Analyzing the Influence of Saint Patrick’s Day Geomagnetic Storm on the Maximum Usable Frequency (MUF) in the Brazilian Equatorial and Low-Latitude Ionosphere
Abstract
1. Introduction
- Focus on MUF: While previous studies have extensively analyzed ionospheric parameters such as TEC and foF2, this study provides a comprehensive analysis of the MUF, which is crucial for HF radio communication. We investigate how the MUF is influenced by the storm-induced changes in the F-region heights and plasma densities. The Brazilian ionosphere is particularly sensitive to geomagnetic disturbances due to its location near the magnetic equator within the SAMA, and this study presents new observational evidence of how MUF variations correlate with PPEF-driven electrodynamic processes in this region, in respect to this storm.
- Long Recovery Phase: The 2015 Saint Patrick’s Day storm had an unusually long recovery phase, which is not well understood. This study investigates and reveals how this prolonged recovery phase affected ionospheric parameters, particularly showing how disturbance dynamo effects modified the typical MUF patterns at equatorial and low latitude regions.
- F3 Layer Formation: Our observations document the complete life cycle of storm-induced F3 layer formation, from its genesis during PPEF events to its dissipation. We demonstrate how the F3 layer’s formation through vertical redistribution of the F2 layer directly impacts radio propagation characteristics, with quantitative evidence of its effects on MUF variations. This provides new insights into the connection between electric field enhancements and multi-layer ionospheric structures in the Brazilian sector under the impact of the anomalously weak magnetic field. Thus, in contrast to Venkatesh et al. [13] and Astafyeva et al. [22], our work uniquely provides quantitative MUF deviations and documents the complete F3-layer life cycle in the Brazilian sector.
2. Methodology
2.1. Data
- The critical frequency of the ordinary wave of the F2 layer, foF2 (in MHz),
- The actual peak height of the ordinary wave of the F2 layer, hmF2 (in km),
- The F-layer virtual height, h’F (in km),
- The observed Maximum Usable Frequency for a propagation distance of 3000 km, MUF(D) (in MHz),
- The calculated MUF (in MHz), and
- The transmission or propagation factor, M(D) (a dimensionless quantity).
2.2. Identification of Events from Observations
3. Results & Discussion
3.1. Saint Patrick’s Day Geomagnetic Storm: 17–25 March 2015
3.2. Brazilian Low Latitude Ionospheric Response: foF2 and MUF
3.3. Maximum Usable Frequency—Observed and Calculated
3.4. Ionospheric Response on the Day Before the Storm Commencement
3.5. Ionospheric Response During the Main Phase of the Saint Patrick’s Day Storm
3.6. Ionospheric Response on the 1st Day of the Storm’s Recovery Phase
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A




References
- Kelley, M.C. The Earth’s Ionosphere: Plasma Physics and Electrodynamics; Academic Press: Cambridge, MA, USA, 2009. [Google Scholar]
- Mallios, S.A.; Pasko, V.P. Charge transfer to the ionosphere and to the ground during thunderstorms. J. Geophys. Res. Space Phys. 2012, 117. [Google Scholar] [CrossRef]
