 697–704. [Google Scholar] [CrossRef]
- Akasofu, S.-I. Where is the magnetic energy for the expansion phase of auroral substorms accumulated? 2. The main body, not the magnetotail. J. Geophys. Res. Space Phys. 2017, 122, 8479–8487. [Google Scholar] [CrossRef]
- Cummings, W.D.; Barfield, J.N.; Coleman, P.J., Jr. Magnetospheric substorms observed at the synchronous orbit. J. Geophys. Res. 1968, 73, 6687–6698. [Google Scholar] [CrossRef]
- Sergeev, V.A.; Chernyaev, I.A.; Dubyagin, S.V.; Miyashita, Y.; Angelopoulos, V.; Boakes, P.D.; Boakes, D.; Nakamura, R.; Henderson, M.G. Energetic particle injections to geostationary orbit: Relationship to flow bursts and magnetospheric state. J. Geophys. Res. 2012, 117, A10207. [Google Scholar] [CrossRef]
- Angelopoulos, V.; Baumjohann, W.; Kennel, C.F.; Coroniti, F.V.; Kivelson, M.G.; Pellat, R.; Walker, R.J.; Lühr, H.; Paschmann, G. Bursty bulk flows in the inner central plasma sheet. J. Geophys. Res. 1992, 97, 4027–4039. [Google Scholar] [CrossRef]
- Sergeev, V.A.; Nikolaev, A.V.; Tsyganenko, N.A.; Angelopoulos, V.; Runov, A.V.; Singer, H.J.; Yang, J. Testing a two-loop pattern of the substorm current wedge (SCW2L). J. Geophys. Res. Space Phys. 2014, 119, 947–963. [Google Scholar] [CrossRef]
- Wei, D.; Zhang, F.; Yang, J.; Wang, W.; Sun, W.; Cui, J.; Angelopoulos, V. A magnetospheric driver of westward traveling surge: Plasmasheet bubble. Geophys. Res. Lett. 2021, 48, e2021GL095539. [Google Scholar] [CrossRef]
- Wei, D.; Yang, J.; Liu, C.; Zhang, F.; Wang, W.; Sun, W. Successive westward traveling surges driven by sequential plasma-sheet bubble injections. Geophys. Res. Lett. 2022, 49, e2022GL100774. [Google Scholar] [CrossRef]
- Akasofu, S.-I. The development of the auroral substorm. Planet. Space 1964, 12, 273–282. [Google Scholar] [CrossRef]
- Akasofu, S.-I.; Kimball, D.S.; Meng, C.-I. The dynamics of the aurora. II. Westward traveling surges. J. Atmos. Terr. Phys. 1965, 27, 173–187. [Google Scholar] [CrossRef]
- Baumjohann, W.; Pellinen, R.J.; Opgenoorth, H.J.; Nielsen, E. Joint two-dimensional observations of ground magnetic and ionospheric electric fields associated with auroral-zone currents: Current systems associated with local auroral breakups. Planet. Space Sci. 1981, 29, 431–447. [Google Scholar] [CrossRef]
- Bristow, W.A.; Sofko, G.J.; Stenbaek-Nielsen, H.C.; Wei, S.; Lummerzheim, D.; Otto, A. Detailed analysis of substorm observations using SuperDARN, UVI, ground-based magnetometers, and all-sky imagers. J. Geophys. Res. 2003, 108, 1124. [Google Scholar] [CrossRef]
- Kleimenova, N.G.; Gromova, L.I.; Gromov, S.V.; Malysheva, L.M.; Despirak, I.V. ‘Polar’ Substorms and the Harang Discontinuity. Geomagn. Aeron. 2024, 64, 490–499. [Google Scholar] [CrossRef]
- Forsyth, C.; Rae, I.J.; Coxon, J.C.; Freeman, M.P.; Jackman, C.M.; Gjerloev, J.; Fazakerley, A.N. A new technique for determining substorm onsets and phases from indices of the electrojet (SOPHIE). J. Geophys. Res. Space Phys. 2015, 120, 10592–10606. [Google Scholar] [CrossRef]
- Svaldi, V.; Matsuo, T.; Kilcommons, L.; Gallardo-Lacourt, B. High-latitude ionospheric electrodynamics during STEVE and non-STEVE substorm events. J. Geophys. Res. Space Phys. 2023, 128, e2022JA030277. [Google Scholar] [CrossRef]
