Influence of the Stratospheric Polar Vortex on the Near-Surface Wind Speed in Winter over China
Abstract
1. Introduction
2. Data and Method
3. Winter NSWS over China
4. Linkage Between SPV and NSWS on Interannual Timescale
5. Linkage Between SPV and NSWS on Interdecadal Timescale
6. Summary and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, Y.Q.; Liu, C.M.; Tang, Y.H.; Yang, Y.H. Trends in pan evaporationand reference and actual evapotranspiration across the Tibetan Plateau. J. Geophys. Res.-Atmos. 2007, 112, D12110. [Google Scholar] [CrossRef]
- McMichael, A.J.; Woodruff, R.E.; Hales, S. Climate change and human health: Present and future risks. Lancet 2006, 367, 859–869. [Google Scholar] [CrossRef]
- Zhang, H.B.; Peng, J.; Zhao, C.A. Wind Speed and Vegetation Coverage in Turn Dominated Wind Erosion Change with Increasing Aridity in Africa. Earths Future 2024, 12, e2024EF004468. [Google Scholar] [CrossRef]
- Ma, N.; Zhang, Y.Q.; Yang, Y.T. Recent Decline in Global Ocean Evaporation Due to Wind Stilling. Geophys. Res. Lett. 2025, 52, e2024GL114256. [Google Scholar] [CrossRef]
- Liu, Y.; Xu, R.; Ziegler, A.; Zeng, Z. Stronger winds increase the sand-dust storm risk in northern China. Environ. Sci. Atmos. 2022, 2, 1259–1262. [Google Scholar] [CrossRef]
- Wu, D.; Tie, X.; Li, C.; Ying, Z.; Kai-Hon Lau, A.; Huang, J.; Deng, X.; Bi, X. An extremely low visibility event over the Guangzhou region: A case study. Atmos. Environ. 2005, 39, 6568–6577. [Google Scholar] [CrossRef]
- Zhang, Z.B.; Yang, Y.; Zhang, X.P.; Chen, Z.J. Wind speed changes and its influencing factors in Southwestern China. Acta Ecol. Sin. 2014, 34, 471–481. (In Chinese) [Google Scholar] [CrossRef][Green Version]
- Sun, T.Z.; Che, H.Z.; Wu, J.; Wang, H.; Wang, Y.; Zhang, X. The variation in visibility and its relationship with surface wind speed in China from 1960 to 2009. Theor. Appl. Climatol. 2018, 131, 335–347. [Google Scholar] [CrossRef]
- Qin, Y.; Zhou, M.; Hao, Y.T.; Huang, X.; Tong, D.; Huang, L.; Zhang, C.; Cheng, J.; Gu, W.; Wang, L.; et al. Amplified positive effects on air quality, health, and renewable energy under China’s carbon neutral target. Nat. Geosci. 2024, 17, 411–418. [Google Scholar] [CrossRef]
- Andreae, M.O.; Merlet, P. Emission of trace gases and aerosols from biomass burning. Glob. Biogeochem. Cycles 2001, 15, 955–966. [Google Scholar] [CrossRef]
- McVicar, T.R.; Roderick, M.L.; Donohue, R.J.; Li, L.; Niel, T.; Thomas, A.; Grieser, J.; Jhajharia, D.; Himri, Y.; Mahowald, N.; et al. Global review and synthesis of trends in observed terrestrial near-surface wind speeds: Implications for evaporation. J. Hydrol. 2012, 416, 182–205. [Google Scholar] [CrossRef]
- Burnham, A.; Han, J.; Clark, C.E.; Wang, M.; Dunn, J.; Palou-Rivera, I. Life-Cycle Greenhouse Gas Emissions of Shale Gas, Natural Gas, Coal, and Petroleum. Environ. Sci. Technol. 2012, 46, 619–627. [Google Scholar] [CrossRef] [PubMed]
- Ozkan, O.; Coban, M.N.; Destek, M.A. Navigating the winds of change: Assessing the impact of wind energy innovations and fossil energy efficiency on carbon emissions in China. Renew. Energy 2024, 228, 120623. [Google Scholar] [CrossRef]