- Budden, K.G. Radio waves in the ionosphere. In Radio Waves in the Ionosphere; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Hagfors, T.; Schlegel, K. Earth’s ionosphere. In The Century of Space Science; Springer: Berlin/Heidelberg, Germany, 2001; pp. 1559–1584. [Google Scholar]
- Astafyeva, E.; Zakharenkova, I.; Hozumi, K.; Alken, P.; Coïsson, P.; Hairston, M.R.; Coley, W.R. Study of the equatorial and low-latitude electrodynamic and ionospheric disturbances during the 22–23 June 2015 geomagnetic storm using ground-based and spaceborne techniques. J. Geophys. Res. Space Phys. 2018, 123, 2424–2440. [Google Scholar] [CrossRef] [PubMed]
- Haider, S.; Abdu, M.; Batista, I.; Sobral, J.; Luan, X.; Kallio, E.; Maguire, W.; Verigin, M.; Singh, V. D, E, and F layers in the daytime at high-latitude terminator ionosphere of Mars: Comparison with Earth’s ionosphere using COSMIC data. J. Geophys. Res. Space Phys. 2009, 114. [Google Scholar] [CrossRef]
- Cander, L.R.; Bamford, R.; Hickford, J. Nowcasting and forecasting the foF2, MUF (3000) F2 and TEC based on empirical models and real-time data. In Proceedings of the Twelfth International Conference on Antennas and Propagation, 2003 (ICAP 2003). (Conf. Publ. No. 491), Exeter, UK, 31 March–3 April 2003; IET: London, UK, 2003; Volume 1, pp. 139–142. [Google Scholar]
- Athieno, R.; Jayachandran, P. MUF variability in the Arctic region: A statistical comparison with the ITU-R variability factors. Radio Sci. 2016, 51, 1278–1285. [Google Scholar] [CrossRef]
- Wang, N.; Yue, J.; Wang, W.; Qian, L.; Jian, L.; Zhang, J. A Comparison of the CIR-and CME-Induced Geomagnetic Activity Effects on Mesosphere and Lower Thermospheric Temperature. J. Geophys. Res. Space Phys. 2021, 126, e2020JA029029. [Google Scholar] [CrossRef]
- Mondal, S.; Chakrabarti, S. Earth’s Ionosphere as a Gigantic Detector of Extra-terrestrial Energetic Phenomena: A Review. AIP Conf. Proc. 2010, 1286, 311–330. [Google Scholar]
- Tulasi Ram, S.; Yokoyama, T.; Otsuka, Y.; Shiokawa, K.; Sripathi, S.; Veenadhari, B.; Heelis, R.; Ajith, K.; Gowtam, V.S.; Gurubaran, S.; et al. Duskside enhancement of equatorial zonal electric field response to convection electric fields during the St. Patrick’s Day storm on 17 March 2015. J. Geophys. Res. Space Phys. 2016, 121, 538–548. [Google Scholar] [CrossRef]
- Ram, S.T.; Kumar, S.; Su, S.Y.; Veenadhari, B.; Ravindran, S. The influence of Corotating Interaction Region (CIR) driven geomagnetic storms on the development of equatorial plasma bubbles (EPBs) over wide range of longitudes. Adv. Space Res. 2015, 55, 535–544. [Google Scholar] [CrossRef]
- Venkatesh, K.; Tulasi Ram, S.; Fagundes, P.; Seemala, G.K.; Batista, I. Electrodynamic disturbances in the Brazilian equatorial and low-latitude ionosphere on St. Patrick’s Day storm of 17 March 2015. J. Geophys. Res. Space Phys. 2017, 122, 4553–4570. [Google Scholar] [CrossRef]
- Gonzales, C.; Kelley, M.; Fejer, B.G.; Vickrey, J.; Woodman, R. Equatorial electric fields during magnetically disturbed conditions 2. Implications of simultaneous auroral and equatorial measurements. J. Geophys. Res. Space Phys. 1979, 84, 5803–5812. [Google Scholar] [CrossRef]