- Nishimura, Y.; Yang, J.; Weygand, J.M.; Wang, W.; Kosar, B.; Donovan, E.F.; Angelopoulos, V.; Paxton, L.J.; Nishitani, N. Magnetospheric conditions for STEVE and SAID: Particle injection, substorm surge, and field-aligned currents. J. Geophys. Res. Space Phys. 2020, 125, e2020JA027782. [Google Scholar] [CrossRef]
- Ohtani, S.; Gjerloev, J.W. Is the substorm current wedge an ensemble of wedgelets? Revisit to midlatitude positive bays. J. Geophys. Res. Space Phys. 2020, 125, e2020JA027902. [Google Scholar] [CrossRef]
- Kamide, Y.; Kokubun, S. Two-component auroral electrojet: Importance for substorm studies. J. Geophys. Res. 1996, 101, 13027–13046. [Google Scholar] [CrossRef]
- Milan, S.E.; Hubert, B.; Grocott, A. Formation and motion of a transpolar arc in response to dayside and nightside reconnection. J. Geophys. Res. Space Phys. 2005, 110, A01212. [Google Scholar] [CrossRef]
- Kissinger, J.; Wilder, F.D.; McPherron, R.L.; Hsu, T.-S.; Baker, J.B.H.; Kepko, L. Statistical occurrence and dynamics of the Harang discontinuity during steady magnetospheric convection. J. Geophys. Res. Space Phys. 2013, 118, 5127–5135. [Google Scholar] [CrossRef]
- Grocott, A.; Milan, S.E.; Yeoman, T.K.; Sato, N.; Yukimatu, A.S.; Wild, J.A. Superposed epoch analysis of the ionospheric convection evolution during substorms: IMF BY dependence. J. Geophys. Res. 2010, 115, A00I06. [Google Scholar] [CrossRef]
- Foster, J.C.; Burke, W.J. SAPS: A new categorization for sub-auroral electric fields. Eos Trans. Am. Geophys. Union 2002, 83, 393–394. [Google Scholar] [CrossRef]
- Anderson, P.C.; Heelis, R.A.; Hanson, W.B. The ionospheric signatures of rapid subauroral ion drifts. J. Geophys. Res. 1991, 96, 5785–5792. [Google Scholar] [CrossRef]
- Galperin, Y.L.; Ponomarev, V.N.; Zosimova, A.G. Plasma convection in the polar ionosphere. Ann. De Geophys. 1974, 30, 1–7. [Google Scholar]
- Mishin, E.V. Interaction of substorm injections with the subauroral geospace: 1. Multispacecraft observations of SAID. J. Geophys. Res. Space Phys. 2013, 118, 5782–5796. [Google Scholar] [CrossRef]
- Ma, R.; Xu, J.; Wang, W.; Lei, J.; Liu, H.-L.; Maute, A.; Hagan, M.E. Variations of the nighttime thermospheric mass density at low and middle latitudes. J. Geophys. Res. 2010, 115, 301–324. [Google Scholar] [CrossRef]
Event | DMSP | Harang Reversal | Magnetic Local Time (MLT) Sector |
---|---|---|---|
Event 1: 22 August 2013 Scenarios 1 and 2 | F17 F16 and F18 | clockwise: WEJ → EEJ | postmidnight: 0–2 MLT |
Event 2: 9 April 2013 | F15 | anticlockwise: EEJ → WEJ | premidnight: 21–23 MLT |
Event 3: 17 March 2012 | F15 | clockwise: EEJ → WEJ | dusk: 18 MLT |
Event 4: 9 November 2013 | F17 | clockwise: WEJ → EEJ | dusk: 17 MLT |
Event No. | IMF BY (nT) | IMF BZ (nT) | Kp | AE (nT) | AL (nT) |
---|---|---|---|---|---|
1 | −2 | −1 | 2+ | 200 | −100 |
2 | 3.5 | −2 | 1+ | 50 | −35 |
3 | −4 | −2 | 4+ | 700 | −500 |
4 | 5 | 9 | 4- | 800 | −650 |
DMSP F17 Observables | Scenario 1 of Event 1: Dawnside Harang Region | ||
---|---|---|---|
Reversal by Clockwise Rotation WEJ → EEJ | Discontinuity Width: 1° in MLAT | ||