- Devine-Wright, P. Beyond NIMBYism: Towards an integrated framework for understanding public perceptions of wind energy. Wind Energy 2005, 8, 125–139. [Google Scholar] [CrossRef]
- Obama, B. The irreversible momentum of clean energy. Science 2017, 355, 126–129. [Google Scholar] [CrossRef]
- Wang, Y.; Zou, R.M.; Liu, F.; Zhang, L.; Liu, Q. A review of wind speed and wind power forecasting with deep neural networks. Appl. Energy 2021, 304, 117766. [Google Scholar] [CrossRef]
- Guo, H.; Xu, M.; Hu, Q. Changes in near-surface wind speed in China: 1969–2005. Int. J. Climatol. 2011, 31, 349–358. [Google Scholar] [CrossRef]
- Wu, J.; Zha, J.L.; Zhao, D.M. Estimating the impact of the changes in land use and cover on the surface wind speed over the East China Plain during the period 1980–2011. Clim. Dyn. 2016, 46, 847–863. [Google Scholar] [CrossRef]
- Wu, J.; Zha, J.L.; Zhao, D.M. Evaluating the effects of land use and cover change on the decrease of surface wind speed over China in recent 30 years using a statistical downscaling method. Clim. Dyn. 2017, 48, 131–149. [Google Scholar] [CrossRef]
- Wu, J.; Zha, J.L.; Zhao, D.M.; Yang, Q.D. Changes of wind speed at different heights over Eastern China during 1980–2011. Int. J. Climatol. 2018, 38, 4476–4495. [Google Scholar] [CrossRef]
- Zha, J.L.; Wu, J.; Zhao, D.M. Changes of probabilities in different wind grades induced by land use and cover change in Eastern China Plain during 1980–2011. Atmos. Sci. Lett. 2016, 17, 264–269. [Google Scholar] [CrossRef]
- Zha, J.L.; Shen, C.; Wu, J.; Zhao, D.; Fan, W.; Jiang, H.; Azorin-molina, C.; Chen, D. Effects of Northern Hemisphere Annular Mode on terrestrial near-surface wind speed over eastern China from 1979 to 2017. Adv. Clim. Change Res. 2022, 13, 875–883. [Google Scholar] [CrossRef]
- Zhang, R.H.; Zhang, S.Y.; Luo, J.L.; Han, Y.; Zhang, J. Analysis of near-surface wind speed change in China during 1958–2015. Theor. Appl. Climatol. 2019, 137, 2785–2801. [Google Scholar] [CrossRef]
- Shen, C.; Yuan, H.; Li, Z.; Yang, X.; Minola, L.; Chang, Y.; Chen, D. March Near-Surface Wind Speed Hiatus over China Since 2011. Geophys. Res. Lett. 2023, 50, e2023GL104230. [Google Scholar] [CrossRef]
- Li, Z.B.; Xu, Y.; Yuan, H.S.; Li, Z.; Yang, X.; Minola, L.; Chang, Y.; Chen, D. AMO footprint of the recent near-surface wind speed change over China. Environ. Res. Lett. 2024, 19, 114031. [Google Scholar] [CrossRef]
- Ding, Y.; Xiao, L.; Li, Q. Advances of surface wind speed changes over China under global warming. J. Appl. Meteor. Sci. 2020, 31, 1–12. [Google Scholar]
- Zha, J.L.; Chuan, T.; Wu, J.; Zhao, D.M.; Luo, M.; Feng, J.M.; Fan, W.X.; Shen, C.; Jiang, H.P. Attribution of terrestrial near-surface wind speed changes across China at a centennial scale. Geophys. Res. Lett. 2024, 51, e2024GL108241. [Google Scholar] [CrossRef]
- Xu, M.; Chang, C.; Fu, C.; Qi, Y.; Rbock, A.; Robinson, D.; Zhang, H. Steady decline of east Asian monsoon winds, 1969–2000: Evidence from direct ground measurements of wind speed. J. Geophys. Res.-Atmos. 2006, 111, D24111. [Google Scholar] [CrossRef]