- Kikuchi, T.; Lühr, H.; Kitamura, T.; Saka, O.; Schlegel, K. Direct penetration of the polar electric field to the equator during a DP 2 event as detected by the auroral and equatorial magnetometer chains and the EISCAT radar. J. Geophys. Res. Space Phys. 1996, 101, 17161–17173. [Google Scholar] [CrossRef]
- Bhaskar, A.; Vichare, G. Characteristics of penetration electric fields to the equatorial ionosphere during southward and northward IMF turnings. J. Geophys. Res. Space Phys. 2013, 118, 4696–4709. [Google Scholar] [CrossRef]
- Blanc, M.; Richmond, A. The ionospheric disturbance dynamo. J. Geophys. Res. Space Phys. 1980, 85, 1669–1686. [Google Scholar] [CrossRef]
- Sastri, J.H. Equatorial electric fields of ionospheric disturbance dynamo origin. In Proceedings of the International Symposium on Equatorial Aeronomy, Vienna, Austria, 22–27 August 1988; pp. 123–130. [Google Scholar]
- Astafyeva, E.; Zakharenkova, I.; Huba, J.; Doornbos, E.; Van den IJssel, J. Global ionospheric and thermospheric effects of the June 2015 geomagnetic disturbances: Multi-instrumental observations and modeling. J. Geophys. Res. Space Phys. 2017, 122, 11–716. [Google Scholar] [CrossRef]
- Perreault, P.; Akasofu, S. A study of geomagnetic storms. Geophys. J. Int. 1978, 54, 547–573. [Google Scholar] [CrossRef]
- Russell, C.T.; McPherron, R.L.; Burton, R.K. On the cause of geomagnetic storms. J. Geophys. Res. 1974, 79, 1105–1109. [Google Scholar] [CrossRef]
- Astafyeva, E.; Zakharenkova, I.; Förster, M. Ionospheric response to the 2015 St. Patrick’s Day storm: A global multi-instrumental overview. J. Geophys. Res. Space Phys. 2015, 120, 9023–9037. [Google Scholar] [CrossRef]
- Nava, B.; Rodríguez-Zuluaga, J.; Alazo-Cuartas, K.; Kashcheyev, A.; Migoya-Orué, Y.; Radicella, S.; Amory-Mazaudier, C.; Fleury, R. Middle-and low-latitude ionosphere response to 2015 St. Patrick’s Day geomagnetic storm. J. Geophys. Res. Space Phys. 2016, 121, 3421–3438. [Google Scholar] [CrossRef]
- Bojilova, R.; Mukhtarov, P.; Pancheva, D. Global Ionospheric Response During Extreme Geomagnetic Storm in May 2024. Remote Sens. 2024, 16, 4046. [Google Scholar] [CrossRef]
- Shahzad, R.; Shah, M.; Tariq, M.A.; Calabia, A.; Melgarejo-Morales, A.; Jamjareegulgarn, P.; Liu, L. Ionospheric–Thermospheric Responses to Geomagnetic Storms from Multi-Instrument Space Weather Data. Remote Sens. 2023, 15, 2687. [Google Scholar] [CrossRef]
- Aa, E.; Chen, Y.; Luo, B. Dynamic Expansion and Merging of the Equatorial Ionization Anomaly During the 10–11 May 2024 Super Geomagnetic Storm. Remote Sens. 2024, 16, 4290. [Google Scholar] [CrossRef]
- He, L.; Guo, C.; Yue, Q.; Zhang, S.; Qin, Z.; Zhang, J. A Novel Ionospheric Disturbance Index to Evaluate the Global Effect on BeiDou Navigation Satellite System Signal Caused by the Moderate Geomagnetic Storm on May 12, 2021. Sensors 2023, 23, 1183. [Google Scholar] [CrossRef]
- Atabati, A.; Jazireeyan, I.; Alizadeh, M.; Pirooznia, M.; Flury, J.; Schuh, H.; Soja, B. Analyzing the Ionospheric Irregularities Caused by the September 2017 Geomagnetic Storm Using Ground-Based GNSS, Swarm, and FORMOSAT-3/COSMIC Data near the Equatorial Ionization Anomaly in East Africa. Remote Sens. 2023, 15, 5762. [Google Scholar] [CrossRef]