VHOR (m/s) | 2500 (sunward) | −2200 (antisunward) | 0 |
ERAM (mV/m) | −100 (equatorward) | 75 (poleward) | 0 |
EVER (mV/m) | data gap | 18 (outward) | 0 |
Poynting flux (mW/m2) | 12.5 (Earthward) | 14.5 (Earthward) | decrease: from 2.5 (Earthward) to −1.0 (outward) |
DMSP F16 Observables | Scenario 2 of Event 1: Dawnside Harang Region | ||
---|---|---|---|
Reversal by Clockwise Rotation WEJ → EEJ | Discontinuity Width: 0.3° in MLAT | ||
VHOR (m/s) | 2800 (sunward) | −3000 (antisunward) | 0 |
ERAM (mV/m) | −100 (equatorward) | 180 (poleward) | 0 |
EVER (mV/m) | −20 (inward) | 48 (outward) | 0 |
Poynting flux (mW/m2) | 9 (Earthward) | 12 (Earthward) | close to zero |
DMSP F18 Observables | Scenario 2 of Event 1: Dawnside Harang Region | ||
---|---|---|---|
Reversal by Clockwise Rotation WEJ → EEJ | Discontinuity Width: 1.2° in MLAT | ||
VHOR (m/s) | 3200 (sunward) | −2000 (antisunward) | 0 |
ERAM (mV/m) | −150 (equatorward) | 70 (poleward) | 0 |
EVER (mV/m) | −20 (inward) | 8 (outward) | 0 |
Poynting flux (mW/m2) | 4 (Earthward) | 5 (Earthward) | close to zero |
DMSP F15 Observables | Event 2: Duskside Harang Region | ||
---|---|---|---|
Reversal by Anticlockwise Rotation EEJ → WEJ | Discontinuity Width: 1.3° in MLAT | ||
VHOR (m/s) | 1800 (sunward) | −1800 (antisunward) | 0 |
ERAM (mV/m) | 60 (poleward) | −50 (equatorward) | 0 |
EVER (mV/m) | data gap | data gap | 0 |
Poynting flux (mW/m2) | −0.2 (outward) | 4.5 (Earthward) | increase: from −0.2 (outward) to 0.4 (Earthward) |
DMSP F15 Observables | Event 3: Duskside Harang Region | ||
---|---|---|---|
Reversal by Clockwise Rotation EEJ → WEJ | Discontinuity Width: 1.6° in MLAT | ||
VHOR (m/s) | 3000 (sunward) | −3000 (antisunward) | 0 |
ERAM (mV/m) | 90 (poleward) | −70 (equatorward) | 0 |
EVER (mV/m) | data gap | data gap | 0 |
Poynting flux (mW/m2) | 11.5 (outward) | 11.5 (Earthward) | 1 (Earthward) |
DMSP F17 Observables | Event 4: Duskside Harang Region | ||
---|---|---|---|
Reversal by Clockwise Rotation EEJ → WEJ | Discontinuity Width: 5° in MLAT | ||
VHOR (m/s) | 2600 (sunward) | −2500 (antisunward) | 0 |
ERAM (mV/m) | 90 (poleward) | −100 (equatorward) | 0 |
EVER (mV/m) | 10 (outward) | −10 (inward) | 0 |
Poynting flux (mW/m2) | 33 (outward) | 19 (Earthward) | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Horvath, I.; Lovell, B.C. Harang Discontinuity Observed by Multi-Instrument Satellites in the Topside Ionosphere During Substorms. Atmosphere 2025, 16, 595. https://doi.org/10.3390/atmos16050595
Horvath I, Lovell BC. Harang Discontinuity Observed by Multi-Instrument Satellites in the Topside Ionosphere During Substorms. Atmosphere. 2025; 16(5):595. https://doi.org/10.3390/atmos16050595
Chicago/Turabian StyleHorvath, Ildiko, and Brian C. Lovell. 2025. "Harang Discontinuity Observed by Multi-Instrument Satellites in the Topside Ionosphere During Substorms" Atmosphere 16, no. 5: 595. https://doi.org/10.3390/atmos16050595
APA StyleHorvath, I., & Lovell, B. C. (2025). Harang Discontinuity Observed by Multi-Instrument Satellites in the Topside Ionosphere During Substorms. Atmosphere, 16(5), 595. https://doi.org/10.3390/atmos16050595