- Li, X.; Li, Q.P.; Ding, Y.H.; Wang, M. Near-surface wind speed changes in eastern China during 1970–2019 winter and its possible causes. Adv. Clim. Chang Res. 2022, 13, 228–239. [Google Scholar] [CrossRef]
- Zhang, G.F.; Azorin-Molina, C.; Chen, D.L.; Mcvicar, T.; Guijarro, J.; Deng, K.; Minola, L.; Lee, J.; Son, W.W.; Ma, H.; et al. Variability and trends of near-surface wind speed over the Tibetan Plateau: The role played by the westerly and Asian monsoon. Adv. Clim. Chang Res. 2024, 15, 525–536. [Google Scholar] [CrossRef]
- You, Q.L.; Fraedrich, K.; Min, J.Z.; Kang, S.; Zhu, X.; Pekin, N.; Zhang, L. Observed surface wind speed in the Tibetan Plateau since 1980 and its physical causes. Int. J. Climatol. 2014, 34, 1873–1882. [Google Scholar] [CrossRef]
- Zeng, Z.Z.; Ziegler, A.D.; Searchinger, T.; Yang, L.; Chen, A.; Ju, K.; Piao, S.; Ciais, P.; Chen, D.; Liu, J. A reversal in global terrestrial stilling and its implications for wind energy production. Nat. Clim. Change 2019, 9, 979–985. [Google Scholar] [CrossRef]
- Luo, N.; Ding, R.Q. The impact of the AMO on wintertime surface wind speed reversal in Northeast Asia. Environ. Res. Lett. 2025, 20, 014068. [Google Scholar] [CrossRef]
- Park, C.; Shin, S.W.; Cha, D.H.; Min, S.K.; Byun, Y.; Kim, J.; Choi, Y. Impact of global warming on wind power potential over East Asia. Renew. Sustain. Energy Rev. 2024, 203, 114747. [Google Scholar] [CrossRef]
- Zha, J.L.; Wu, J.; Zhao, D.M. Effects of land use and cover change on the near-surface wind speed over China in the last 30 years. Prog. Phys. Geogr. 2017, 41, 46–67. [Google Scholar] [CrossRef]
- Baldwin, M.P.; Dunkerton, T.J. Stratospheric harbingers of anomalous weather regimes. Science 2001, 294, 581–584. [Google Scholar] [CrossRef] [PubMed]
- Polvani, L.M.; Waugh, D.W. Upward wave activity flux as a precursor to extreme stratospheric events and subsequent anomalous surface weather regimes. J. Clim. 2004, 17, 3548–3554. [Google Scholar] [CrossRef]
- Garfinkel, C.I.; Hartmann, D.L.; Sassi, F. Tropospheric Precursors of Anomalous Northern Hemisphere Stratospheric Polar Vortices. J. Clim. 2010, 23, 3282–3299. [Google Scholar] [CrossRef]
- Sigmond, M.; Scinocca, J.F.; Kharin, V.V.; Shepherd, T.G. Enhanced seasonal forecast skill following stratospheric sudden warmings. Nat. Geosci. 2013, 6, 98–102. [Google Scholar] [CrossRef]
- Kidston, J.; Scaife, A.A.; Hardiman, S.C.; Mitchell, D.M.; Butchart, N.; Baldwin, M.P.; Gray, L.J. Stratospheric influence on tropospheric jet streams, storm tracks and surface weather. Nat. Geosci. 2015, 8, 433–440. [Google Scholar] [CrossRef]
- Gray, L.J.; Brown, M.J.; Knight, J.; Andrews, M.; O’Reilly, C.; Anstey, J. Forecasting extreme stratospheric polar vortex events. Nat. Commun. 2020, 11, 4630. [Google Scholar] [CrossRef]
- Baldwin, M.P.; Ayarzagüena, B.; Birner, T.; Butchart, N.; Butler, A.; Charlton-Perez, A.; Domeisen, D.; Garfinkel, C.; Garney, H.; Gerber, E. Sudden Stratospheric Warmings. Rev. Geophys. 2021, 59, e2020RG000708. [Google Scholar] [CrossRef]
- Xie, F.; Ma, X.; Li, Y.; Li, J.; Chen, X.; Tian, W.; Sun, C.; Xu, M.; Zhang, J.; Gui, K. Southern Hemispheric jet swing linked to Arctic stratospheric polar vortex. Environ. Res. Lett. 2024, 19, 044053. [Google Scholar] [CrossRef]