- Abdu, M.A.; Batista, I.; Carrasco, A.; Brum, C. South Atlantic magnetic anomaly ionization: A review and a new focus on electrodynamic effects in the equatorial ionosphere. J. Atmos. Sol.-Terr. Phys. 2005, 67, 1643–1657. [Google Scholar] [CrossRef]
- Abdu, M.; De Paula, E.; Batista, I.; Reinisch, B.; Matsuoka, M.; Camargo, P.; Veliz, O.; Denardini, C.; Sobral, J.; Kherani, E.; et al. Abnormal evening vertical plasma drift and effects on ESF and EIA over Brazil-South Atlantic sector during the 30 October 2003 superstorm. J. Geophys. Res. Space Phys. 2008, 113. [Google Scholar] [CrossRef]
- Abdu, M.A. Equatorial ionosphere–thermosphere system: Electrodynamics and irregularities. Adv. Space Res. 2005, 35, 771–787. [Google Scholar] [CrossRef]
- de Paula, E.R.; de Oliveira, C.B.; Caton, R.G.; Negreti, P.M.; Batista, I.S.; Martinon, A.R.; Neto, A.C.; Abdu, M.A.; Monico, J.F.; Sousasantos, J.; et al. Ionospheric irregularity behavior during the September 6–10, 2017 magnetic storm over Brazilian equatorial–low latitudes. Earth Planets Space 2019, 71, 42. [Google Scholar] [CrossRef]
- Khmyrov, G.M.; Galkin, I.A.; Kozlov, A.V.; Reinisch, B.W.; McElroy, J.; Dozois, C. Exploring digisonde ionogram data with SAO-X and DIDBase. AIP Conf. Proc. 2008, 974, 175–185. [Google Scholar] [CrossRef]
- Galkin, I.; Khmyrov, G.; Kozlov, A.; Reinisch, B.; Huang, X.; Kitrosser, D. Ionosonde networking, databasing, and Web serving. Radio Sci. 2006, 41, 1–6. [Google Scholar] [CrossRef]
- Souza, R.J.; Batista, S.I.; Costa, F.R. A Simple Method to Calculate the Maximum Usable Frequency. In Proceedings of the 13th International Congress of the Brazilian Geophysical Society & EXPOGEF, Rio de Janeiro, Brazil, 26–29 August 2013; pp. 26–29. [Google Scholar]
- Hysell, D. Antennas and Radar for Environmental Scientists and Engineers; Cambridge University Press: Cambridge, UK, 2018. [Google Scholar]
- Abdu, M.; Souza, J.; Batista, I.; Fejer, B.; Sobral, J. Sporadic E layer development and disruption at low latitudes by prompt penetration electric fields during magnetic storms. J. Geophys. Res. Space Phys. 2013, 118, 2639–2647. [Google Scholar] [CrossRef]
- Kuai, J.; Liu, L.; Liu, J.; Sripathi, S.; Zhao, B.; Chen, Y.; Le, H.; Hu, L. Effects of disturbed electric fields in the low-latitude and equatorial ionosphere during the 2015 St. Patrick’s Day storm. J. Geophys. Res. Space Phys. 2016, 121, 9111–9126. [Google Scholar] [CrossRef]
- Polekh, N.; Zolotukhina, N.; Kurkin, V.; Zherebtsov, G.; Shi, J.; Wang, G.; Wang, Z. Dynamics of ionospheric disturbances during the 17–19 March 2015 geomagnetic storm over East Asia. Adv. Space Res. 2017, 60, 2464–2476. [Google Scholar] [CrossRef]
- Singh, R.; Lee, Y.; Song, S.; Kim, Y.; Yun, J.; Sripathi, S.; Rajesh, B. Ionospheric density oscillations associated with recurrent prompt penetration electric fields during the space weather event of 4 November 2021 over the East-Asian sector. J. Geophys. Res. Space Phys. 2022, 127, e2022JA030456. [Google Scholar] [CrossRef]
- Fejer, B.G.; Scherliess, L.; De Paula, E. Effects of the vertical plasma drift velocity on the generation and evolution of equatorial spread F. J. Geophys. Res. Space Phys. 1999, 104, 19859–19869. [Google Scholar] [CrossRef]