- Du, Y.H.; Zhang, J.K.; Cheng, X.Y.; Lu, Y.; Li, D.; Tian, W.S. Predicting Sudden Stratospheric Warmings Using Video Prediction Methods. Geophys. Res. Lett. 2025, 52, e2024GL113993. [Google Scholar] [CrossRef]
- Zhang, C.Y.; Zhang, J.K.; Maycock, A.C.; Tian, W.S. Distinct tropospheric anomalies during sudden stratospheric warming events accompanied by strong and weak Ural Ridge. npj Clim. Atmos. Sci. 2024, 7, 280. [Google Scholar] [CrossRef]
- Zhang, R.H.; Zhou, W.; Tian, W.S.; Zhang, Y.; Zhang, J.; Luo, J. A stratospheric precursor of East Asian summer droughts and floods. Nat. Commun. 2024, 15, 247. [Google Scholar] [CrossRef]
- Zhang, R.H.; Zhou, W.; Tian, W.S. Holton-Tan effect enhances the influence of the QBO on the surface air temperature around the North Pacific. Clim. Dyn. 2025, 63, 128. [Google Scholar] [CrossRef]
- Zhang, R.H.; Zhou, W.; Zhang, Y.; Xu, X.X. Modulation of the Quasi-Biennial Oscillation on the East Asian Surface Air Temperature in Boreal Winter. J. Clim. 2025, 38, 87–99. [Google Scholar] [CrossRef]
- Thompson, D.W.J.; Baldwin, M.P.; Wallace, J.M. Stratospheric connection to Northern Hemisphere wintertime weather: Implications for prediction. J. Clim. 2002, 15, 1421–1428. [Google Scholar] [CrossRef]
- Rao, J.; Garfinkel, C.I.; Wu, T.W.; Lu, Y.; Lu, Q.; Liang, Z. The January 2021 Sudden Stratospheric Warming and Its Prediction in Subseasonal to Seasonal Models. J. Geophys. Res.-Atmos. 2021, 126, e2021JD035057. [Google Scholar] [CrossRef]
- Yu, Y.Y.; Ren, R.C.; Li, Y.F.; Yu, X.; Yang, X.; Liu, B.; Sun, M. Continental cold-air-outbreaks under the varying stratosphere-troposphere coupling regimes during stratospheric Northern Annular Mode events. Clim. Dyn. 2024, 62, 7207–7231. [Google Scholar] [CrossRef]
- Davini, P.; Cagnazzo, C.; Anstey, J.A. A blocking view of the stratosphere-troposphere coupling. J. Geophys. Res.-Atmos. 2014, 119, 11100–11115. [Google Scholar] [CrossRef]
- Huang, J.L.; Tian, W.S.; Gray, L.J.; Zhang, J.; Li, Y.; Luo, J.; Tian, H. Preconditioning of Arctic Stratospheric Polar Vortex Shift Events. J. Clim. 2018, 31, 5417–5436. [Google Scholar] [CrossRef]
- Huang, J.L.; Hitchcock, P.; Maycock, A.C.; Mckenna, C.M.; Tian, W.S. Northern hemisphere cold air outbreaks are more likely to be severe during weak polar vortex conditions. Commun. Earth Environ. 2021, 2, 147. [Google Scholar] [CrossRef]
- Huang, J.L.; Hitchcock, P.; Tian, W.S.; Sillin, J. Stratospheric Influence on the Development of the 2018 Late Winter European Cold Air Outbreak. J. Geophys. Res.-Atmos. 2022, 127, e2021JD035877. [Google Scholar] [CrossRef]
- Cohen, J.; Agel, L.; Barlow, M.; Furtado, J.C.; Kretchmer, M.; Wendt, V. The “polar vortex” winter of 2013/2014. J. Geophys. Res. Atmos. 2022, 127, e2022JD036493. [Google Scholar] [CrossRef]
- Zhang, R.H.; Zhou, W. Decadal change in the linkage between QBO and the leading mode of Southeast China winter precipitation. J. Clim. 2023, 36, 7379–7392. [Google Scholar] [CrossRef]
- Hu, D.Z.; Guan, Z.Y.; Tian, W.S.; Ren, R.C. Recent strengthening of the stratospheric Arctic vortex response to warming in the central North Pacific. Nat. Commun. 2018, 9, 1697. [Google Scholar] [CrossRef]