- Wu, C.C.; Liou, K.; Lepping, R.P.; Hutting, L.; Plunkett, S.; Howard, R.A.; Socker, D. The first super geomagnetic storm of solar cycle 24: “The St. Patrick’s day event (17 March 2015)”. Earth Planets Space 2016, 68, 151. [Google Scholar] [CrossRef]
- Gonzalez, W.; Joselyn, J.A.; Kamide, Y.; Kroehl, H.W.; Rostoker, G.; Tsurutani, B.T.; Vasyliunas, V. What is a geomagnetic storm? J. Geophys. Res. Space Phys. 1994, 99, 5771–5792. [Google Scholar] [CrossRef]
- Gosling, J.; Pizzo, V. Formation and evolution of corotating interaction regions and their three dimensional structure. Corotating Interact. Reg. 1999, 89, 21–52. [Google Scholar]
- Vršnak, B.; Temmer, M.; Veronig, A.M. Coronal holes and solar wind high-speed streams: I. Forecasting the solar wind parameters. Sol. Phys. 2007, 240, 315–330. [Google Scholar] [CrossRef]
- Krall, J.; Huba, J.; Joyce, G.; Yokoyama, T. Density enhancements associated with equatorial spread F. Ann. Geophys. 2010, 28, 327–337. [Google Scholar] [CrossRef]
- Balan, N.; Batista, I.; Abdu, M.; MacDougall, J.; Bailey, G. Physical mechanism and statistics of occurrence of an additional layer in the equatorial ionosphere. J. Geophys. Res. Space Phys. 1998, 103, 29169–29181. [Google Scholar] [CrossRef]
- Balan, N.; Thampi, S.; Lynn, K.; Otsuka, Y.; Alleyne, H.; Watanabe, S.; Abdu, M.; Fejer, B. F3 layer during penetration electric field. J. Geophys. Res. Space Phys. 2008, 113. [Google Scholar] [CrossRef]








| Station Location | Code | Latitude | Longitude | Dip Latitude (2015) | System |
|---|---|---|---|---|---|
| Sao Luis | SAA0K | −2.53° S | −44.3° W | 2.5° S | DGS-256 |
| Campo Grande | CGK21 | −20.44° S | −54.65° W | 22.3° S | DPS-4 |
| Initial Phase | Main Phase | Recovery Phase | ||||
|---|---|---|---|---|---|---|
| foF2 (%) | MUF (%) | foF2 (%) | MUF (%) | foF2 (%) | MUF (%) | |
| SL | 12 | 23 | 14 | 25 | 12 | 24 |
| CG | 15 | 46 | 17 | 45 | 14 | 37 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nwankwo, O.G.; Becker-Guedes, F.; Candido, C.M.N. Analyzing the Influence of Saint Patrick’s Day Geomagnetic Storm on the Maximum Usable Frequency (MUF) in the Brazilian Equatorial and Low-Latitude Ionosphere. Atmosphere 2025, 16, 1388. https://doi.org/10.3390/atmos16121388
Nwankwo OG, Becker-Guedes F, Candido CMN. Analyzing the Influence of Saint Patrick’s Day Geomagnetic Storm on the Maximum Usable Frequency (MUF) in the Brazilian Equatorial and Low-Latitude Ionosphere. Atmosphere. 2025; 16(12):1388. https://doi.org/10.3390/atmos16121388
Chicago/Turabian StyleNwankwo, Onyinye G., Fabio Becker-Guedes, and Claudia M. N. Candido. 2025. "Analyzing the Influence of Saint Patrick’s Day Geomagnetic Storm on the Maximum Usable Frequency (MUF) in the Brazilian Equatorial and Low-Latitude Ionosphere" Atmosphere 16, no. 12: 1388. https://doi.org/10.3390/atmos16121388
APA StyleNwankwo, O. G., Becker-Guedes, F., & Candido, C. M. N. (2025). Analyzing the Influence of Saint Patrick’s Day Geomagnetic Storm on the Maximum Usable Frequency (MUF) in the Brazilian Equatorial and Low-Latitude Ionosphere. Atmosphere, 16(12), 1388. https://doi.org/10.3390/atmos16121388