- Kobayashi, S.; Ota, Y.; Harada, Y.; Ebita, A.; Moriya, M.; Onoda, H.; Onogi, K.; Kamahori, H.; 59. Kobayashi, C.; Endo, H.; et al. The JRA-55 reanalysis: General specifications and basic characteristics. J. Meteorol. Soc. Jpn. 2015, 93, 5–48. [Google Scholar] [CrossRef]
- Bretherton, C.S.; Widmann, M.; Dymnikov, V.P.; Wallace, J.; Blade, I. The effective number of spatial degrees of freedom of a time-varying field. J. Clim. 1999, 12, 1990–2009. [Google Scholar] [CrossRef]
- Woo, S.H.; Kim, B.; Kug, J. Temperature variation over East Asia during the lifecycle of weak stratospheric polar vortex. J. Clim. 2015, 28, 5857–5872. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, J.; Xia, X.; Song, J.; Li, D.; Tian, W.S. Impacts of stratospheric polar vortex changes on tropospheric blockings over the Atlantic region. Clim. Dyn. 2024, 62, 4829–4848. [Google Scholar] [CrossRef]
- Wu, J.; Wu, J.; Yan, Y. Changes of Surface Wind Speed over Qinghai-Xizang Plateau from 1961 to 2020 and Evaluation of the Dynamical Downscaling Simulations. Plateau Meteorol. 2022, 41, 963–976. [Google Scholar]
- Wang, J.; Feng, J.; Yan, Z.; Qiu, Y.; Gao, L. An analysis of the urbanization contribution to observed terrestrial stilling in the Beijing–Tianjin–Hebei region of China. Environ. Res. Lett. 2020, 15, 034062. [Google Scholar] [CrossRef]
- Lu, H.; Bracegirdle, T.J.; Phillips, T.; Bushell, A.; Gray, L. Mechanisms for the Holton-Tan relationship and its decadal variation. J. Geophys. Res. Atmos. 2014, 119, 2811–2830. [Google Scholar] [CrossRef]
- Nicola, S.; West, B.J. Is climate sensitive to solar variability? Phys. Today 2008, 61, 50–51. [Google Scholar] [CrossRef]
- Li, Z.; Sun, M.; Shen, C.; Chen, D. ENSO-driven seasonal variability in near-surface wind speed and wind power potential across China. Geophys. Res. Lett. 2025, 52, e2025GL115537. [Google Scholar] [CrossRef]
- Zhang, R.H.; Zhu, G.; Xu, X.X.; Zhang, Y. Vertical structure of the quasi-biennial oscillation influences the strength of the Holton–Tan effect. Clim. Dyn. 2025, 63, 359. [Google Scholar] [CrossRef]










| NC | SC | SWC | NWC | |
|---|---|---|---|---|
| Interannual variability | 0.85 * | 0.90 * | 0.31 * | 0.76 * |
| Interdecadal variability | 0.91 * | 0.97 * | 0.45 | 0.60 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Xu, X.; Zhang, R. Influence of the Stratospheric Polar Vortex on the Near-Surface Wind Speed in Winter over China. Atmosphere 2025, 16, 1205. https://doi.org/10.3390/atmos16101205
Li Y, Xu X, Zhang R. Influence of the Stratospheric Polar Vortex on the Near-Surface Wind Speed in Winter over China. Atmosphere. 2025; 16(10):1205. https://doi.org/10.3390/atmos16101205
Chicago/Turabian StyleLi, Yang, Xiran Xu, and Ruhua Zhang. 2025. "Influence of the Stratospheric Polar Vortex on the Near-Surface Wind Speed in Winter over China" Atmosphere 16, no. 10: 1205. https://doi.org/10.3390/atmos16101205
APA StyleLi, Y., Xu, X., & Zhang, R. (2025). Influence of the Stratospheric Polar Vortex on the Near-Surface Wind Speed in Winter over China. Atmosphere, 16(10), 1205. https://doi.org/10.3390/atmos16101205

